Skip to main content

Advertisement

Log in

Synphilin-1 inhibits alpha-synuclein degradation by the proteasome

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Intracellular deposits of aggregated alpha-synuclein are a hallmark of Parkinson’s disease. Protein–protein interactions are critical in the regulation of cell proteostasis. Synphilin-1 interacts both in vitro and in vivo with alpha-synuclein promoting its aggregation. We report here that synphilin-1 specifically inhibits the degradation of alpha-synuclein wild-type and its missense mutants by the 20S proteasome due at least in part by the interaction of the ankyrin and coiled-coil domains of synphilin-1 (amino acids 331–555) with the N-terminal region (amino acids 1–60) of alpha-synuclein. Co-expression of synphilin-1 and alpha-synuclein wild-type in HeLa and N2A cells produces a specific increase in the half-life of alpha-synuclein, as degradation of unstable fluorescent reporters is not affected. Synphilin-1 inhibition can be relieved by co-expression of Siah-1 that targets synphilin-1 to degradation. Synphilin-1 inhibition of the proteasomal pathway of degradation of alpha-synuclein may help to understand the pathophysiological changes occurring in PD and other synucleinopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goedert M (2001) Parkinson’s disease and other alpha-synucleinopathies. Clin Chem Lab Med 39:308–312

    Article  PubMed  CAS  Google Scholar 

  2. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci USA 95:6469–6473

    Article  PubMed  CAS  Google Scholar 

  3. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    Article  PubMed  CAS  Google Scholar 

  4. Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18:106–108

    Article  PubMed  CAS  Google Scholar 

  5. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B, Llorens V, Gomez TE, Del Ser T, Munoz DG, de Yebenes JG (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173

    Article  PubMed  CAS  Google Scholar 

  6. Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M, Waucquier N, Defebvre L, Amouyel P, Farrer M, Destee A (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364:1167–1169

    Article  PubMed  CAS  Google Scholar 

  7. Ibanez P, Bonnet AM, Debarges B, Lohmann E, Tison F, Pollak P, Agid Y, Durr A, Brice A (2004) Causal relation between alpha-synuclein gene duplication and familial Parkinson’s disease. Lancet 364:1169–1171

    Article  PubMed  CAS  Google Scholar 

  8. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn-Hardy K (2003) Alpha-synuclein locus triplication causes Parkinson’s disease. Science 302:841

    Article  PubMed  CAS  Google Scholar 

  9. Jowaed A, Schmitt I, Kaut O, Wullner U (2010) Methylation regulates alpha-synuclein expression and is decreased in Parkinson’s disease patients’ brains. J Neurosci 30:6355–6359

    Article  PubMed  CAS  Google Scholar 

  10. Maries E, Dass B, Collier TJ, Kordower JH, Steece-Collier K (2003) The role of alpha-synuclein in Parkinson’s disease: insights from animal models. Nat Rev Neurosci 4:727–738

    Article  PubMed  CAS  Google Scholar 

  11. Cookson MR (2005) The biochemistry of Parkinson’s disease. Annu Rev Biochem 74:29–52

    Article  PubMed  CAS  Google Scholar 

  12. Vavouri T, Semple JI, Garcia-Verdugo R, Lehner B (2009) Intrinsic protein disorder and interaction promiscuity are widely associated with dosage sensitivity. Cell 138:198–208

    Article  PubMed  CAS  Google Scholar 

  13. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208

    Article  PubMed  CAS  Google Scholar 

  14. Zhou Y, Gu G, Goodlett DR, Zhang T, Pan C, Montine TJ, Montine KS, Aebersold RH, Zhang J (2004) Analysis of alpha-synuclein-associated proteins by quantitative proteomics. J Biol Chem 279:39155–39164

    Article  PubMed  CAS  Google Scholar 

  15. Jensen PH, Hager H, Nielsen MS, Hojrup P, Gliemann J, Jakes R (1999) alpha-synuclein binds to Tau and stimulates the protein kinase A-catalyzed tau phosphorylation of serine residues 262 and 356. J Biol Chem 274:25481–25489

