Skip to main content
Log in

The protective effects of statins in traumatic brain injury

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI), often referred to as the “silent epidemic”, is the most common cause of mortality and morbidity worldwide among all trauma-related injuries. It is associated with considerable personal, medical, and economic consequences. Although remarkable advances in therapeutic approaches have been made, current treatments and clinical management for TBI recovery still remain to be improved. One of the factors that may contribute to this gap is that existing therapies target only a single event or pathology. However, brain injury after TBI involves various pathological mechanisms, including inflammation, oxidative stress, blood-brain barrier (BBB) disruption, ionic disturbance, excitotoxicity, mitochondrial dysfunction, neuronal necrosis, and apoptosis. Statins have several beneficial pleiotropic effects (anti-excitotoxicity, anti-inflammatory, anti-oxidant, anti-thrombotic, immunomodulatory activity, endothelial and vasoactive properties) in addition to promoting angiogenesis, neurogenesis, and synaptogenesis in TBI. Supposedly, using agents such as statins that target numerous and diverse pathological mechanisms, may be more effective than a single-target approach in TBI management. The current review was undertaken to investigate and summarize the protective mechanisms of statins against TBI. The limitations of conducted studies and directions for future research on this potential therapeutic application of statins are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

No primary data was presented in this review.

Abbreviations

AD:

Alzheimer’s disease

AJs:

Adherens junctions

ATP:

Adenosine 5 triphosphate

BBB:

Blood-brain barrier

Ca²+:

Calcium

CDC:

Center for disease control and prevention

CNS:

Central nervous system

CRP:

C-reactive protein

DAMPs:

Damage-associated molecular patterns

DB RCT:

Double-blind randomized clinical trial

DCs:

Dendritic cells

DG:

Dentate gyrus

DRS:

Disability rating scale

eNOS:

Endothelial isoform of nitric oxide synthase

EPCs:

Endothelial progenitor cells

ESR:

Erythrocyte sedimentation rate

FDA:

Food and drug administration

GCS:

Glasgow coma scale

GOS:

Glasgow outcome scale

HMG CoA:

3-hydroxy-3-methylglutaryl coenzyme A

ICAM-1:

Intercellular adhesion molecule 1

ICP:

Intracranial pressure

ICU:

Intensive care unit

IL:

Interleukin

iNOS:

Inducible isoform of nitric oxide synthase

LDL:

Low-density lipoprotein

LTP:

Long-term potentiation

MRS:

Modified rankin scale

MSCs:

Mesenchymal stromal cells

NMDA:

N-methyl-D-aspartate

nNOS:

Neuronal isoform of nitric oxide synthase

NO:

Nitric oxide

NSC:

Neural stem cells

PMN:

Polymorphonuclear leukocytes

PRRs:

Pattern recognition receptors

ROS:

Reactive oxygen species

TBI:

Traumatic brain injury

TJs:

Tight junctions

TLR:

Toll-like receptors

TNF-α:

Ttumor necrosis factor-alpha

Tregs:

Regulatory T cells

VEGF:

Vascular endothelial growth factor

VEGFR-2:

VEGF receptor

vWF:

von Willebrand factor

References

  1. Rusnak M. Giving voice to a silent epidemic. Nat Rev Neurol. 2013;9(4):186–7.

    Article  PubMed  Google Scholar 

  2. Heegaard W, Biros M. Traumatic brain injury. Emerg Med Clin North Am. 2007;25(3):655–78.

    Article  PubMed  Google Scholar 

  3. Jager TE, Weiss HB, Coben JH, Pepe PE. Traumatic brain injuries evaluated in US emergency departments, 1992-1994. Acad Emerg Med. 2000;7(2):134–40.

    Article  CAS  PubMed  Google Scholar 

  4. Dewan MC, Rattani A, Gupta S, Baticulon RE, Hung Y-C, Punchak M, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2018;130(4):1080–97.

    Article  PubMed  Google Scholar 

  5. Taylor CA, Bell JM, Breiding MJ, Xu L. Traumatic brain injury–related emergency department visits, hospitalizations, and deaths—United States, 2007 and 2013. MMWR Surveill Summ. 2017;66(9):1.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Langlois JA, Sattin RW. Traumatic brain injury in the United States: Research and programs of the Centers for Disease Control and Prevention (CDC)-Preface. J Head Trauma Rehabil. 2005;20(3):187–8.

    Article  PubMed  Google Scholar 

  7. Roozenbeek B, Maas AI, Menon DK. Changing patterns in the epidemiology of traumatic brain injury. Nat Rev Neurol. 2013;9(4):231–6.

    Article  PubMed  Google Scholar 

  8. Galgano M, Toshkezi G, Qiu X, Russell T, Chin L, Zhao L-R. Traumatic brain injury: current treatment strategies and future endeavors. Cell Transpl. 2017;26(7):1118–30.

    Article  Google Scholar 

  9. Ahmed S, Venigalla H, Mekala HM, Dar S, Hassan M, Ayub S. Traumatic brain injury and neuropsychiatric complications. Indian J Psychol Med. 2017;39(2):114–21.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mollayeva T, Mollayeva S, Colantonio A. Traumatic brain injury: sex, gender and intersecting vulnerabilities. Nat Rev Neurol. 2018;14(12):711–22.

    Article  PubMed  Google Scholar 

  11. Stocchetti N, Taccone FS, Citerio G, Pepe PE, Le Roux PD, Oddo M, et al. Neuroprotection in acute brain injury: an up-to-date review. Crit Care. 2015;19(1):1–11.

