Skip to main content

Advertisement

Log in

Unraveling the mechanistic interplay of mediators orchestrating the neuroprotective potential of harmine

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Neurodegenerative diseases (NDDs) encompass a range of conditions characterized by the specific dysfunction and continual decline of neurons, glial cells, and neural networks within the brain and spinal cord. The majority of NDDs exhibit similar underlying causes, including oxidative stress, neuroinflammation, and malfunctioning of mitochondria. Elevated levels of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), alongside decreased expression of brain-derived neurotrophic factor (BDNF) and glutamate transporter subtype 1 (GLT-1), constitute significant factors contributing to the pathogenesis of NDDs. Additionally, the dual-specificity tyrosine phosphorylation-regulated kinase 1 A (DYRK1A) gene has emerged as a significant target for the treatment of NDDs at the preclinical level. It significantly contributes to developmental brain defects, early onset neurodegeneration, neuronal loss, and dementia in Down syndrome. Moreover, an impaired ubiquitin-proteosome system (UPS) also plays a pathological role in NDDs. Malfunctioning of UPS leads to abnormal protein buildup or aggregation of α-synuclein. α-Synuclein is a highly soluble unfolded protein that accumulates in Lewy bodies and Lewy neurites in Parkinson’s disease and other synucleinopathies. Recent research highlights the promising potential of natural products in combating NDDs relative to conventional therapies. Alkaloids have emerged as promising candidates in the fight against NDDs. Harmine is a tricyclic β-carboline alkaloid (harmala alkaloid) with one indole nucleus and a six-membered pyrrole ring. It is extracted from Banisteria caapi and Peganum harmala L. and exhibits diverse pharmacological properties, encompassing neuroprotective, antioxidant, anti-inflammatory, antidepressant, etc. Harmine has been reported to mediate its neuroprotective via reducing the level of inflammatory mediators, NADPH oxidase, AChE, BChE and reactive oxygen species (ROS). Whereas, it has been observed to increase the levels of BDNF, GLT-1 and anti-oxidant enzymes, along with protein kinase-A (PKA)-mediated UPS activation. This review aims to discuss the mechanistic interplay of various mediators involved in the neuroprotective effect of harmine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Amor S, Puentes F, Baker D, Van Der Valk P. Inflammation in neurodegenerative diseases. J Immunol. 2010;129(2):154–69.

    Article  CAS  Google Scholar 

  2. Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. CSH Perspect Biol. 2017;9(7):a028035.

    Google Scholar 

  3. Teleanu DM, Niculescu AG, Lungu II, Radu CI, Vladâcenco O, Roza E, et al. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int J Mol Sci. 2022;23(11):5938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 2021 Alzheimer’s disease facts and figures. Alzheimer’s & dementia: the journal of the Alzheimer’s Association 2021;17(3), 327–406.

  5. Onohuean H, Akiyode AO, Akiyode O, Igbinoba SI, Alagbonsi AI. Epidemiology of neurodegenerative diseases in the East African region: a meta-analysis. Front Neurol. 2022;13:1024004.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Armstrong R. What causes neurodegenerative disease? Folia Neuropathol. 2020;58(2):93–112.

    Article  PubMed  Google Scholar 

  7. Rekatsina M, Paladini A, Piroli A, Zis P, Pergolizzi JV, Varrassi G. Pathophysiology and therapeutic perspectives of oxidative stress and neurodegenerative diseases: a narrative review. Adv Ther. 2020;37:113–39.

    Article  PubMed  Google Scholar 

  8. Ren C, Chen M, Mu G, Peng S, Liu X, Ou C. NLRP3 inflammasome mediates neurodegeneration in rats with chronic neuropathic pain. Shock: Injury, inflammation, and Sepsis. Clin Lab. 2021;56(5):840–9.

    CAS  Google Scholar 

  9. Fu Q, Li J, Qiu L, Ruan J, Mao M, Li S, et al. Inhibiting NLRP3 inflammasome with MCC950 ameliorates perioperative neurocognitive disorders, suppressing neuroinflammation in the hippocampus in aged mice. Int Immunopharmacol. 2020;82:106317.