    Article  PubMed  CAS  Google Scholar 

  16. Ostrerova N, Petrucelli L, Farrer M, Mehta N, Choi P, Hardy J, Wolozin B (1999) alpha-synuclein shares physical and functional homology with 14-3-3 proteins. J Neurosci 19:5782–5791

    PubMed  CAS  Google Scholar 

  17. Xu J, Kao SY, Lee FJ, Song W, Jin LW, Yankner BA (2002) Dopamine-dependent neurotoxicity of alpha-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat Med 8:600–606

    Article  PubMed  CAS  Google Scholar 

  18. Sato S, Chiba T, Sakata E, Kato K, Mizuno Y, Hattori N, Tanaka K (2006) 14–3-3eta is a novel regulator of parkin ubiquitin ligase. EMBO J 25:211–221

    Article  PubMed  CAS  Google Scholar 

  19. Engelender S, Kaminsky Z, Guo X, Sharp AH, Amaravi RK, Kleiderlein JJ, Margolis RL, Troncoso JC, Lanahan AA, Worley PF, Dawson VL, Dawson TM, Ross CA (1999) Synphilin-1 associates with alpha-synuclein and promotes the formation of cytosolic inclusions. Nat Genet 22:110–114

    Article  PubMed  CAS  Google Scholar 

  20. Neystat M, Rzhetskaya M, Kholodilov N, Burke RE (2002) Analysis of synphilin-1 and synuclein interactions by yeast two-hybrid beta-galactosidase liquid assay. Neurosci Lett 325:119–123

    Article  PubMed  CAS  Google Scholar 

  21. Payton JE, Perrin RJ, Clayton DF, George JM (2001) Protein–protein interactions of alpha-synuclein in brain homogenates and transfected cells. Brain Res Mol Brain Res 95:138–145

    Article  PubMed  CAS  Google Scholar 

  22. Jenco JM, Rawlingson A, Daniels B, Morris AJ (1998) Regulation of phospholipase D2: selective inhibition of mammalian phospholipase D isoenzymes by alpha- and beta-synucleins. Biochemistry 37:4901–4909

    Article  PubMed  CAS  Google Scholar 

  23. Payton JE, Perrin RJ, Woods WS, George JM (2004) Structural determinants of PLD2 inhibition by alpha-synuclein. J Mol Biol 337:1001–1009

    Article  PubMed  CAS  Google Scholar 

  24. Rappley I, Gitler AD, Selvy PE, LaVoie MJ, Levy BD, Brown HA, Lindquist S, Selkoe DJ (2009) Evidence that alpha-synuclein does not inhibit phospholipase D. Biochemistry 48:1077–1083

    Article  PubMed  CAS  Google Scholar 

  25. Murayama S, Arima K, Nakazato Y, Satoh J, Oda M, Inose T (1992) Immunocytochemical and ultrastructural studies of neuronal and oligodendroglial cytoplasmic inclusions in multiple system atrophy. 2. Oligodendroglial cytoplasmic inclusions. Acta Neuropathol 84:32–38

    Article  PubMed  CAS  Google Scholar 

  26. Pountney DL, Treweek TM, Chataway T, Huang Y, Chegini F, Blumbergs PC, Raftery MJ, Gai WP (2005) Alpha B-crystallin is a major component of glial cytoplasmic inclusions in multiple system atrophy. Neurotox Res 7:77–85

    Article  PubMed  CAS  Google Scholar 

  27. Uryu K, Richter-Landsberg C, Welch W, Sun E, Goldbaum O, Norris EH, Pham CT, Yazawa I, Hilburger K, Micsenyi M, Giasson BI, Bonini NM, Lee VM, Trojanowski JQ (2006) Convergence of heat shock protein 90 with ubiquitin in filamentous alpha-synuclein inclusions of alpha-synucleinopathies. Am J Pathol 168:947–961

