Skip to main content

Advertisement

Log in

Acetylcholine esterase activity in mild cognitive impairment and Alzheimer’s disease

  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Impairment of cholinergic neurotransmission is a well-established fact in Alzheimer’s disease (AD), but there is controversy about its relevance at the early stages of the disease and in mild cognitive impairment (MCI).

Methods

In vivo positron emission tomography imaging of cortical acetylcholine esterase (AChE) activity as a marker of cholinergic innervation that is expressed by cholinergic axons and cholinoceptive neurons has demonstrated a reduction of this enzyme activity in manifest AD. The technique is also useful to measure the inhibition of cerebral AChE induced by cholinesterase inhibitors for treatment of dementia symptoms.

Results

A reduction of cortical AchE activity was found consistently in all studies of AD and in few cases of MCI who later concerted to AD.

Conclusion

The in vivo findings in MCI and very mild AD are still preliminary, and studies seem to suggest that cholinergic innervation and AChE as the main degrading enzyme are both reduced, which might result in partial compensation of their effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Perry E, Walker M, Grace J, Perry R. Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci. 1999;22:273–80.

    Article  PubMed  CAS  Google Scholar 

  2. Mesulam M. The cholinergic lesion of Alzheimer’s disease: pivotal factor or side show? Learn. Mem. 2004;11:43–9.

    Article  PubMed  Google Scholar 

  3. Sarter M, Hasselmo ME, Bruno JP, Givens B. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brains Res Rev. 2005;48:98–111.

    Article  CAS  Google Scholar 

  4. Bierer LM, Haroutunian V, Gabriel S, Knott PJ, Carlin LS, Purohit DP, Perl DP, Schmeidler J, Kanof P, Davis KL. Neurochemical correlates of dementia severity in Alzheimer’s disease: relative importance of the cholinergic deficits. J Neurochem. 1995;64:749–60.

    Article  PubMed  CAS  Google Scholar 

  5. Reinikainen KJ, Soininen H, Riekkinen PJ. Neurotransmitter changes in Alzheimer’s disease: implications to diagnostics and therapy. J Neurosci Res. 1990;27:576–86.

    Article  PubMed  CAS  Google Scholar 

  6. Auld DS, Kornecook TJ, Bastianetto S, Quirion R. Alzheimer’s disease and the basal forebrain cholinergic system: relations to [beta]-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol. 2002;68:209–45.

    Article  PubMed  CAS  Google Scholar 

  7. Davis KL, Mohs RC, Marin D, Purohit DP, Perl DP, Lantz M, Austin G, Haroutunian V. Cholinergic markers in elderly patients with early signs of Alzheimer disease. JAMA. 1999;281:1401–6.

    Article  PubMed  CAS  Google Scholar 

  8. DeKosky ST, Ikonomovic MD, Styren SD, Beckett L, Wisniewski S, Bennett DA, Cochran EJ, Kordower JH, Mufson EJ. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol. 2002;51:145–55.

    Article  PubMed  CAS  Google Scholar 

  9. Gilmor ML, Erickson JD, Varoqui H, Hersh LB, Bennett DA, Cochran EJ, Mufson EJ, Levey AI. Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer’s disease. J Comp Neurol. 1999;411:693–704.

    Article  PubMed  CAS  Google Scholar 

  10. Mesulam MM, Geula C. Acetylcholinesterase-rich neurons of the human cerebral cortex: cytoarchitectonic and ontogenetic patterns of distribution. J Comp Neurol. 1991;306:193–220.

    Article  PubMed  CAS  Google Scholar 

  11. Perry EK, Perry RH, Blessed G, Tomlinson BE. Changes in brain cholinesterases in senile dementia of Alzheimer type. Neuropathol Appl Neurobiol. 1978;4:273–7.

    Article  PubMed  CAS  Google Scholar 

  12. Inestrosa NC, Alarcon R. Molecular interactions of acetylcholinesterase with senile plaques. J Physiol Paris. 1998;92:341–4.

    Article  PubMed  CAS  Google Scholar 

  13. Namba H, Irie T, Fukushi K, Iyo M. In vivo measurement of acetylcholinesterase activity in the brain with a radioactive acetylcholine analog. Brain Res. 1994;667:278–82.

    Article  PubMed  CAS  Google Scholar 

  14. Kilbourn MR, Snyder SE, Sherman PS, Kuhl DE. In vivo studies of acetylcholinesterase activity using a labeled substrate, n-[C-11]methylpiperdin-4-yl propionate ([C-11]PMP). Synapse. 1996;22:123–31.

    Article  PubMed  CAS  Google Scholar 

  15. Koeppe RA, Frey KA, Snyder SE, Meyer P, Kilbourn MR, Kuhl DE. Kinetic modeling of N-[11C]methylpiperidin-4-yl propionate: alternatives for analysis of an irreversible positron emission tomography trace for measurement of acetylcholinesterase activity in human brain. J Cereb Blood Flow Metab. 1999;19:1150–63.