    Article  CAS  PubMed  Google Scholar 

  10. Chen AI, Xiong LJ, Tong YU, Mao M. The neuroprotective roles of BDNF in hypoxic ischemic brain injury. Biomed Rep. 2013;1(2):167–76.

    Article  CAS  PubMed  Google Scholar 

  11. Walczak-Nowicka ŁJ, Herbet M. Acetylcholinesterase inhibitors in the treatment of neurodegenerative diseases and the role of acetylcholinesterase in their pathogenesis. Int J Mol Sci. 2021;22(17):9290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Todd AC, Hardingham GE. The regulation of astrocytic glutamate transporters in health and neurodegenerative diseases. Int J Mol Sci. 2020;21(24):9607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maragakis NJ, Dietrich J, Wong V, Xue H, Mayer-Proschel M, Rao MS, et al. Glutamate transporter expression and function in human glial progenitors. Glia. 2004;45(2):133–43.

    Article  PubMed  Google Scholar 

  14. Lauderback CM, Hackett JM, Huang FF, Keller JN, Szweda LI, Markesbery WR, et al. The glial glutamate transporter, GLT-1, is oxidatively modified by 4‐hydroxy‐2‐nonenal in the Alzheimer’s disease brain: the role of Aβ1–42. J Neurochem. 2001;78(2):413–6.

    Article  CAS  PubMed  Google Scholar 

  15. Wegiel J, Gong CX, Hwang YW. The role of DYRK1A in neurodegenerative diseases. FEBS J. 2011;278(2):236–45.

    Article  CAS  PubMed  Google Scholar 

  16. Wegiel J, Dowjat K, Kaczmarski W, Kuchna I, Nowicki K, Frackowiak J, et al. The role of overexpressed DYRK1A protein in the early onset of neurofibrillary degeneration in Down syndrome. Acta Neuropathol. 2008;116(4):391–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Patel K, Gadewar M, Tripathi R, Prasad SK, Patel DK. A review on medicinal importance, pharmacological activity and bioanalytical aspects of beta-carboline alkaloid Harmine. Asian Pac J Trop Biomed. 2012;2(8):660–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moloudizargari M, Mikaili P, Aghajanshakeri S, Asghari MH, Shayegh J. Pharmacological and therapeutic effects of Peganum harmala and its main alkaloids. Pharmacogn Rev. 2013;7(14):199.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Al-shaibani MB, Al-mafrachi HT. Antitumor and Immunomodulatory activities of Peganum harmala extracts. J Biotechnol Res. 2013;7(1):11–20.

    Google Scholar 

  20. Waki H, Park KW, Mitro N, Pei L, Damoiseaux R, Wilpitz DC, et al. The small molecule harmine is an antidiabetic cell-type-specific regulator of PPARγ expression. Cell Metab. 2007;5(5):357–70.

    Article  CAS  PubMed  Google Scholar 

  21. Ferraz CA, de Oliveira Junior RG, Picot L, da Silva Almeida JR, Nunes XP. Pre-clinical investigations of β-carboline alkaloids as antidepressant agents: a systematic review. Fitoterapia. 2019;137:104196.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang L, Li D, Yu S. Pharmacological effects of harmine and its derivatives: a review. Arch Pharm Res. 2020;43:1259–75.

    Article  CAS  PubMed  Google Scholar 

  23. Mahmoudian M, Salehian P, Jalilpour H. Toxicity of Peganum harmala: review and a case report. Iran J Pharmacol Ther. 2002;1:1–4.

    Google Scholar 

  24. Brito-da-Costa AM, Dias-da-Silva D, Gomes NG, Dinis-Oliveira RJ, Madureira-Carvalho Á. Toxicokinetics and toxicodynamics of ayahuasca alkaloids N, N-dimethyltryptamine (DMT), harmine, harmaline and tetrahydroharmine: clinical and forensic impact. J Pharm. 2020;13(11):334.

    CAS  Google Scholar 

  25. Li Y, Sattler R, Yang EJ, Nunes A, Ayukawa Y, Akhtar S, et al. Harmine, a natural beta-carboline alkaloid, upregulates astroglial glutamate transporter expression. J Neuropharmacol. 2011;60(7–8):1168–75.