    Article  PubMed  CAS  Google Scholar 

  28. Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM (2002) Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 295:865–868

    Article  PubMed  CAS  Google Scholar 

  29. McLean PJ, Klucken J, Shin Y, Hyman BT (2004) Geldanamycin induces Hsp70 and prevents alpha-synuclein aggregation and toxicity in vitro. Biochem Biophys Res Commun 321:665–669

    Article  PubMed  CAS  Google Scholar 

  30. Klucken J, Shin Y, Hyman BT, McLean PJ (2004) A single amino acid substitution differentiates Hsp70-dependent effects on alpha-synuclein degradation and toxicity. Biochem Biophys Res Commun 325:367–373

    Article  PubMed  CAS  Google Scholar 

  31. Dedmon MM, Christodoulou J, Wilson MR, Dobson CM (2005) Heat shock protein 70 inhibits alpha-synuclein fibril formation via preferential binding to prefibrillar species. J Biol Chem 280:14733–14740

    Article  PubMed  CAS  Google Scholar 

  32. Shimshek DR, Mueller M, Wiessner C, Schweizer T, van der Putten PH (2010) The HSP70 molecular chaperone is not beneficial in a mouse model of alpha-synucleinopathy. PLoS ONE 5:e10014

    Article  PubMed  Google Scholar 

  33. Mayo I, Rodriguez-Vilariño S, Castaño J. G. 20S proteasome degrades alpha-synuclein. Cold Spring Harbor Meeting on Proteolysis and Biological Control, p. 92

  34. Tofaris GK, Layfield R, Spillantini MG (2001) Alpha-synuclein metabolism and aggregation is linked to ubiquitin-independent degradation by the proteasome. FEBS Lett 509:22–26

    Article  PubMed  CAS  Google Scholar 

  35. Liu CW, Corboy MJ, Demartino GN, Thomas PJ (2003) Endoproteolytic activity of the proteasome. Science 299:408–411

    Article  PubMed  CAS  Google Scholar 

  36. Bennett MC, Bishop JF, Leng Y, Chock PB, Chase TN, Mouradian MM (1999) Degradation of alpha-synuclein by proteasome. J Biol Chem 274:33855–33858

    Article  PubMed  CAS  Google Scholar 

  37. Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC (2003) Alpha-synuclein is degraded by both autophagy and the proteasome. J Biol Chem 278:25009–25013

    Article  PubMed  CAS  Google Scholar 

  38. O’Farrell C, Murphy DD, Petrucelli L, Singleton AB, Hussey J, Farrer M, Hardy J, Dickson DW, Cookson MR (2001) Transfected synphilin-1 forms cytoplasmic inclusions in HEK293 cells. Brain Res Mol Brain Res 97:94–102

    Article  PubMed  Google Scholar 

  39. Wakabayashi K, Engelender S, Yoshimoto M, Tsuji S, Ross CA, Takahashi H (2000) Synphilin-1 is present in Lewy bodies in Parkinson’s disease. Ann Neurol 47:521–523

    Article  PubMed  CAS  Google Scholar 

  40. Xie YY, Zhou CJ, Zhou ZR, Hong J, Che MX, Fu QS, Song AX, Lin DH, Hu HY (2009) Interaction with synphilin-1 promotes inclusion formation of {alpha}-synuclein: mechanistic insights and pathological implication. FASEB J 24:196–295

    Article  PubMed  CAS  Google Scholar 

  41. O’Farrell C, Pickford F, Vink L, McGowan E, Cookson MR (2002) Sequence conservation between mouse and human synphilin-1. Neurosci Lett 322:9–12

    Article  PubMed  Google Scholar 

  42. Martin-Clemente B, Alvarez-Castelao B, Mayo I, Sierra AB, Diaz V, Milan M, Farinas I, Gomez-Isla T, Ferrer I, Castaño JG (2004) Alpha-synuclein expression levels do not significantly affect proteasome function and expression in mice and stably transfected PC12 cell lines. J Biol Chem 279:52984–52990

