Skip to main content
Log in

Partial mGlu5 receptor NAM, M-5MPEP, induces rapid and sustained antidepressant-like effects in the BDNF-dependent mechanism and enhances (R)-ketamine action in mice

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Partial negative allosteric modulators (NAM) of the metabotropic glutamate 5 (mGlu5) receptor are an excellent alternative to full antagonists and NAMs because they retain therapeutic effects and have a much broader therapeutic window. Here, we investigated whether partial mGlu5 NAM, 2-(2-(3-methoxyphenyl)ethynyl)-5-methylpyridine (M-5MPEP), induced a fast and sustained antidepressant-like effect, characteristic of rapid-acting antidepressant drugs (RAADs) like ketamine, in mice.

Methods

A tail suspension test (TST) was used to investigate acute antidepressant-like effects. Sustained effects were studied 24 h after the four intraperitoneal (ip) administrations using the splash test, designed to measure apathy-like state, the sucrose preference test (SPT), reflecting anhedonia, and the TST. Western blot and ELISA techniques were used to measure brain-derived neurotrophic factor (BDNF) and selected protein levels.

Methods

A tail suspension test (TST) was used to investigate acute antidepressant-like effects. Sustained effects were studied 24 h after the four intraperitoneal (ip) administrations using the splash test, designed to measure apathy-like state, the sucrose preference test (SPT), reflecting anhedonia, and the TST. Western blot and ELISA techniques were used to measure brain-derived neurotrophic factor (BDNF) and selected protein levels.

Conclusion

Partial mGlu5 receptor NAM, M-5MPEP, induced rapid and sustained antidepressant-like effects in the BDNF-dependent mechanism and enhanced (R)-ketamine action in mice, indicating both substances’ convergent mechanisms of action and the possibility of their practical use in treating depression as RAAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data used in the present study are available from the corresponding author upon reasonable request.

Abbreviations

AD:

antidepressant drug

BDNF:

brain derived neurotrophic factor

eEF2:

eukaryotic elongation factor 2

FST:

forced swim test

ip:

intraperitoneal

M:

5MPEP–2–(2–(3–methoxyphenyl)ethynyl)–5–methylpyridine

mGlu5 receptor:

metabotropic glutamate 5 receptor

mTOR:

mammalian target of rapamycin

NAM:

negative allosteric modulator

NSF:

novelty–suppressed feeding

PFC:

prefrontal cortex

RAAD:

rapid–acting antidepressant drug

SERT:

serotonin transporter

SPT:

sucrose preference test

SSRI:

selective serotonin reuptake inhibitor

TrkB:

tropomyosin receptor kinase B

TST:

tail suspension test

References

  1. Chaki S, Ago Y, Pałucha-Poniewiera A, Matrisciano F, Pilc A. mGlu2/3 and mGlu5 receptors: potential targets for novel antidepressants. Neuropharmacology. 2013;66:40–52.

    Article  CAS  PubMed  Google Scholar 

  2. Nowak G, Pomierny-Chamioło L, Siwek A, Niedzielska E, Pomierny B, Pałucha-Poniewiera A, Pilc A. Prolonged ad-ministration of antidepressant drugs leads to increased binding of [(3)H]MPEP to mGlu5 receptors. Neuropharmacology. 2014;84:46–51.

    Article  CAS  PubMed  Google Scholar 

  3. Pałucha A, Brański P, Szewczyk B, Wierońska JM, Kłak K, Pilc A. Potential antidepressant-like effect of MTEP, a potent and highly selective mGluR5 antagonist. Pharmacol Biochem Behav. 2005;81:901–6.

    Article  PubMed  Google Scholar 

  4. Kinney GG, Burno M, Campbell UC, Hernandez LM, Rodriguez D, Bristow LJ, Conn PJ. Metabotropic glutamate subtype 5 receptors modulate locomotor activity and sensorimotor gating in rodents. J Pharmacol Exp Ther. 2003;306:116–23.

    Article  CAS  PubMed  Google Scholar 

  5. Homayoun H, Stefani MR, Adams BW, Tamagan GD, Moghaddam B. Functional interaction between NMDA and mGlu5 receptors: effects on working memory, instrumental learning, motor behaviors, and dopamine release. Neuropsychopharmacology. 2004;29:1259–69.