    Article  CAS  Google Scholar 

  26. Frost D, Meechoovet B, Wang T, Gately S, Giorgetti M, Shcherbakova I, et al. β-carboline compounds, including harmine, inhibit DYRK1A and tau phosphorylation at multiple Alzheimer’s disease-related sites. PLoS ONE. 2011;6(5):e19264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fortunato JJ, Réus GZ, Kirsch TR, Stringari RB, Fries GR, Kapczinski F, et al. Effects of β-carboline harmine on behavioral and physiological parameters observed in the chronic mild stress model: further evidence of antidepressant properties. Brain Res Bull. 2010;81(4–5):491–6.

    Article  CAS  PubMed  Google Scholar 

  28. Liu P, Li H, Wang Y, Su X, Li Y, Yan M, et al. Harmine ameliorates cognitive impairment by inhibiting NLRP3 inflammasome activation and enhancing the BDNF/TrkB signaling pathway in STZ-induced diabetic rats. Front Pharmacol. 2020;11:535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Filali I, Bouajila J, Znati M, Bousejra-El Garah F, Ben Jannet H. Synthesis of new isoxazoline derivatives from harmine and evaluation of their anti-Alzheimer, anti-cancer and anti-inflammatory activities. J Enzyme Inhib Med Chem. 2015;30(3):371–6.

    Article  CAS  PubMed  Google Scholar 

  30. Jin SJ, Song Y, Park HS, Park KW, Lee S, Kang H. Harmine Inhibits Multiple TLR-Induced Inflammatory Expression through Modulation of NF-κB p65, JNK, and STAT1. Life. 2022;12(12):2022.

  31. Cai CZ, Zhou HF, Yuan NN, Wu MY, Lee SMY, Ren JY, et al. Natural alkaloid harmine promotes degradation of alpha-synuclein via PKA-mediated ubiquitin-proteasome system activation. Phytomed. 2019;61:152842.

    Article  CAS  Google Scholar 

  32. Pajarillo E, Rizor A, Lee J, Aschner M, Lee E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: potential targets for neurotherapeutics. Neuropharmacol. 2019;161:107559.

    Article  CAS  Google Scholar 

  33. Rimmele TS, Li S, Andersen JV, Westi EW, Rotenberg A, Wang J, et al. Neuronal loss of the glutamate transporter GLT-1 promotes excitotoxic injury in the hippocampus. Front Cell Neurosci. 2021;15:788262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mookherjee P, Green PS, Watson G, Marques MA, Tanaka K, Meeker KD, et al. GLT-1 loss accelerates cognitive deficit onset in an Alzheimer’s disease animal model. JAD. 2011;26(3):447–55.

    Article  CAS  PubMed  Google Scholar 

  35. Dumont AO, Goursaud S, Desmet N, Hermans E. Differential regulation of glutamate transporter subtypes by pro-inflammatory cytokine TNF-α in cortical astrocytes from a rat model of amyotrophic lateral sclerosis. PLoS ONE. 2014;9(5):e97649.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Peng M, Ling X, Song R, Gao X, Liang Z, Fang F, et al. Upregulation of GLT-1 via PI3K/Akt pathway contributes to neuroprotection induced by dexmedetomidine. Front Neurol. 2019;10:1041.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cui C, Cui Y, Gao J, Sun L, Wang Y, Wang K, et al. Neuroprotective effect of ceftriaxone in a rat model of traumatic brain injury. Neurol Sci. 2014;35(4):695–700.

    Article  PubMed  Google Scholar 

  38. Meijboom KE, Volpato V, Monzón-Sandoval J, Hoolachan JM, Hammond SM, Abendroth F et al. Combining multiomics and drug perturbation profiles to identify muscle-specific treatments for spinal muscular atrophy. JCI Insight 2021;6(13).

  39. Sun P, Zhang S, Li Y, Wang L. Harmine mediated neuroprotection via evaluation of glutamate transporter 1 in a rat model of global cerebral ischemia. Neurosci Lett. 2014;583:32–6.

    Article  CAS  PubMed  Google Scholar 

  40. Liu F, Wu J, Gong Y, Wang P, Zhu L, Tong L, et al. Harmine produces antidepressant-like effects via restoration of astrocytic functions. Prog Neuropsychopharmacol Biol Psychiatry. 2017;79:258–67.