    Article  PubMed  CAS  Google Scholar 

  16. Shinotoh H, Fukushi K, Nagatsuka S, Irie T. Acetylcholinesterase imaging: its use in therapy evaluation and drug design. Curr Pharm Des. 2004;10:1505–17.

    Article  PubMed  CAS  Google Scholar 

  17. Shinotoh H, Namba H, Fukushi K, Nagatsuka S, Tanaka N, Aotsuka A, Tanada S, Irie T. Brain acetylcholinesterase activity in Alzheimer disease measured by positron emission tomography. Alzheimer Dis Assoc Disord. 2000;14(Suppl 1):S114–8.

    PubMed  CAS  Google Scholar 

  18. Herholz K, Bauer B, Wienhard K, Kracht L, Mielke R, Lenz O, Strotmann T, Heiss WD. In-vivo measurements of regional acetylcholine esterase activity in degenerative dementia: comparison with blood flow and glucose metabolism. J Neural Transm. 2000;12:1457–68.

    Article  Google Scholar 

  19. Namba H, Iyo M, Fukushi K, Shinotoh H, Nagatsuka S, Suhara T, Sudo Y, Suzuki K, Irie T. Human cerebral acetylcholinesterase activity measured with positron emission tomography: procedure, normal values and effect of age. Eur J Nucl Med. 1999;26:135–43.

    Article  PubMed  CAS  Google Scholar 

  20. Atack JR, Perry EK, Bonham JR, Candy JM, Perry RH. Molecular forms of acetylcholinesterase and butyrylcholinesterase in the aged human central nervous system. J Neurochem. 1986;47:263–77.

    Article  PubMed  CAS  Google Scholar 

  21. Herholz K, Lercher M, Wienhard K, Bauer B, Lenz O, Heiss WD. PET measurement of cerebral acetylcholine esterase activity without blood sampling. Eur J Nucl Med. 2001;28:472–7.

    Article  PubMed  CAS  Google Scholar 

  22. Zundorf G, Herholz K, Lercher M, Wienhard K, Bauer B, Weisenbach S, Heiss WD. In: Senda M, Kimura Y, Herscovitch P, editors. PET functional parametric images of acetylcholine esterase activity without blood sampling Brain imaging using PET. San Diego, CA.: Academic; 2002. p. 41–6.

    Chapter  Google Scholar 

  23. Nagatsuka S, Fukushi K, Shinotoh H, Namba H, Iyo M, Tanaka N, Aotsuka A, Ota T, Tanada S, Irie T. Kinetic analysis of [(11)C]MP4A using a high-radioactivity brain region that represents an integrated input function for measurement of cerebral acetylcholinesterase activity without arterial blood sampling. J Cereb Blood Flow Metab. 2001;21:1354–66.

    Article  CAS  Google Scholar 

  24. Sato K, Fukushi K, Shinotoh H, Nagatsuka S, Tanaka N, Aotsuka A, Ota T, Shiraishi T, Tanada S, Iyo M, Irie T. Evaluation of simplified kinetic analyses for measurement of brain acetylcholinesterase activity using N-[11C]Methylpiperidin-4-yl propionate and positron emission tomography. J Cereb Blood Flow Metab. 2004;24:600–11.

    Article  PubMed  CAS  Google Scholar 

  25. Huff FJ, Reiter CT, Rand JB. The ratio of acetylcholinesterase to butyrylcholinesterase influences the specificity of assays for each enzyme in human brain. J Neural Transm. 1989;75:129–34.

    Article  PubMed  CAS  Google Scholar 

  26. Roivainen A, Rinne J, Virta J, Jarvenpaa T, Salomaki S, Yu M, Nagren K. Biodistribution and blood metabolism of 1-11C-methyl-4-piperidinyl n-butyrate in humans: an imaging agent for in vivo assessment of butyrylcholinesterase activity with PET. The J Nucl Med. 2004;45:2032–9.

    CAS  Google Scholar 

  27. Snyder SE, Gunupudi N, Sherman PS, Butch ER, Skaddan MB, Kilbourn MR, Koeppe RA, Kuhl DE. Radiolabeled cholinesterase substrates: in vitro methods for determining structure-activity relationships and identification of a positron emission tomography radiopharmaceutical for in vivo measurement of butyrylcholinesterase activity. J Cereb Blood Flow Metab. 2001;21:132–43.

    Article  PubMed  CAS  Google Scholar 

  28. Traykov L, Tavitian B, Jobert A, Boller F, Forette F, Crouzel C, Di Giamberardino L, Pappata S. In vivo PET study of cerebral [11C] methyl-tetrahydroaminoacridine distribution and kinetics in healthy human subjects. Eur J Neurol. 1999;6:273–8.

    Article  PubMed  CAS  Google Scholar 

  29. Funaki Y, Kato M, Iwata R, Sakurai E, Sakurai E, Tashiro M, Ido T, Yanai K. Evaluation of the binding characteristics of [5-(11)C-methoxy]donepezil in the rat brain for in vivo visualization of acetylcholinesterase. J Pharmacol Sci. 2003;91:105–12.