    Article  Google Scholar 

  12. Mashkouri S, Crowley MG, Liska MG, Corey S, Borlongan CV. Utilizing pharmacotherapy and mesenchymal stem cell therapy to reduce inflammation following traumatic brain injury. Neural Regen Res. 2016;11(9):1379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mansi IA, English JL, Alvarez CA, Mortensen EM, Pugh M. Statins in survivors of traumatic brain injury: a propensity score-matched analysis. Brain Inj. 2020;34(10):1367–74.

    Article  PubMed  Google Scholar 

  14. Banach M, Reiner Z, Cicero AFG, Sabouret P, Viigimaa M, Sahebkar A et al. 2022: The year in cardiovascular disease – the year of upfront lipid lowering combination therapy. ARCH MED SCI. 2022;18(6):1429-34.

  15. Michaeli DT, Michaeli JC, Albers S, Boch T, Michaeli T. Established and emerging lipid-lowering drugs for primary and secondary Cardiovascular Prevention. Am J Cardiovasc Drugs. 2023;23(5):477–95.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sahebkar A, Watts GF. New LDL-cholesterol lowering therapies: Pharmacology, clinical trials, and relevance to acute coronary syndromes. Clin Ther. 2013;35(8):1082–98.

    Article  CAS  PubMed  Google Scholar 

  17. Sahebkar A, Watts GF. New therapies targeting apoB metabolism for high-risk patients with inherited dyslipidaemias: what can the clinician expect? Cardiovasc Drugs Ther. 2013;27(6):559–67.

    Article  CAS  PubMed  Google Scholar 

  18. Amin F, Fathi F, Reiner Ž, Banach M, Sahebkar A. The role of statins in lung cancer. ARCH MED SCI. 2022;18(1):141–52.

    CAS  PubMed  Google Scholar 

  19. Bahrami A, Bo S, Jamialahmadi T, Sahebkar A. Effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors on ageing: molecular mechanisms. Ageing Res Rev. 2020;58.

  20. Bland AR, Payne FM, Ashton JC, Jamialahmadi T, Sahebkar A. The cardioprotective actions of statins in targeting mitochondrial dysfunction associated with myocardial ischaemia-reperfusion injury. Pharmacol Res. 2022;175.

  21. Gorabi AM, Kiaie N, Pirro M, Bianconi V, Jamialahmadi T, Sahebkar A. Effects of statins on the biological features of mesenchymal stem cells and therapeutic implications. Heart Fail Rev. 2021;26(5):1259–72.

    Article  PubMed  Google Scholar 

  22. Kandelouei T, Abbasifard M, Imani D, Aslani S, Razi B, Fasihi M et al. Effect of Statins on Serum level of hs-CRP and CRP in Patients with Cardiovascular Diseases: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Mediators Inflamm. 2022;2022.

  23. Sohrevardi SM, Nasab FS, Mirjalili MR, Bagherniya M, Tafti AD, Jarrahzadeh MH, et al. Effect of atorvastatin on delirium status of patients in the intensive care unit: a randomized controlled trial. ARCH MED SCI. 2021;17(5):1423.

    Article  CAS  PubMed  Google Scholar 

  24. Vahedian-Azimi A, Beni FH, Fras Z, Banach M, Mohammadi SM, Jamialahmadi T, et al. Effects of statins on the incidence and outcomes of acute kidney injury in critically ill patients: a systematic review and meta-analysis. ARCH MED SCI. 2023;19(4):952–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Vahedian-Azimi A, Mannarino MR, Shojaie S, Rahimibashar F, Galeh HEG, Banach M et al. Effect of statins on prevalence and mortality of Influenza Virus infection: a systematic review and Meta-analysis. ARCH MED SCI. 2022;18(6).

  26. Vahedian-Azimi A, Mohammadi SM, Banach M, Beni FH, Guest PC, Al-Rasadi K et al. Improved COVID-19 Outcomes following Statin Therapy: An Updated Systematic Review and Meta-analysis. Biomed Res Int. 2021;2021.

  27. Mu S, Fang Y, Pei Z, Lin Y, Lin K, Zeng Z, et al. Outcomes of Preinjury use of statins in patients with traumatic brain injury: a systematic review and meta-analysis. World Neurosurg. 2021;152:e266–e78.

    Article  PubMed  Google Scholar 

  28. Wible EF, Laskowitz DT. Statins in traumatic brain injury. Neurotherapeutics. 2010;7:62–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kochanek PM, Bramlett H, Dietrich WD, Dixon CE, Hayes RL, Povlishock J, et al. A novel multicenter preclinical drug screening and biomarker consortium for experimental traumatic brain injury: operation brain trauma therapy. J Trauma Acute Care Surg. 2011;71(1):15–S24.

    Article  Google Scholar 

  30. Kochanek PM, Bramlett HM, Dixon CE, Shear DA, Dietrich WD, Schmid KE, et al. Approach to modeling, therapy evaluation, drug selection, and biomarker assessments for a multicenter pre-clinical drug screening consortium for acute therapies in severe traumatic brain injury: operation brain trauma therapy. J Neurotrauma. 2016;33(6):513–22.

    Article  PubMed  Google Scholar 

  31. Tran LV. Understanding the pathophysiology of traumatic brain injury and the mechanisms of action of neuroprotective interventions. J Trauma Nurs. 2014;21(1):30–5.

    Article  PubMed  Google Scholar 

  32. Kalia LV, Kalia SK, Salter MW. NMDA receptors in clinical neurology: excitatory times ahead. Lancet Neurol. 2008;7(8):742–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bains M, Hall ED. Antioxidant therapies in traumatic brain and spinal cord injury. Biochim Biophys Acta Mol Basis Dis. 2012;1822(5):675–84.