    Article  CAS  PubMed  Google Scholar 

  41. Ramandi D, Elahdadi Salmani M, Moghimi A, Lashkarbolouki T, Fereidoni M. Pharmacological upregulation of GLT-1 alleviates the cognitive impairments in the animal model of temporal lobe epilepsy. PLoS ONE. 2021;16(1):e0246068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tian SW, Yu XD, Cen L, Xiao ZY. Glutamate transporter GLT1 inhibitor dihydrokainic acid impairs novel object recognition memory performance in mice. Physiol Behav. 2019;199:28–32.

    Article  CAS  PubMed  Google Scholar 

  43. Zhong Z, Tao Y, Yang H. Treatment with harmine ameliorates functional impairment and neuronal death following traumatic brain injury. Mol Med Rep. 2015;12(6):7985–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Prow NA, Irani DN. The inflammatory cytokine, interleukin-1 beta, mediates loss of astroglial glutamate transport and drives excitotoxic motor neuron injury in the spinal cord during acute viral encephalomyelitis. J Neurochem. 2008;105(4):1276–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rodriguez-Kern A, Gegelashvili M, Schousboe A, Zhang J, Sung L, Gegelashvili G. Beta-amyloid and brain-derived neurotrophic factor, BDNF, up-regulate the expression of glutamate transporter GLT-1/EAAT2 via different signaling pathways utilizing transcription factor NF-κB. Neurochem Int. 2003;43(4–5):363–70.

    Article  CAS  PubMed  Google Scholar 

  46. Dai M, XIA XB, XIONG SQ. BDNF regulates GLAST and glutamine synthetase in mouse retinal Müller cells. J Cell Physiol. 2012;227(2):596–603.

    Article  CAS  PubMed  Google Scholar 

  47. Ward R, Li W, Abdul Y, Jackson L, Dong G, Jamil S, et al. NLRP3 inflammasome inhibition with MCC950 improves diabetes-mediated cognitive impairment and vasoneuronal remodeling after ischemia. Pharmacol Res. 2019;142:237–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guan Y, Han F. Key mechanisms and potential targets of the NLRP3 inflammasome in neurodegenerative diseases. Front Integr Neurosci. 2020;14:37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature. 2013;493(7434):674–8.

    Article  CAS  PubMed  Google Scholar 

  50. Hung WL, Ho CT, Pan MH. Targeting the NLRP3 inflammasome in neuroinflammation: health promoting effects of dietary phytochemicals in neurological disorders. Mol Nutr Food Res. 2020;64(4):1900550.

    Article  CAS  Google Scholar 

  51. Zhang J, Feng J, Ma D, Wang F, Wang Y, Li C, et al. Neuroprotective mitochondrial remodeling by AKAP121/PKA protects HT22 cell from glutamate-induced oxidative stress. Mol Neurobiol. 2019;56(8):5586–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dagda RK, Gusdon AM, Pien I, Strack S, Green S, Li C, et al. Mitochondrially localized PKA reverses mitochondrial pathology and dysfunction in a cellular model of Parkinson’s disease. Cell Death Differ. 2011;18(12):1914–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Merrill RA, Dagda RK, Dickey AS, Cribbs JT, Green SH, Usachev YM, et al. Mechanism of neuroprotective mitochondrial remodeling by PKA/AKAP1. PLoS ONE. 2011;6(4):e1000612.

    Article  Google Scholar 

  54. Moore DJ, Dawson VL, Dawson TM. Role for the ubiquitin-proteasome system in Parkinson’s disease and other neurodegenerative brain amyloidoses. Neuromol Med. 2003;4(1–2):95–108.

    Article  Google Scholar 

  55. Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC. α-Synuclein is degraded by both autophagy and the proteasome. J Bio Chem. 2003;278(27):25009–13.

    Article  CAS  Google Scholar 

  56. Kumar V, Singh D, Singh BK, Singh S, Mittra N, Jha RR, et al. Alpha-synuclein aggregation, ubiquitin proteasome system impairment, and L-Dopa response in zinc-induced parkinsonism: resemblance to sporadic Parkinson’s disease. Mol Cell Biochem. 2018;444(1–2):149–60.