    Article  PubMed  CAS  Google Scholar 

  43. Arribas J, Castaño JG (1990) Kinetic studies of the differential effect of detergents on the peptidase activities of the multicatalytic proteinase from rat liver. J Biol Chem 265:13969–13973

    PubMed  CAS  Google Scholar 

  44. Wandosell F, Serrano L, Hernandez MA, Avila J (1986) Phosphorylation of tubulin by a calmodulin-dependent protein kinase. J Biol Chem 261:10332–10339

    PubMed  CAS  Google Scholar 

  45. Alvarez-Castelao B, Martin-Guerrero I, Garcia-Orad A, Castaño JG (2009) CMV promoter up-regulation is the major cause of increased protein levels of unstable reporter proteins after treatment of living cells with proteasome inhibitors. J Biol Chem 284:28253–28262

    Article  PubMed  CAS  Google Scholar 

  46. Arribas J, Arizti P, Castaño JG (1994) Antibodies against the C2 COOH-terminal region discriminate the active and latent forms of the multicatalytic proteinase complex. J Biol Chem 269:12858–12864

    PubMed  CAS  Google Scholar 

  47. Gilon T, Chomsky O, Kulka RG (1998) Degradation signals for ubiquitin system proteolysis in Saccharomyces cerevisiae. EMBO J 17:2759–2766

    Article  PubMed  CAS  Google Scholar 

  48. Corish P, Tyler-Smith C (1999) Attenuation of green fluorescent protein half-life in mammalian cells. Protein Eng 12:1035–1040

    Article  PubMed  CAS  Google Scholar 

  49. Nagano Y, Yamashita H, Takahashi T, Kishida S, Nakamura T, Iseki E, Hattori N, Mizuno Y, Kikuchi A, Matsumoto M (2003) Siah-1 facilitates ubiquitination and degradation of synphilin-1. J Biol Chem 278:51504–51514

    Article  PubMed  CAS  Google Scholar 

  50. Liani E, Eyal A, Avraham E, Shemer R, Szargel R, Berg D, Bornemann A, Riess O, Ross CA, Rott R, Engelender S (2004) Ubiquitylation of synphilin-1 and alpha-synuclein by SIAH and its presence in cellular inclusions and Lewy bodies imply a role in Parkinson’s disease. Proc Natl Acad Sci USA 101:5500–5505

    Article  PubMed  CAS  Google Scholar 

  51. Avraham E, Szargel R, Eyal A, Rott R, Engelender S (2005) Glycogen synthase kinase 3beta modulates synphilin-1 ubiquitylation and cellular inclusion formation by SIAH: implications for proteasomal function and Lewy body formation. J Biol Chem 280:42877–42886

    Article  PubMed  CAS  Google Scholar 

  52. Okochi M, Walter J, Koyama A, Nakajo S, Baba M, Iwatsubo T, Meijer L, Kahle PJ, Haass C (2000) Constitutive phosphorylation of the Parkinson’s disease associated alpha-synuclein. J Biol Chem 275:390–397

    Article  PubMed  CAS  Google Scholar 

  53. Lee HJ, Khoshaghideh F, Patel S, Lee SJ (2004) Clearance of alpha-synuclein oligomeric intermediates via the lysosomal degradation pathway. J Neurosci 24:1888–1896

    Article  PubMed  CAS  Google Scholar 

  54. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D (2004) Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305:1292–1295

    Article  PubMed  CAS  Google Scholar 

  55. Jariel-Encontre I, Bossis G, Piechaczyk M (2008) Ubiquitin-independent degradation of proteins by the proteasome. Biochim Biophys Acta 1786:153–177