    Article  CAS  Google Scholar 

  34. Rosenfeld JV, Maas AI, Bragge P, Morganti-Kossmann MC, Manley GT, Gruen RL. Early Manage Severe Trauma Brain Injury Lancet. 2012;380(9847):1088–98.

    PubMed  Google Scholar 

  35. Saatman KE, Creed J, Raghupathi R. Calpain as a therapeutic target in traumatic brain injury. Neurotherapeutics. 2010;7:31–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McKee CA, Lukens JR. Emerging roles for the immune system in traumatic brain injury. Front Immunol. 2016;7:556.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Roth TL, Nayak D, Atanasijevic T, Koretsky AP, Latour LL, McGavern DB. Transcranial amelioration of inflammation and cell death after brain injury. Nature. 2014;505(7482):223–8.

    Article  CAS  PubMed  Google Scholar 

  38. Huber-Lang M, Lambris JD, Ward PA. Innate immune responses to trauma. Nat Immunol. 2018;19(4):327–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sundman MH, Chen N-k, Subbian V, Chou Y-h. The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease. Brain Behav Immun. 2017;66:31–44.

    Article  CAS  PubMed  Google Scholar 

  40. Katzenberger RJ, Ganetzky B, Wassarman DA. The gut reaction to traumatic brain injury. Fly. 2015;9(2):68–74.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Needham E, Helmy A, Zanier E, Jones J, Coles A, Menon D. The immunological response to traumatic brain injury. J Neuroimmunol. 2019;332:112–25.

    Article  CAS  PubMed  Google Scholar 

  42. Braun M, Vaibhav K, Saad NM, Fatima S, Vender JR, Baban B, et al. White matter damage after traumatic brain injury: a role for damage associated molecular patterns. Biochim Biophys Acta Mol Basis Dis. 2017;1863(10):2614–26.

    Article  CAS  PubMed  Google Scholar 

  43. Mortezaee K, Khanlarkhani N, Beyer C, Zendedel A. Inflammasome: its role in traumatic brain and spinal cord injury. J Cell Physiol. 2018;233(7):5160–9.

    Article  CAS  PubMed  Google Scholar 

  44. Wang K-Y, Yu G-F, Zhang Z-Y, Huang Q, Dong X-Q. Plasma high-mobility group box 1 levels and prediction of outcome in patients with traumatic brain injury. Clin Chim Acta. 2012;413(21–22):1737–41.

    Article  CAS  PubMed  Google Scholar 

  45. Thelin EP, Johannesson L, Nelson D, Bellander B-M. S100B is an important outcome predictor in traumatic brain injury. J Neurotrauma. 2013;30(7):519–28.

    Article  PubMed  Google Scholar 

  46. Laird MD, Shields JS, Sukumari-Ramesh S, Kimbler DE, Fessler RD, Shakir B, et al. High mobility group box protein‐1 promotes cerebral edema after traumatic brain injury via activation of toll‐like receptor 4. Glia. 2014;62(1):26–38.

    Article  PubMed  Google Scholar 

  47. Okuma Y, Liu K, Wake H, Zhang J, Maruo T, Date I, et al. Anti–high mobility group box-1 antibody therapy for traumatic brain injury. Ann Neurol. 2012;72(3):373–84.

    Article  CAS  PubMed  Google Scholar 

  48. Wallisch JS, Simon DW, Bayır H, Bell MJ, Kochanek PM, Clark RS. Cerebrospinal fluid NLRP3 is increased after severe traumatic brain injury in infants and children. Neurocrit Care. 2017;27:44–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Irrera N, Pizzino G, Calò M, Pallio G, Mannino F, Famà F, et al. Lack of the Nlrp3 inflammasome improves mice recovery following traumatic brain injury. Front Pharmacol. 2017;8:459.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Helmy A, De Simoni M-G, Guilfoyle MR, Carpenter KL, Hutchinson PJ. Cytokines and innate inflammation in the pathogenesis of human traumatic brain injury. Prog Neurobiol. 2011;95(3):352–72.

    Article  CAS  PubMed  Google Scholar 

  51. Helmy A, Carpenter KL, Menon DK, Pickard JD, Hutchinson PJ. The cytokine response to human traumatic brain injury: temporal profiles and evidence for cerebral parenchymal production. J Cereb Blood Flow Metab. 2011;31(2):658–70.

    Article  CAS  PubMed  Google Scholar 

  52. Woodcock T, Morganti-Kossmann MC. The role of markers of inflammation in traumatic brain injury. Front Neurol. 2013;4:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Uzan M, Tanriverdi T, Baykara O, Kafadar A, Sanus G, Tureci E, et al. Association between interleukin-1 beta (IL-1β) gene polymorphism and outcome after head injury: an early report. Acta Neurochir. 2005;147:715–20.

    Article  CAS  PubMed  Google Scholar 

  54. Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13(3):159–75.

    Article  CAS  PubMed  Google Scholar 

  55. Nguyen HX, O’Barr TJ, Anderson AJ. Polymorphonuclear leukocytes promote neurotoxicity through release of matrix metalloproteinases, reactive oxygen species, and TNF-α. JJ Neurochem. 2007;102(3):900–12.

    Article  CAS  Google Scholar 

  56. Engel S, Schluesener H, Mittelbronn M, Seid K, Adjodah D, Wehner H-D, et al. Dynamics of microglial activation after human traumatic brain injury are revealed by delayed expression of macrophage-related proteins MRP8 and MRP14. Acta Neuropathol. 2000;100:313–22.

    Article  CAS  PubMed  Google Scholar 

  57. Zanier ER, Fumagalli S, Perego C, Pischiutta F, De Simoni M-G. Shape descriptors of the never resting microglia in three different acute brain injury models in mice. Intensive Care Med Exp. 2015;3(1):1–18.