    Article  CAS  PubMed  Google Scholar 

  57. McNaught KS, Jenner P. Proteasomal function is impaired in substantia nigra in Parkinson’s disease. Neurosci Lett. 2001;297(3):191–4.

    Article  CAS  PubMed  Google Scholar 

  58. Ebrahimi-Fakhari D, Cantuti-Castelvetri I, Fan Z, Rockenstein E, Masliah E, Hyman BT, et al. Distinct roles in vivo for the ubiquitin–proteasome system and the autophagy–lysosomal pathway in the degradation of α-synuclein. J Neurosci. 2011;31(41):14508–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McKinnon C, De Snoo ML, Gondard E, Neudorfer C, Chau H, Ngana SG, et al. Early-onset impairment of the ubiquitin-proteasome system in dopaminergic neurons caused by α-synuclein. Acta Neuropatholo Commun. 2020;8(1):17.

    Article  CAS  Google Scholar 

  60. Alvarez-Castelao B, Castaño JG. Synphilin-1 inhibits alpha-synuclein degradation by the proteasome. Cell Mol Life Sci. 2011;68(15):2643–54.

    Article  CAS  PubMed  Google Scholar 

  61. Yaku K, Matsui-Yuasa I, Kojima-Yuasa A. 1′-Acetoxychavicol acetate increases Proteasome Activity by activating cAMP-PKA signaling. Planta Med. 2018;84(03):153–9.

    Article  CAS  PubMed  Google Scholar 

  62. Myeku N, Wang H, Figueiredo-Pereira ME. cAMP stimulates the ubiquitin/proteasome pathway in rat spinal cord neurons. Neurosci Lett. 2012;527(2):126–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang Y, Fan X, Liu Y, Ye D, Liu C, Yang H et al. Function and inhibition of DYRK1A: emerging roles of treating multiple human diseases. Biochem Pharmacol 2023;115521.

  64. Altafaj X, Dierssen M, Baamonde C, Martí E, Visa J, Guimerà J, et al. Neurodevelopmental delay, motor abnormalities and cognitive deficits in transgenic mice overexpressing Dyrk1A (minibrain), a murine model of Down’s syndrome. Hum Mol Genet. 2001;10(18):1915–23.

    Article  CAS  PubMed  Google Scholar 

  65. Duchon A, Herault Y. DYRK1A, a dosage-sensitive gene involved in neurodevelopmental disorders, is a target for drug development in Down syndrome. Front Behav Neurosci. 2016;10:104.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lee HJ, Hoe HS. Inhibition of CDK4/6 regulates AD pathology, neuroinflammation and cognitive function through DYRK1A/STAT3 signaling. Pharmacolo Res. 2023;190:106725.

    Article  CAS  Google Scholar 

  67. Araldi GL, Hwang YW. Development of Novel Fluorinated polyphenols as selective inhibitors of DYRK1A/B kinase for treatment of Neuroinflammatory diseases including Parkinson’s Disease. J Pharm. 2023;16(3):443.

    CAS  Google Scholar 

  68. Lee HJ, Woo H, Lee HE, Jeon H, Ryu KY, han Nam J, et al. The novel DYRK1A inhibitor KVN93 regulates cognitive function, amyloid-beta pathology, and neuroinflammation. Free Radic Biol Med. 2020;160:575–95.

    Article  CAS  PubMed  Google Scholar 

  69. Yin X, Jin N, Shi J, Zhang Y, Wu Y, Gong CX, et al. Dyrk1A overexpression leads to increase of 3R-tau expression and cognitive deficits in Ts65Dn down syndrome mice. Sci Rep. 2017;7(1):619.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ahn KJ, Jeong HK, Choi HS, Ryoo SR, Kim YJ, Goo JS, et al. DYRK1A BAC transgenic mice show altered synaptic plasticity with learning and memory defects. Neurobiol Dis. 2006;22(3):463–72.

    Article  CAS  PubMed  Google Scholar 

  71. Adayev T, Wegiel J, Hwang YW. Harmine is an ATP-competitive inhibitor for dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A). Arch Biochem Biophys. 2011;507(2):212–8.

    Article  CAS  PubMed  Google Scholar 

  72. Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, Mclauchlan H, et al. The selectivity of protein kinase inhibitors: a further update. Biochem J. 2007;408(3):297–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Göckler N, Jofre G, Papadopoulos C, Soppa U, Tejedor FJ, Becker W. Harmine specifically inhibits protein kinase DYRK1A and interferes with neurite formation. FEBS J. 2009;276(21):6324–37.