    PubMed  CAS  Google Scholar 

  56. Ghee M, Fournier A, Mallet J (2000) Rat alpha-synuclein interacts with Tat binding protein 1, a component of the 26S proteasomal complex. J Neurochem 75:2221–2224

    Article  PubMed  CAS  Google Scholar 

  57. Snyder H, Mensah K, Theisler C, Lee J, Matouschek A, Wolozin B (2003) Aggregated and monomeric alpha-synuclein bind to the S6’ proteasomal protein and inhibit proteasomal function. J Biol Chem 278:11753–11759

    Article  PubMed  CAS  Google Scholar 

  58. Marx FP, Soehn AS, Berg D, Melle C, Schiesling C, Lang M, Kautzmann S, Strauss KM, Franck T, Engelender S, Pahnke J, Dawson S, von Eggeling F, Schulz JB, Riess O, Kruger R (2007) The proteasomal subunit S6 ATPase is a novel synphilin-1 interacting protein-implications for Parkinson’s disease. FASEB J 21:1759–1767

    Article  PubMed  CAS  Google Scholar 

  59. Finn PF, Mesires NT, Vine M, Dice JF (2005) Effects of small molecules on chaperone-mediated autophagy. Autophagy 1:141–145

    Article  PubMed  CAS  Google Scholar 

  60. Chung KK, Zhang Y, Lim KL, Tanaka Y, Huang H, Gao J, Ross CA, Dawson VL, Dawson TM (2001) Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat Med 7:1144–1150

    Article  PubMed  CAS  Google Scholar 

  61. Hishikawa N, Niwa J, Doyu M, Ito T, Ishigaki S, Hashizume Y, Sobue G (2003) Dorfin localizes to the ubiquitylated inclusions in Parkinson’s disease, dementia with Lewy bodies, multiple system atrophy, and amyotrophic lateral sclerosis. Am J Pathol 163:609–619

    Article  PubMed  CAS  Google Scholar 

  62. Ito T, Niwa J, Hishikawa N, Ishigaki S, Doyu M, Sobue G (2003) Dorfin localizes to Lewy bodies and ubiquitylates synphilin-1. J Biol Chem 278:29106–29114

    Article  PubMed  CAS  Google Scholar 

  63. Szargel R, Rott R, Eyal A, Haskin J, Shani V, Balan L, Wolosker H, Engelender S (2009) Synphilin-1A inhibits SIAH and modulates alpha-synuclein monoubiquitylation and inclusion formation. J Biol Chem 284:11706–11716

    Article  PubMed  CAS  Google Scholar 

  64. Lee G, Junn E, Tanaka M, Kim YM, Mouradian MM (2002) Synphilin-1 degradation by the ubiquitin–proteasome pathway and effects on cell survival. J Neurochem 83:346–352

    Article  PubMed  CAS  Google Scholar 

  65. Bandopadhyay R, Kingsbury AE, Muqit MM, Harvey K, Reid AR, Kilford L, Engelender S, Schlossmacher MG, Wood NW, Latchman DS, Harvey RJ, Lees AJ (2005) Synphilin-1 and parkin show overlapping expression patterns in human brain and form aggresomes in response to proteasomal inhibition. Neurobiol Dis 20:401–411

    Article  PubMed  CAS  Google Scholar 

  66. Wong ES, Tan JM, Soong WE, Hussein K, Nukina N, Dawson VL, Dawson TM, Cuervo AM, Lim KL (2008) Autophagy-mediated clearance of aggresomes is not a universal phenomenon. Hum Mol Genet 17:2570–2582

    Article  PubMed  CAS  Google Scholar 

  67. Zaarur N, Meriin AB, Gabai VL, Sherman MY (2008) Triggering aggresome formation. Dissecting aggresome-targeting and aggregation signals in synphilin 1. J Biol Chem 283:27575–27584

    Article  PubMed  CAS  Google Scholar 

  68. Wakabayashi K, Hayashi S, Yoshimoto M, Kudo H, Takahashi H (2000) NACP/alpha-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson’s disease brains. Acta Neuropathol 99:14–20