    Article  CAS  PubMed  Google Scholar 

  6. Porter RH, Jaeschke G, Spooren W, Ballard TM, Büttelmann B, Kolczewski S, Peters JU, Prinssen E, Wichmann J, Vieira E, Mühlemann A, Gatti S, Mutel V, Malherbe P. Fenobam: a clinically validated nonbenzodiazepine anxiolytic is a potent, selective, and noncompetitive mGlu5 receptor antagonist with inverse agonist activity. J Pharmacol Exp Ther. 2005;315:711–21.

    Article  CAS  PubMed  Google Scholar 

  7. Rodriguez AL, Nong Y, Sekaran NK, Alagille D, Tamagnan GD, Conn PJ. A close structural analog of 2-methyl-6-(phenylethynyl)-pyridine acts as a neutral allosteric site ligand on metabotropic glutamate receptor subtype 5 and blocks the effects of multiple allosteric modulators. Mol Pharmacol. 2005;68:1793–802.

    Article  CAS  PubMed  Google Scholar 

  8. Gould RW, Amato RJ, Bubser M, Joffe ME, Nedelcovych MT, Thompson AD, Nickols HH, Yuh JP, Zhan X, Felts AS, Rodriguez AL, Morrison RD, Byers FW, Rook JM, Daniels JS, Niswender CM, Conn PJ, Emmitte KA, Lindsley CW, Jones CK. Partial mGlu5 negative allosteric modulators attenuate cocaine-mediated behaviors and lack psy-chotomimetic-like effects. Neuropsychopharmacology. 2016;41:1166–78.

    Article  CAS  PubMed  Google Scholar 

  9. Holter KM, Lekander AD, LaValley CM, Bedingham EG, Pierce BE, Sands LP 3rd, Lindsley CW, Jones CK, Gould RW. Partial mGlu5 negative allosteric modulator M-5MPEP demonstrates antidepressant-like effects on sleep without affecting cognition or quantitative EEG. Front Neurosci. 2021;15:700822.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pałucha-Poniewiera A. The role of glutamatergic modulation in the mechanism of action of ketamine, a prototype rapid-acting antidepressant drug. Pharmacol Rep. 2018;70:837–46.

    Article  PubMed  Google Scholar 

  11. Bobo WV, Vande Voort JL, Croarkin PE, Leung JG, Tye SJ, Frye MA. Ketamine for treatment-resistant unipolar and bipolar major depression: critical review and implications for clinical practice. Depress Anxiety. 2016;33:698–710.

    Article  CAS  PubMed  Google Scholar 

  12. Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63:856–64.

    Article  CAS  PubMed  Google Scholar 

  13. Mahase E. Esketamine is approved in Europe for treating resistant major depressive disorder. BMJ. 2019;367:l7069.

    Article  PubMed  Google Scholar 

  14. Fukumoto K, Iijima M, Chaki S. Serotonin-1A receptor stimulation mediates effects of a metabotropic glutamate 2/3 receptor antagonist, 2S-2-amino-2-(1S,2S-2-carboxycycloprop-1-yl)-3-(xanth-9-yl)propanoic acid (LY341495), and an N-methyl-D-aspartate receptor antagonist, ketamine, in the novelty-suppressed feeding test. Psychopharmacology. 2014;231:2291–8.

    Article  CAS  PubMed  Google Scholar 

  15. Fukumoto K, Iijima M, Chaki S. The antidepressant effects of an mGlu2/3 receptor antagonist and ketamine require AMPA receptor stimulation in the mPFC and subsequent activation of the 5-HT neurons in the DRN. Neuropsychopharmacology. 2016;41:1046–56.

    Article  CAS  PubMed  Google Scholar 

  16. Pałucha-Poniewiera A. The role of mGlu2/3 receptor antagonists in the enhancement of the antidepressant-like effect of ketamine. Pharmacol Biochem Behav. 2022;220:173454.