    Article  PubMed  Google Scholar 

  74. Sitz JH, Baumgärtel K, Hämmerle B, Papadopoulos C, Hekerman P, Tejedor FJ, et al. The Down syndrome candidate dual-specificity tyrosine phosphorylation-regulated kinase 1A phosphorylates the neurodegeneration-related septin 4. Neurosci. 2008;157(3):596–605.

    Article  CAS  Google Scholar 

  75. Liu W, Liu X, Tian L, Gao Y, Liu W, Chen H, et al. Design, synthesis and biological evaluation of harmine derivatives as potent GSK-3β/DYRK1A dual inhibitors for the treatment of Alzheimer’s disease. Eur J Med Chem. 2021;222:113554.

    Article  CAS  PubMed  Google Scholar 

  76. Bessone IF, Navarro J, Martinez E, Karmirian K, Holubiec M, Alloatti M, et al. DYRK1A regulates the bidirectional axonal transport of APP in human-derived neurons. J Neurosci. 2022;42(33):6344–58.

    Article  CAS  Google Scholar 

  77. Drummond E, Pires G, MacMurray C, Askenazi M, Nayak S, Bourdon M, et al. Phosphorylated tau interactome in the human Alzheimer’s disease brain. Brain. 2020;143(9):2803–17.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ihara M, Yamasaki N, Hagiwara A, Tanigaki A, Kitano A, Hikawa R, et al. Sept4, a component of presynaptic scaffold and Lewy bodies, is required for the suppression of α-synuclein neurotoxicity. Neuron. 2007;53(4):519–33.

    Article  CAS  PubMed  Google Scholar 

  79. de Graaf K, Czajkowska H, Rottmann S, Packman LC, Lilischkis R, Lüscher B, et al. The protein kinase DYRK1A phosphorylates the splicing factor SF3b1/SAP155 at Thr434, a novel in vivo phosphorylation site. BMC Biochem. 2006;7(1):1–3.

    Article  Google Scholar 

  80. Liu X, Lai LY, Chen JX, Li X, Wang N, Zhou LJ, et al. An inhibitor with GSK3β and DYRK1A dual inhibitory properties reduces tau hyperphosphorylation and ameliorates disease in models of Alzheimer’s disease. Neuropharmacol. 2023;232:109525.

    Article  CAS  Google Scholar 

  81. Choy RW, Cheng Z, Schekman R. Amyloid precursor protein (APP) traffics from the cell surface via endosomes for amyloid β (Aβ) production in the trans-golgi network. Proc Natl Acad Sci. 2012;109(30):E2077–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Thapa S, Lv M, Xu H. Acetylcholinesterase: a primary target for drugs and insecticides. Mini Rev Med Chem. 2017;17(17):1665–76.

    Article  CAS  PubMed  Google Scholar 

  83. Vecchio I, Sorrentino L, Paoletti A, Marra R, Arbitrio M. The state of the art on acetylcholinesterase inhibitors in the treatment of Alzheimer’s disease. J Cent Nerv Syst Dis. 2021;13:11795735211029113.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Herholz K. Acetylcholine esterase activity in mild cognitive impairment and Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2008;35:25–9.

    Article  Google Scholar 

  85. Bohnen NI, Kaufer DI, Hendrickson R, Ivanco LS, Lopresti B, Davis JG, et al. Cognitive correlates of alterations in acetylcholinesterase in Alzheimer’s disease. Neurosci Lett. 2005;380(1–2):127–32.

    Article  CAS  PubMed  Google Scholar 

  86. Husain I, Akhtar M, Abdin MZ, Islamuddin M, Shaharyar M, Najmi AK. Rosuvastatin ameliorates cognitive impairment in rats fed with high-salt and cholesterol diet via inhibiting acetylcholinesterase activity and amyloid beta peptide aggregation. Hum Exp Toxicol. 2018;37(4):399–411.

    Article  CAS  PubMed  Google Scholar 

  87. Phyu MP, Tangpong J. Protective effect of Thunbergia laurifolia (Linn) on lead induced acetylcholinesterase dysfunction and cognitive impairment in mice. BioMed Res Int 2013.