    Article  PubMed  CAS  Google Scholar 

  69. Nuber S, Franck T, Wolburg H, Schumann U, Casadei N, Fischer K, Calaminus C, Pichler BJ, Chanarat S, Teismann P, Schulz JB, Luft AR, Tomiuk J, Wilbertz J, Bornemann A, Kruger R, Riess O (2009) Transgenic overexpression of the alpha-synuclein interacting protein synphilin-1 leads to behavioral and neuropathological alterations in mice. Neurogenetics 11:107–120

    Article  Google Scholar 

  70. Krenz A, Falkenburger BH, Gerhardt E, Drinkut A, Schulz JB (2009) Aggregate formation and toxicity by wild-type and R621C synphilin-1 in the nigrostriatal system of mice using adenoviral vectors. J Neurochem 108:139–146

    Article  PubMed  CAS  Google Scholar 

  71. Smith WW, Liu Z, Liang Y, Masuda N, Swing DA, Jenkins NA, Copeland NG, Troncoso JC, Pletnikov M, Dawson TM, Martin LJ, Moran TH, Lee MK, Borchelt DR, Ross CA (2010) Synphilin-1 attenuates neuronal degeneration in the A53T {alpha}-synuclein transgenic mouse model. Hum Mol Genet 19:2087–2098

    Article  PubMed  CAS  Google Scholar 

  72. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889

    Article  PubMed  CAS  Google Scholar 

  73. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We want to express our thanks to Dr. Mark R. Cookson (National Institutes of Health, Bethesda, MD, USA) and Dr. Simone Engelender (Technion-Israel Institute of Technology, Haifa, Israel) for providing us synphilin-1 and Siah-1 expression constructs. This work was supported by grants from SAF-2008-00766, CM SAL-0202, & CIBERNED to J. G. C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José G. Castaño.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2010_592_MOESM1_ESM.tif

Supplementary Fig. 1 Alpha-synuclein degradation by the proteasome is prevented by proteasome inhibitors. Panel shows a representative Coomassie Blue-stained gel of the time-course of degradation by 138 nM 20S proteasome of alpha-synuclein wild-type (Snca wt, 3.57 μM). Last lane shows reaction for 30 min in the presence of 10 μM lactacystin (Lacta). (TIFF 133 kb)

18_2010_592_MOESM2_ESM.tif

Supplementary Fig. 2 Synphilin is not degraded by the 20S proteasome. The panels show representative experiments of synphilin-1 protein constructs (Sncaip 313-919 and 331-555) degradation reactions in the presence of 69 nM 20S proteasome analyzed; a by Coomassie Blue-stained gel and b by Western immunoblots with anti-His-tag antibodies (overexposed to demonstrate that there is not significant degradation of synphilin protein constructs) (TIFF 190 kb)

18_2010_592_MOESM3_ESM.tif

Supplementary Fig. 3 Synphilin-1 does not affect the degradation of Myelin Basic Protein (MBP) by the proteasome. The panels show representative Coomassie Blue-stained gels of the degradation by 69.4 nM 20S proteasome of MBP (2 μM); a in the absence; b, in the presence of 0.75 μM Synphilin-1 (Sncaip 331-919), and c in the presence of 0.92 μM synphilin-1 (Sncaip 331-555). d Time course of degradation of MBP (10 μM) in the absence or in the presence of 0.75 μM Synphilin-1 (Sncaip 331-919) with 17.36 nM 20S proteasome. At both doses of MBP and proteasome, there is no effect of synphilin-1 on the degradation of MBP by the proteasome. (TIFF 203 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez-Castelao, B., Castaño, J.G. Synphilin-1 inhibits alpha-synuclein degradation by the proteasome. Cell. Mol. Life Sci. 68, 2643–2654 (2011). https://doi.org/10.1007/s00018-010-0592-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0592-3

Keywords

Navigation