    Article  Google Scholar 

  58. Jin X, Ishii H, Bai Z, Itokazu T, Yamashita T. Temporal changes in cell marker expression and cellular infiltration in a controlled cortical impact model in adult male C57BL/6 mice. PLoS ONE. 2012;7(7):e41892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Turtzo LC, Lescher J, Janes L, Dean DD, Budde MD, Frank JA. Macrophagic and microglial responses after focal traumatic brain injury in the female rat. J Neuroinflammation. 2014;11:1–14.

    Article  Google Scholar 

  60. Morganti JM, Riparip L-K, Rosi S. Call off the dog (ma): M1/M2 polarization is concurrent following traumatic brain injury. PLoS ONE. 2016;11(1):e0148001.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wang G, Zhang J, Hu X, Zhang L, Mao L, Jiang X, et al. Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. J Cereb Blood Flow Metab. 2013;33(12):1864–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hsieh CL, Kim CC, Ryba BE, Niemi EC, Bando JK, Locksley RM, et al. Traumatic brain injury induces macrophage subsets in the brain. Eur J Immunol. 2013;43(8):2010–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim CC, Nakamura MC, Hsieh CL. Brain trauma elicits non-canonical macrophage activation states. J Neuroinflammation. 2016;13(1):1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Chenouard A, Chesneau M, Braza F, Dejoie T, Cinotti R, Roquilly A, et al. Phenotype and functions of B cells in patients with acute brain injuries. Mol Immunol. 2015;68(2):350–6.

    Article  CAS  PubMed  Google Scholar 

  65. Althanoon Z, Faisal IM, Ahmad AA, Merkhan MM, Merkhan MM. Pharmacological aspects of statins are relevant to their structural and physicochemical properties. Sys Rev Pharm. 2020;11(7):167–71.

    CAS  Google Scholar 

  66. Hyun MH, Jang JW, Choi BG, Na JO, Choi CU, Kim JW et al. The low-density lipoprotein cholesterol lowering is an ineffective surrogate marker of statin responsiveness to predict cardiovascular outcomes: the 10-year experience of matched population (a STROBE-compliant article). Medicine. 2019;98(51).

  67. Davignon J. Beneficial cardiovascular pleiotropic effects of statins. Circulation. 2004;109(23_suppl_1):III-39-III-43.

  68. Schachter M. Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update. Fundam Clin Pharmacol. 2005;19(1):117–25.

    Article  CAS  PubMed  Google Scholar 

  69. Mishra TK, Routray S. Current perspectives on statins. J Indian Med Assoc. 2003;101(6):381–3.

    PubMed  Google Scholar 

  70. Lopez LM. Rosuvastatin: a high-potency HMG-CoA reductase inhibitor. J Am Pharm Assoc. 2005;45(4):503–13.

    Article  Google Scholar 

  71. McFarland AJ, Anoopkumar-Dukie S, Arora DS, Grant GD, McDermott CM, Perkins AV, et al. Molecular mechanisms underlying the effects of statins in the central nervous system. Int J Mol Sci. 2014;15(11):20607–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lim S-W, Wang C-C, Wang Y-H, Chio C-C, Niu K-C, Kuo J-R. Microglial activation induced by traumatic brain injury is suppressed by postinjury treatment with hyperbaric oxygen therapy. J Surg Res. 2013;184(2):1076–84.

    Article  CAS  PubMed  Google Scholar 

  73. Lim S-W, Shiue Y-L, Liao J-C, Wee H-Y, Wang C-C, Chio C-C, et al. Simvastatin therapy in the acute stage of traumatic brain injury attenuates brain trauma-induced depression-like behavior in rats by reducing neuroinflammation in the hippocampus. Neurocrit Care. 2017;26:122–32.

    Article  CAS  PubMed  Google Scholar 

  74. Dong Y, Fischer R, Naudé PJ, Maier O, Nyakas C, Duffey M, et al. Essential protective role of tumor necrosis factor receptor 2 in neurodegeneration. Proc Natl Acad Sci. 2016;113(43):12304–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Probert L. TNF and its receptors in the CNS: the essential, the desirable and the deleterious effects. Neuroscience. 2015;302:2–22.

    Article  CAS  PubMed  Google Scholar 

  76. Wang K-W, Chen H-J, Lu K, Liliang P-C, Liang C-L, Tsai Y-D, et al. Simvastatin attenuates the cerebral vascular endothelial inflammatory response in a rat traumatic brain injury. Ann Clin Lab Sci. 2014;44(2):145–50.

    CAS  PubMed  Google Scholar 

  77. Chen G, Zhang S, Shi J, Ai J, Qi M, Hang C. Simvastatin reduces secondary brain injury caused by cortical contusion in rats: possible involvement of TLR4/NF-κB pathway. Exp Neurol. 2009;216(2):398–406.

    Article  CAS  PubMed  Google Scholar 

  78. Cucchiara B, Kasner SE. Use of statins in CNS disorders. J Neurol Sci. 2001;187(1–2):81–9.

    Article  CAS  PubMed  Google Scholar 

  79. Rikitake Y, Liao JK. Rho GTPases, statins, and nitric oxide. Circ Res. 2005;97(12):1232–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chong AJ, Lim S-W, Lee Y-l, Chio C-C, Chang C-H, Kuo J-R, et al. The neuroprotective effects of simvastatin on high cholesterol following traumatic brain injury in rats. World Neurosurg. 2019;132:e99–e108.