    Article  PubMed  Google Scholar 

  17. Witkin JM. mGlu2/3 receptor antagonism: a mechanism to induce rapid antidepressant effects without ketamine-associated side-effects. Pharmacol Biochem Behav. 2020;190:172854.

    Article  CAS  PubMed  Google Scholar 

  18. Pałucha-Poniewiera A, Podkowa K, Rafało-Ulińska A. The group II mGlu receptor antagonist LY341495 induces a rapid antidepressant-like effect and enhances the effect of ketamine in the chronic unpredictable mild stress model of depression in C57BL/6J mice. Prog Neuropsychopharmacol Biol Psychiatry. 2021;109:110239.

    Article  PubMed  Google Scholar 

  19. Bechtholt-Gompf AJ, Smith KL, John CS, Kang HH, Carlezon WA Jr, Cohen BM, Ongür D. CD-1 and Balb/cJmice do not show enduring antidepressant-like effects of ketamine in tests of acute antidepressant efficacy. Psychopharmacology. 2011;215:689–95.

    Article  CAS  PubMed  Google Scholar 

  20. Popik P, Hołuj M, Kos T, Nowak G, Librowski T, Sałat K. Comparison of the psychopharmacological effects of tiletamine and ketamine in rodents. Neurotox Res. 2017;32:544–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology. 1985;85:367–70.

    Article  CAS  PubMed  Google Scholar 

  22. Pałucha-Poniewiera A, Podkowa K, Rafało-Ulińska A, Brański P, Burnat G. The influence of the duration of chronic unpredictable mild stress on the behavioural responses of C57BL/6J mice. Behav Pharmacol. 2020;31:574–82.

    Article  PubMed  Google Scholar 

  23. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, Charney DS. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry. 1994;51:199–214.

    Article  CAS  PubMed  Google Scholar 

  24. Iijima M, Fukumoto K, Chaki S. Acute and sustained effects of a metabotropic glutamate 5 receptor antagonist in the novelty-suppressed feeding test. Behav Brain Res. 2012;235:287–92.

    Article  CAS  PubMed  Google Scholar 

  25. Pałucha-Poniewiera A, Szewczyk B, Pilc A. Activation of the mTOR signaling pathway in the antidepressant-like activity of the mGlu5 antagonist MTEP and the mGlu7 agonist AMN082 in the FST in rats. Neuropharmacology. 2014;82:59–68.

    Article  PubMed  Google Scholar 

  26. Cryan JF, Mombereau C, Vassout A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev. 2005;29:571–625.

    Article  CAS  PubMed  Google Scholar 

  27. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature. 2011;475:91–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Koike H, Iijima M, Chaki S. Involvement of AMPA receptor in both the rapid and sustained antidepressant-like effects of ketamine in animal models of depression. Behav Brain Res. 2011;224:107–11.

    Article  CAS  PubMed  Google Scholar 

  29. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010;329:959–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pomierny-Chamioło L, Poleszak E, Pilc A, Nowak G. NMDA but not AMPA glutamatergic receptors are involved in the antidepressant-like activity of MTEP during the forced swim test in mice. Pharmacol Rep. 2010;62:1186–90.

    Article  PubMed  Google Scholar 

  31. Sun HL, Zhou ZQ, Zhang GF, Yang C, Wang XM, Shen JC, Hashimoto K, Yang JJ. Role of hippocampal p11 in the sustained antidepressant effect of ketamine in the chronic unpredictable mild stress model. Transl Psychiatry. 2016;6:e741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Koike H, Fukumoto K, Iijima M, Chaki S. Role of BDNF/TrkB signaling in antidepressant-like effects of a group II metabotropic glutamate receptor antagonist in animal models of depression. Behav Brain Res. 2013;238:48–52.

    Article  CAS  PubMed  Google Scholar 

  33. du Jardin KG, Liebenberg N, Cajina M, Müller HK, Elfving B, Sanchez C, Wegener G. S-ketamine mediates its acute and sustained antidepressant-like activity through a 5-HT1B receptor dependent mechanism in a genetic rat model of depression. Front Pharmacol. 2018;8:978.