  88. Jyothi P, Yellamma K. Molecular docking studies on the therapeutic targets of Alzheimer’s disease (AChE and BChE) using natural bioactive alkaloids. Int J Pharm Sci. 2016;8(12):108–12.

    CAS  Google Scholar 

  89. Liu W, Liu X, Liu W, Gao Y, Wu L, Huang Y, et al. Discovery of novel β-carboline derivatives as selective AChE inhibitors with GSK-3β inhibitory property for the treatment of Alzheimer’s disease. Eur J Med Chem. 2022;229:114095.

    Article  CAS  PubMed  Google Scholar 

  90. He D, Wu H, Wei Y, Liu W, Huang F, Shi H, et al. Effects of harmine, an acetylcholinesterase inhibitor, on spatial learning and memory of APP/PS1 transgenic mice and scopolamine-induced memory impairment mice. Eur J Pharmacol. 2015;768:96–107.

    Article  CAS  PubMed  Google Scholar 

  91. Li SP, Wang YW, Qi SL, Zhang YP, Deng G, Ding WZ, et al. Analogous β-carboline alkaloids harmaline and harmine ameliorate scopolamine-induced cognition dysfunction by attenuating acetylcholinesterase activity, oxidative stress, and inflammation in mice. Front Pharmacol. 2018;9:346.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Inestrosa NC, Sagal JP, Colombres M. Acetylcholinesterase interaction with Alzheimer amyloid beta. Subcell Biochem. 2005;38:299–317.

    Article  CAS  PubMed  Google Scholar 

  93. Carvajal FJ, Inestrosa NC. Interactions of AChE with Aβ aggregates in Alzheimer’s brain: therapeutic relevance of IDN 5706. Front Mol Neurosci. 2011;4:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Du H, Song J, Ma F, Gao H, Zhao X, Mao R, He X, Yan Y. Novel harmine derivatives as potent acetylcholinesterase and amyloid beta aggregation dual inhibitors for management of Alzheimer’s disease. J Enzyme Inhib Med Chem. 2023;38(1):2281893.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Gandhi S, Abramov AY. Mechanism of oxidative stress in neurodegeneration. Oxid Med Cell Longev. 2012;2012:428010.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lushchak VI. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact. 2014;224:164–75.

    Article  CAS  PubMed  Google Scholar 

  97. Preiser JC. Oxidative stress. J Parenter Enter Nutr. 2012;36(2):147–54.

    Article  CAS  Google Scholar 

  98. Olufunmilayo EO, Gerke-Duncan MB, Holsinger RD. Oxidative stress and antioxidants in neurodegenerative disorders. Antioxidants. 2023;12(2):517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Reus GZ, Stringari RB, de Souza B, Petronilho F, Dal-Pizzol F, Hallak JE, et al. Harmine and imipramine promote antioxidant activities in prefrontal cortex and hippocampus. Oxid Med Cell Longev. 2010;3(5):325–31.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Jain S, Panuganti V, Jha S, Roy I. Harmine acts as an indirect inhibitor of intracellular protein aggregation. ACS Omega. 2020;5(11):5620–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Habib MZ, Tadros MG, Abd-Alkhalek HA, Mohamad MI, Eid DM, Hassan FE, et al. Harmine prevents 3-nitropropionic acid-induced neurotoxicity in rats via enhancing NRF2-mediated signaling: involvement of p21 and AMPK. Eur J Pharmacol. 2022;927:175046.

    Article  CAS  PubMed  Google Scholar 

  102. Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: a key modulator in neurodegenerative diseases. Molecules. 2019;24(8):1583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. He F, Ru X, Wen T. NRF2, a transcription factor for stress response and beyond. Int J Mol Sci. 2020;21(13):4777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Joo MS, Kim WD, Lee KY, Kim JH, Koo JH, Kim SG. AMPK facilitates nuclear accumulation of Nrf2 by phosphorylating at serine 550. Mol Cell Biol. 2016;36(14):1931–42.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Xu W, Zhao T, Xiao H. The implication of oxidative stress and AMPK-Nrf2 antioxidative signaling in pneumonia pathogenesis. Front Endocrinol. 2020;11:400.