    Article  PubMed  Google Scholar 

  81. Wang H, Lynch JR, Song P, Yang H-J, Yates RB, Mace B, et al. Simvastatin and atorvastatin improve behavioral outcome, reduce hippocampal degeneration, and improve cerebral blood flow after experimental traumatic brain injury. Exp Neurol. 2007;206(1):59–69.

    Article  CAS  PubMed  Google Scholar 

  82. Xu X, Gao W, Cheng S, Yin D, Li F, Wu Y, et al. Anti-inflammatory and immunomodulatory mechanisms of atorvastatin in a murine model of traumatic brain injury. J Neuroinflammation. 2017;14(1):1–15.

    Article  Google Scholar 

  83. Chen S-F, Hung T-H, Chen C-C, Lin K-H, Huang Y-N, Tsai H-C, et al. Lovastatin improves histological and functional outcomes and reduces inflammation after experimental traumatic brain injury. Life Sci. 2007;81(4):288–98.

    Article  CAS  PubMed  Google Scholar 

  84. Sánchez-Aguilar M, Tapia-Pérez JH, Sánchez-Rodríguez JJ, Viñas-Ríos JM, Martínez-Pérez P, De La Cruz-Mendoza E, et al. Effect of rosuvastatin on cytokines after traumatic head injury. J Neurosurg. 2013;118(3):669–75.

    Article  PubMed  Google Scholar 

  85. Hu Y, Wang X, Ye L, Li C, Chen W, Cheng H. Rosuvastatin alleviates intestinal injury by down-regulating the CD40 pathway in the intestines of rats following traumatic brain injury. Front Neurol. 2020;11:816.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Olsen A, Hetz R, Xue H, Aroom K, Bhattarai D, Johnson E, et al. Effects of traumatic brain injury on intestinal contractility. Neurogastroenterol Motil. 2013;25(7):593–e463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Grotz M, Deitch EA, Ding J, Xu D, Huang Q, Regel G. Intestinal cytokine response after gut ischemia: role of gut barrier failure. Ann Surg. 1999;229(4):478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Spies M, Chappell VL, Dasu MR, Herndon DN, Thompson JC, Wolf SE. Role of TNF-α in gut mucosal changes after severe burn. Am J Physiol Gastrointest Liver Physiol. 2002;283(3):G703–G8.

    Article  CAS  PubMed  Google Scholar 

  89. Liu Y, Bao Z, Xu X, Chao H, Lin C, Li Z, et al. Extracellular signal-regulated kinase/nuclear factor-erythroid2-like2/heme oxygenase-1 pathway-mediated mitophagy alleviates traumatic brain injury-induced intestinal mucosa damage and epithelial barrier dysfunction. J Neurotrauma. 2017;34(13):2119–31.

    Article  PubMed  Google Scholar 

  90. Beziaud T, Chen XR, El Shafey N, Frechou M, Teng F, Palmier B, et al. Simvastatin in traumatic brain injury: effect on brain edema mechanisms. Crit Care Med. 2011;39(10):2300–7.

    Article  CAS  PubMed  Google Scholar 

  91. Nag S, Manias JL, Stewart DJ. Pathology and new players in the pathogenesis of brain edema. Acta Neuropathol. 2009;118:197–217.

    Article  PubMed  Google Scholar 

  92. Shlosberg D, Benifla M, Kaufer D, Friedman A. Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol. 2010;6(7):393–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Huber JD, Egleton RD, Davis TP. Molecular physiology and pathophysiology of tight junctions in the blood–brain barrier. Trends Neurosci. 2001;24(12):719–25.

    Article  CAS  PubMed  Google Scholar 

  94. Gavard J, Gutkind JS. VE-cadherin and claudin-5: it takes two to tango. Nat Cell Biol. 2008;10(8):883–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Argaw AT, Gurfein BT, Zhang Y, Zameer A, John GR. VEGF-mediated disruption of endothelial CLN-5 promotes blood-brain barrier breakdown. Proc Natl Acad Sci. 2009;106(6):1977–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Whalen MJ, Carlos TM, Dixon CE, Robichaud P, Clark RS, Marion DW, et al. Reduced brain edema after traumatic brain injury in mice deficient in P-selectin and intercellular adhesion molecule‐1. J Leukoc Biol. 2000;67(2):160–8.

    Article  CAS  PubMed  Google Scholar 

  97. Chen XR, Besson VC, Beziaud T, Plotkine M, Marchand-Leroux C. Combination therapy with fenofibrate, a peroxisome proliferator-activated receptor α agonist, and simvastatin, a 3-hydroxy-3-methylglutaryl-coenzyme a reductase inhibitor, on experimental traumatic brain injury. J Pharmacol Exp Ther. 2008;326(3):966–74.

    Article  CAS  PubMed  Google Scholar 

  98. Turkoglu OF, Eroglu H, Okutan O, Gurcan O, Bodur E, Sargon MF, et al. Atorvastatin efficiency after traumatic brain injury in rats. Surg Neurol. 2009;72(2):146–52.

    Article  PubMed  Google Scholar 

  99. Iadecola C. Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci. 1997;20(3):132–9.

    Article  CAS  PubMed  Google Scholar 

  100. Yüksel H, Yavuz Ö, Iş M, Çomunoğlu N, Üzüm G, Akyüz F, et al. Simvastatin reduces VEGF and NO levels in acute stages of experimental traumatic brain injury. Neurol Sci. 2013;34:1941–6.

    Article  PubMed  Google Scholar 

  101. Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, et al. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest. 2000;106(7):829–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mayhan WG. VEGF increases permeability of the blood-brain barrier via a nitric oxide synthase/cGMP-dependent pathway. Am J Physiol Cell Physiol. 1999;276(5):C1148–C53.