    Article  PubMed  PubMed Central  Google Scholar 

  34. du Jardin KG, Liebenberg N, Müller HK, Elfving B, Sanchez C, Wegener G. Differential interaction with the serotonin system by S-ketamine, vortioxetine, and fluoxetine in a genetic rat model of depression. Psychopharmacology. 2016;233:2813–25.

    Article  PubMed  Google Scholar 

  35. Pałucha-Poniewiera A, Brański P, Wierońska JM, Stachowicz K, Sławińska A, Pilc A. The antidepressant-like action of mGlu5 receptor antagonist, MTEP, in the tail suspension test in mice is serotonin dependent. Psychopharmacology. 2014;231:97–107.

    Article  PubMed  Google Scholar 

  36. Fukumoto K, Chaki S. Involvement of serotonergic system in the effect of a metabotropic glutamate 5 receptor antagonist in the novelty-suppressed feeding test. J Pharmacol Sci. 2015;127:57–61.

    Article  CAS  PubMed  Google Scholar 

  37. Gigliucci V, O’Dowd G, Casey S, Egan D, Gibney S, Harkin A. Ketamine elicits sustained antidepressant-like activity via a serotonin-dependent mechanism. Psychopharmacology. 2013;228:157–66.

    Article  CAS  PubMed  Google Scholar 

  38. Sun X, Sun C, Zhai L, Dong W. A selective M1 and M3 receptor antagonist, penehyclidine hydrochloride, exerts antidepressant-like effect in mice. Neurochem Res. 2019;44:2723–32.

    Article  CAS  PubMed  Google Scholar 

  39. Rafało-Ulińska A, Brański P, Pałucha-Poniewiera A. Combined administration of (R)-ketamine and the mGlu2/3 receptor antagonist LY341495 induces rapid and sustained effects in the CUMS model of depression via a TrkB/BDNF-dependent mechanism. Pharmaceuticals. 2022;15:125.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rafało-Ulińska A, Pałucha-Poniewiera A. The effectiveness of (R)-ketamine and its mechanism of action differ from those of (S)-ketamine in a chronic unpredictable mild stress model of depression in C57BL/6J mice. Behav Brain Res. 2022;418:113633.

    Article  PubMed  Google Scholar 

  41. Wu C, Wang Y, He Y, Wu S, Xie Z, Zhang J, Shen J, Wang Z, He L. Sub-anesthetic and anesthetic ketamine produce different long-lasting behavioral phenotypes (24 h post-treatment) via inducing different brain-derived neurotrophic factor (BDNF) expression level in the hippocampus. Neurobiol Learn Mem. 2020;167:107136.

    Article  CAS  PubMed  Google Scholar 

  42. Chang L, Zhang K, Pu Y, Qu Y, Wang SM, Xiong Z, Ren Q, Dong C, Fujita Y, Hashimoto K. Comparison of anti-depressant and side effects in mice after intranasal administration of (R,S)-ketamine, (R)-ketamine, and (S)-ketamine. Pharmacol Biochem Behav. 2019;181:53–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Science Centre, Poland, grant number 2017/27/B/NZ7/01873 to A.P-P. and by Funds for the Statutory Activity of the Maj Institute of Pharmacology, Polish Academy of Sciences. The authors thank Aneta Kozioł for technical support during chemical synthesis.

Author information

Authors and Affiliations

Authors

Contributions

AP-P – designed and supervised the project, planned all experiments, performed behavioral experiments, interpreted experimental data, and wrote the manuscript.; AR-U – performed all Western blots and ELISA experiments and analyzed the data; MS, YB – performed behavioral experiments; KK – designed and performed M-5MPEP synthesis.

Corresponding author

Correspondence to Agnieszka Pałucha-Poniewiera.

Ethics declarations

Consent for publication

All authors reviewed the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pałucha-Poniewiera, A., Rafało-Ulińska, A., Santocki, M. et al. Partial mGlu5 receptor NAM, M-5MPEP, induces rapid and sustained antidepressant-like effects in the BDNF-dependent mechanism and enhances (R)-ketamine action in mice. Pharmacol. Rep (2024). https://doi.org/10.1007/s43440-024-00588-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43440-024-00588-3

Keywords

Navigation