    Article  PubMed  CAS  Google Scholar 

  30. De Vos F, Santens P, Vermeirsch H, Dewolf I, Dumont F, Slegers G, Dierckx RA, De Reuck J. Pharmacological evaluation of [11C]donepezil as a tracer for visualization of acetylcholinesterase by PET. Nucl Med Biol. 2000;27:745–7.

    Article  PubMed  Google Scholar 

  31. Bencherif B, Endres CJ, Musachio JL, Villalobos A, Hilton J, Scheffel U, Dannals RF, Williams S, Frost JJ. PET imaging of brain acetylcholinesterase using [11C]CP-126,998, a brain selective enzyme inhibitor. Synapse. 2002;45:1–9.

    Article  PubMed  CAS  Google Scholar 

  32. Kuhl DE, Koeppe RA, Minoshima S, Snyder SE, Ficaro EP, Foster NL, Frey KA, Kilbourn MR. In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer’s disease. Neurology. 1999;52:691–9.

    PubMed  CAS  Google Scholar 

  33. Iyo M, Namba H, Fukushi K, Shinotoh H, Nagatsuka S, Suhara T, Sudo Y, Suzuki K, Irie T. Measurement of acetylcholinesterase by positron emission tomography in the brains of healthy controls and patients with Alzheimers disease. Lancet. 1997;349:1805–9.

    Article  PubMed  CAS  Google Scholar 

  34. Rinne JO, Kaasinen V, Jarvenpaa T, Nagren K, Roivainen A, Yu M, Oikonen V, Kurki T. Brain acetylcholinesterase activity in mild cognitive impairment and early Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2003;74:113–5.

    Article  PubMed  CAS  Google Scholar 

  35. Herholz K, Weisenbach S, Zundorf G, Lenz O, Schroder H, Bauer B, Kalbe E, Heiss WD. In-vivo study of acetylcholine esterase in basal forebrain, amygdala, and cortex in mild to moderate Alzheimer disease. Neuroimage. 2004;21:136–43.

    Article  PubMed  CAS  Google Scholar 

  36. Shinotoh H, Fukushi K, Nagatsuka S, Tanaka N, Aotsuka A, Ota T, Namba H, Tanada S, Irie T. The amygdala and Alzheimer’s disease: positron emission tomographic study of the cholinergic system. Ann NY Acad Sci. 2003;985:411–9.

    Article  PubMed  CAS  Google Scholar 

  37. Eggers C, Herholz K, Kalbe E, Heiss WD. Cortical acetylcholine esterase activity and ApoE4-genotype in Alzheimer disease. Neurosci Lett. 2006;408:46–50.

    Article  PubMed  CAS  Google Scholar 

  38. Bohnen NI, Kaufer DI, Ivanco LS, Lopresti B, Koeppe RA, Davis JG, Mathis CA, Moore RY, DeKosky ST. Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: an in vivo positron emission tomographic study. Arch Neurol. 2003;60:1745–8.

    Article  PubMed  Google Scholar 

  39. Herholz K, Weisenbach S, Kalbe E, Diederich NJ, Heiss WD. Cerebral acetylcholine esterase activity in mild cognitive impairment. Neuroreport. 2005;16:1431–4.

    Article  PubMed  CAS  Google Scholar 

  40. Bohnen NI, Kaufer DI, Hendrickson R, Ivanco LS, Lopresti BJ, Koeppe RA, Meltzer CC, Constantine G, Davis JG, Mathis CA, DeKosky ST, Moore RY. Degree of inhibition of cortical acetylcholinesterase activity and cognitive effects by donepezil treatment in Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2005;76:315–9.

    Article  PubMed  CAS  Google Scholar 

  41. Kaasinen V, Nagren K, Jarvenpaa T, Roivainen A, Yu M, Oikonen V, Kurki T, Rinne JO. Regional effects of donepezil and rivastigmine on cortical acetylcholinesterase activity in Alzheimer’s disease. J Clin Psychopharmacol. 2002;22:615–20.

    Article  PubMed  CAS  Google Scholar 

  42. Kadir A, Darreh-Shori T, Almkvist O, Wall A, Grut M, Strandberg B, Ringheim A, Eriksson B, Blomquist G, Langstrom B, Nordberg A. PET imaging of the in vivo brain acetylcholinesterase activity and nicotine binding in galantamine-treated patients with AD. Neurobiol Aging. 2007 (in press). http://dx.doi.org/10.1016/j.neurobiolaging.2007.02.020

  43. Kadir A, Almkvist O, Wall A, Langstrom B, Nordberg A. PET imaging of cortical 11C-nicotine binding correlates with the cognitive function of attention in Alzheimer's disease. Psychopharmacology (Berl). 2006;188:509–20.

    Article  CAS  Google Scholar 

Download references

Conflict of interest statement

The author declares that he has no relevant financial or any other interests in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Herholz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herholz, K. Acetylcholine esterase activity in mild cognitive impairment and Alzheimer’s disease. Eur J Nucl Med Mol Imaging 35 (Suppl 1), 25–29 (2008). https://doi.org/10.1007/s00259-007-0699-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0699-4

Keywords

Navigation