    Article  CAS  Google Scholar 

  103. Stein SC, Chen X-H, Sinson GP, Smith DH. Intravascular coagulation: a major secondary insult in nonfatal traumatic brain injury. Neurosurgery. 2002;97(6):1373–7.

    Article  Google Scholar 

  104. Stein SC, Young GS, Talucci RC, Greenbaum BH, Ross SE. Delayed brain injury after head trauma: significance of coagulopathy. Neurosurgery. 1992;30(2):160–5.

    Article  CAS  PubMed  Google Scholar 

  105. Lu D, Mahmood A, Goussev A, Schallert T, Qu C, Zhang ZG, et al. Atorvastatin reduction of intravascular thrombosis, increase in cerebral microvascular patency and integrity, and enhancement of spatial learning in rats subjected to traumatic brain injury. J Neurosurg. 2004;101(5):813–21.

    Article  CAS  PubMed  Google Scholar 

  106. Lu D, Mahmood A, Goussev A, Qu C, Zhang ZG, Chopp M. Delayed thrombosis after traumatic brain injury in rats. J Neurotrauma. 2004;21(12):1756–66.

    Article  PubMed  Google Scholar 

  107. Lu D, Qu C, Goussev A, Jiang H, Lu C, Schallert T, et al. Statins increase neurogenesis in the dentate gyrus, reduce delayed neuronal death in the hippocampal CA3 region, and improve spatial learning in rat after traumatic brain injury. J Neurotrauma. 2007;24(7):1132–46.

    Article  PubMed  Google Scholar 

  108. Wu H, Lu D, Jiang H, Xiong Y, Qu C, Li B, et al. Increase in phosphorylation of akt and its downstream signaling targets and suppression of apoptosis by simvastatin after traumatic brain injury. J Neurosurg. 2008;109(4):691–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kaya SS, Mahmood A, Li Y, Yavuz E, Göksel M, Chopp M. Apoptosis and expression of p53 response proteins and cyclin D1 after cortical impact in rat brain. Brain Res. 1999;818(1):23–33.

    Article  CAS  PubMed  Google Scholar 

  110. McINTOSH TK, Juhler M, Wieloch T. Novel pharmacologic strategies in the treatment of experimental traumatic brain injury: 1998. J Neurotrauma. 1998;15(10):731–69.

    Article  CAS  PubMed  Google Scholar 

  111. FOX GB, Fan L, LEVASSEUR RA, FADEN AI. Sustained sensory/motor and cognitive deficits with neuronal apoptosis following controlled cortical impact brain injury in the mouse. J Neurotrauma. 1998;15(8):599–614.

    Article  CAS  PubMed  Google Scholar 

  112. Kermer P, Klöcker N, Bähr M. Neuronal death after brain injury: models, mechanisms, and therapeutic strategies in vivo. Cell Tissue Res. 1999;298(3):383–95.

    Article  CAS  PubMed  Google Scholar 

  113. Johnson-Anuna LN, Eckert GP, Franke C, Igbavboa U, Müller WE, Wood WG. Simvastatin protects neurons from cytotoxicity by up‐regulating Bcl‐2 mRNA and protein. J Neurochem. 2007;101(1):77–86.

    Article  CAS  PubMed  Google Scholar 

  114. Lu D, Goussev A, Chen J, Pannu P, Li Y, Mahmood A, et al. Atorvastatin reduces neurological deficit and increases synaptogenesis, angiogenesis, and neuronal survival in rats subjected to traumatic brain injury. J Neurotrauma. 2004;21(1):21–32.

    Article  PubMed  Google Scholar 

  115. Cavelier P, Attwell D. Tonic release of glutamate by a DIDS-sensitive mechanism in rat hippocampal slices. J Physiol. 2005;564(2):397–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Krisanova N, Sivko R, Kasatkina L, Borisova T. Neuroprotection by lowering cholesterol: a decrease in membrane cholesterol content reduces transporter-mediated glutamate release from brain nerve terminals. Biochim Biophys Acta Mol Basis Dis. 2012;1822(10):1553–61.

    Article  CAS  Google Scholar 

  117. Ponce J, de la Ossa NP, Hurtado O, Millan M, Arenillas JF, Dávalos A, et al. Simvastatin reduces the association of NMDA receptors to lipid rafts: a cholesterol-mediated effect in neuroprotection. Stroke. 2008;39(4):1269–75.

    Article  CAS  PubMed  Google Scholar 

  118. Dolga AM, Nijholt IM, Ostroveanu A, Ten Bosch Q, Luiten PG, Eisel UL. Lovastatin induces neuroprotection through tumor necrosis factor receptor 2 signaling pathways. J Alzheimer’s Dis. 2008;13(2):111–22.

    Article  CAS  Google Scholar 

  119. Cameron H, Woolley C, McEwen B, Gould E. Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience. 1993;56(2):337–44.

    Article  CAS  PubMed  Google Scholar 

  120. Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci. 1996;16(6):2027–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Xie C, Cong D, Wang X, Wang Y, Liang H, Zhang X, et al. The effect of simvastatin treatment on proliferation and differentiation of neural stem cells after traumatic brain injury. Brain Res. 2015;1602:1–8.

    Article  CAS  PubMed  Google Scholar 

  122. Arumugam TV, Cheng Y-L, Choi Y, Choi Y-H, Yang S, Yun Y-K, et al. Evidence that γ-secretase-mediated notch signaling induces neuronal cell death via the nuclear factor-κB-Bcl-2-interacting mediator of cell death pathway in ischemic stroke. Mol Pharmacol. 2011;80(1):23–31.