    Article  Google Scholar 

  106. Hammad M, Raftari M, Cesário R, Salma R, Godoy P, Emami SN, Haghdoost S. Roles of oxidative stress and Nrf2 signaling in pathogenic and non-pathogenic cells: a possible general mechanism of resistance to therapy. Antioxidants. 2023;12(7):1371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Srinivasan S, Avadhani NG. Cytochrome c oxidase dysfunction in oxidative stress. Free Radic Biol Med. 2012;53(6):1252–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Murali M, Carvalho MS, Shivanandappa T. Oxidative stress-mediated cytotoxicity of Endosulfan is causally linked to the inhibition of NADH dehydrogenase and Na+, K+-ATPase in Ehrlich ascites tumor cells. Mol Cell Biochem. 2020;468(1–2):59–68.

    Article  CAS  PubMed  Google Scholar 

  109. Réus GZ, Stringari RB, Gonçalves CL, Scaini G, Carvalho-Silva M, Jeremias GC, et al. Administration of harmine and imipramine alters creatine kinase and mitochondrial respiratory chain activities in the rat brain. Depress Res Treat. 2012;2012:987397.

    PubMed  Google Scholar 

  110. Uzbekov MG. Monoamine oxidase as a potential biomarker of the efficacy of treatment of mental disorders. Biochem. 2021;86(6):773–83.

    CAS  Google Scholar 

  111. Balint B, Wéber C, Cruzalegui F, Burbridge M, Kotschy A. Structure-based design and synthesis of harmine derivatives with different selectivity profiles in kinase versus Monoamine Oxidase Inhibition. Chem Med Chem. 2017;12(12):932–9.

    Article  CAS  PubMed  Google Scholar 

  112. Son SY, Ma J, Kondou Y, Yoshimura M, Yamashita E, Tsukihara T. Structure of human monoamine oxidase A at 2.2-Å resolution: the control of opening the entry for substrates/inhibitors. Proc Natl Acad Sci. 2008;105(15):5739–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Giacobbo BL, Doorduin J, Moraga-Amaro R, Nazario LR, Schildt A, Bromberg E, et al. Chronic harmine treatment has a delayed effect on mobility in control and socially defeated rats. Psychopharmacol. 2020;237:1595–606.

    Article  CAS  Google Scholar 

  114. Myburg T, Petzer A, Petzer JP. The inhibition of monoamine oxidase by harmine derivatives. Res Chem. 2022;4:100607.

    CAS  Google Scholar 

  115. Stocco MR, Tolledo C, Wadji FB, Gonzalez FJ, Miksys S, Tyndale RF. Human CYP2D6 in the brain is protective against harmine-induced neurotoxicity: evidence from humanized CYP2D6 transgenic mice. Mol Neurobiol. 2020;57(11):4608–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sun Q, Liu C, Jiang K, Fang Y, Kong C, Fu J, et al. A preliminary study on the neurotoxic mechanism of harmine in Caenorhabditis elegans. Comp Biochem Physio C Toxicol Pharmacol. 2021;245:109038.

    Article  CAS  Google Scholar 

  117. Cruz-Hernandez A, Agim ZS, Montenegro PC, McCabe GP, Rochet JC, Cannon JR. Selective dopaminergic neurotoxicity of three heterocyclic amine subclasses in primary rat midbrain neurons. Neurotoxicol. 2018;65:68–84.

    Article  CAS  Google Scholar 

  118. Ostergren A, Fredriksson A, Brittebo EB. Norharman-induced motoric impairment in mice: neurodegeneration and glial activation in substantia nigra. J Neural Trans. 2006;113:313–29.

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Pankaj Kadyan and Dr. Lovedeep Singh performed the original drafting. Dr. Lovedeep Singh also undertook the conceptualization and reviewing tasks.

Corresponding author

Correspondence to Lovedeep Singh.

Ethics declarations

Conflict of interest

Lovedeep Singh and Pankaj Kadyan declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadyan, P., Singh, L. Unraveling the mechanistic interplay of mediators orchestrating the neuroprotective potential of harmine. Pharmacol. Rep (2024). https://doi.org/10.1007/s43440-024-00602-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43440-024-00602-8

Keywords

Navigation