    Article  CAS  PubMed  Google Scholar 

  123. VanDussen KL, Carulli AJ, Keeley TM, Patel SR, Puthoff BJ, Magness ST, et al. Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Development. 2012;139(3):488–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Narayan RK, Michel ME, Ansell B, Baethmann A, Biegon A, Bracken MB, et al. Clinical trials in head injury. J Neurotrauma. 2002;19(5):503–57.

    Article  PubMed  Google Scholar 

  125. Fujimoto ST, Longhi L, Saatman KE, McIntosh TK. Motor and cognitive function evaluation following experimental traumatic brain injury. Neurosci Biobehav Rev. 2004;28(4):365–78.

    Article  PubMed  Google Scholar 

  126. Kempermann G, Jessberger S, Steiner B, Kronenberg G. Milestones of neuronal development in the adult hippocampus. Trends Neurosci. 2004;27(8):447–52.

    Article  CAS  PubMed  Google Scholar 

  127. Kempermann G, Wiskott L, Gage FH. Functional significance of adult neurogenesis. Curr Opin Neurobiol. 2004;14(2):186–91.

    Article  CAS  PubMed  Google Scholar 

  128. Wu H, Lu D, Jiang H, Xiong Y, Qu C, Li B, et al. Simvastatin-mediated upregulation of VEGF and BDNF, activation of the PI3K/Akt pathway, and increase of neurogenesis are associated with therapeutic improvement after traumatic brain injury. J Neurotrauma. 2008;25(2):130–9.

    Article  PubMed  Google Scholar 

  129. Van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH. Functional neurogenesis in the adult hippocampus. Nature. 2002;415(6875):1030–4.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Hayward NM, Immonen R, Tuunanen PI, Ndode-Ekane XE, Gröhn O, Pitkänen A. Association of chronic vascular changes with functional outcome after traumatic brain injury in rats. J Neurotrauma. 2010;27(12):2203–19.

    Article  PubMed  Google Scholar 

  131. Wang B, Sun L, Tian Y, Li Z, Wei H, Wang D, et al. Effects of atorvastatin in the regulation of circulating EPCs and angiogenesis in traumatic brain injury in rats. J Neurol Sci. 2012;319(1–2):117–23.

    Article  CAS  PubMed  Google Scholar 

  132. Liu L, Liu H, Jiao J, Liu H, Bergeron A, Dong J-F, et al. Changes in circulating human endothelial progenitor cells after brain injury. J Neurotrauma. 2007;24(6):936–43.

    Article  PubMed  Google Scholar 

  133. Wu H, Jiang H, Lu D, Qu C, Xiong Y, Zhou D, et al. Induction of angiogenesis and modulation of VEGFR-2 by simvastatin after traumatic brain injury. Neurosurgery. 2011;68(5):1363.

    Article  PubMed  Google Scholar 

  134. Kureishi Y, Luo Z, Shiojima I, Bialik A, Fulton D, Lefer DJ, et al. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase akt and promotes angiogenesis in normocholesterolemic animals. Nat Med. 2000;6(9):1004–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Scheff S, Price D, Hicks R, Baldwin S, Robinson S, Brackney C. Synaptogenesis in the hippocampal CA1 field following traumatic brain injury. J Neurotrauma. 2005;22(7):719–32.

    Article  CAS  PubMed  Google Scholar 

  136. Wu H, Mahmood A, Qu C, Xiong Y, Chopp M. Simvastatin attenuates axonal injury after experimental traumatic brain injury and promotes neurite outgrowth of primary cortical neurons. Brain Res. 2012;1486:121–30.

    Article  CAS  PubMed  Google Scholar 

  137. Chauhan NB, Gatto R. Synergistic benefits of erythropoietin and simvastatin after traumatic brain injury. Brain Res. 2010;1360:177–92.

    Article  CAS  PubMed  Google Scholar 

  138. Shehadah A, Chen J, Cui X, Roberts C, Lu M, Chopp M. Combination treatment of experimental stroke with Niaspan and Simvastatin, reduces axonal damage and improves functional outcome. J Neurol Sci. 2010;294(1–2):107–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lokhandwala A, Hanna K, Gries L, Zeeshan M, Ditillo M, Tang A, et al. Preinjury statins are associated with improved survival in patients with traumatic brain injury. J Surg Res. 2020;245:367–72.

    Article  CAS  PubMed  Google Scholar 

  140. Shafiee S, Zali A, Shafizad M, Zeydi AE, Ehteshami S, Rezaii F et al. The effect of oral simvastatin on the clinical outcome of patients with severe traumatic brain injury: a randomized clinical trial. Ethiop J Health Sci. 2021;31(4).

  141. Soltani F, Nassajian N, Tabatabaee K, Javaherforooshzadeh F, Kiani A, Zarezadehabarghouei H. The effect of low-dose atorvastatin on inflammatory factors in patients with traumatic brain injury: a randomized clinical trial. Arch Neurosci. 2020;7(4).

  142. Farzanegan GR, Derakhshan N, Khalili H, Ghaffarpasand F, Paydar S. Effects of atorvastatin on brain contusion volume and functional outcome of patients with moderate and severe traumatic brain injury; a randomized double-blind placebo-controlled clinical trial. J Clin Neurosci. 2017;44:143–7.

    Article  CAS  PubMed  Google Scholar 

  143. Robertson CS, McCarthy JJ, Miller ER, Levin H, McCauley SR, Swank PR. Phase II clinical trial of atorvastatin in mild traumatic brain injury. J Neurotrauma. 2017;34(7):1394–401.

    Article  Google Scholar 

  144. Neilson SJ, See AA, King NK. Effect of prior statin use on outcome after severe traumatic brain injury in a South-East Asian population. Brain Inj. 2016;30(8):993–8.

    Article  PubMed  Google Scholar 

  145. Tapia-Perez JH, Sanchez-Aguilar M, Torres-Corzo JG, Gordillo-Moscoso A, Martinez-Perez P, Madeville P, et al. Effect of rosuvastatin on amnesia and disorientation after traumatic brain injury (NCT00329758). J Neurotrauma. 2008;25(8):1011–7.

    Article  PubMed  Google Scholar 

  146. Khokhar B, Simoni-Wastila L, Slejko JF, Perfetto E, Zhan M, Smith GS. Mortality and associated morbidities following traumatic brain injury in older medicare statin users. J Head Trauma Rehabil. 2018;33(6):E68.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Khokhar B, Simoni-Wastila L, Slejko JF, Perfetto E, Zhan M, Smith GS. In-hospital mortality following traumatic brain injury among older medicare beneficiaries, comparing statin users with nonusers. J Pharm Technol. 2017;33(6):225–36.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Redelmeier DA, Manzoor F, Thiruchelvam D. Association between statin use and risk of dementia after a concussion. JAMA Neurol. 2019;76(8):887–96.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Maeda T, Lee SM, Hovda DA. Restoration of cerebral vasoreactivity by an L-type calcium channel blocker following fluid percussion brain injury. J Neurotrauma. 2005;22(7):763–71.

    Article  PubMed  Google Scholar 

  150. Chruściel P, Sahebkar A, Rembek-Wieliczko M, Serban MC, Ursoniu S, Mikhailidis DP, et al. Impact of statin therapy on plasma adiponectin concentrations: a systematic review and meta-analysis of 43 randomized controlled trial arms. Atherosclerosis. 2016;253:194–208.

    Article  PubMed  Google Scholar 

  151. Ferretti G, Bacchetti T, Sahebkar A. Effect of statin therapy on paraoxonase-1 status: a systematic review and meta-analysis of 25 clinical trials. Prog Lipid Res. 2015;60:50–73.

    Article  CAS  PubMed  Google Scholar 

  152. Mollazadeh H, Tavana E, Fanni G, Bo S, Banach M, Pirro M, et al. Effects of statins on mitochondrial pathways. J Cachexia Sarcopenia Muscle. 2021;12(2):237–51.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Parizadeh SMR, Azarpazhooh MR, Moohebati M, Nematy M, Ghayour-Mobarhan M, Tavallaie S, et al. Simvastatin therapy reduces prooxidant-antioxidant balance: results of a placebo-controlled cross-over trial. Lipids. 2011;46(4):333–40.

    Article  CAS  PubMed  Google Scholar 

  154. Sahebkar A, Chew GT, Watts GF. Recent advances in pharmacotherapy for hypertriglyceridemia. Prog Lipid Res. 2014;56(1):47–66.

    Article  CAS  PubMed  Google Scholar 

  155. Sahebkar A, Kotani K, Serban C, Ursoniu S, Mikhailidis DP, Jones SR, et al. Statin therapy reduces plasma endothelin-1 concentrations: a meta-analysis of 15 randomized controlled trials. Atherosclerosis. 2015;241(2):433–42.

    Article  CAS  PubMed  Google Scholar 

  156. Sahebkar A, Serban C, Mikhailidis DP, Undas A, Lip GYH, Muntner P, et al. Association between statin use and plasma d-dimer levels: a systematic review and meta-analysis of randomised controlled trials. Thromb Haemost. 2015;114(3):546–57.

    PubMed  Google Scholar 

  157. Serban C, Sahebkar A, Ursoniu S, Mikhailidis DP, Rizzo M, Lip GYH et al. A systematic review and meta-analysis of the effect of statins on plasma asymmetric dimethylarginine concentrations. Sci Rep. 2015;5.

  158. Bahrami A, Parsamanesh N, Atkin SL, Banach M, Sahebkar A. Effect of statins on toll-like receptors: a new insight to pleiotropic effects. Pharmacol Res. 2018;135:230–8.

    Article  CAS  PubMed  Google Scholar 

  159. Bytyçi I, Penson PE, Mikhailidis DP, Wong ND, Hernandez AV, Sahebkar A, et al. Prevalence of statin intolerance: a meta-analysis. Eur Heart J. 2022;43(34):3213–23.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Sahebkar A, Serban C, Ursoniu S, Mikhailidis DP, Undas A, Lip GYH, et al. The impact of statin therapy on plasma levels of Von Willebrand factor antigen: systematic review and meta-analysis of Randomised placebo-controlled trials. Thromb Haemost. 2016;115(3):520–32.

    Article  PubMed  Google Scholar 

  161. Indraswari F, Wang H, Lei B, James ML, Kernagis D, Warner DS, et al. Statins improve outcome in murine models of intracranial hemorrhage and traumatic brain injury: a translational approach. J Neurotrauma. 2012;29(7):1388–400.

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was received for this research.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AS, SP; Writing-original draft: SP; Writing-review & editing: APM, WA, AS.

Corresponding author

Correspondence to Amirhossein Sahebkar.

Ethics declarations

We declare that some parts of Figs. 1 and 2 were drawn using pictures from Servier Medical Art. Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/). This Figure was modified with text, markings, and annotation using Microsoft Office PowerPoint (version 2010).

Conflict of interest

The authors declare that they have no competing financial interests that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pordel, S., McCloskey, A.P., Almahmeed, W. et al. The protective effects of statins in traumatic brain injury. Pharmacol. Rep 76, 235–250 (2024). https://doi.org/10.1007/s43440-024-00582-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-024-00582-9

Keywords

Navigation