Skip to main content

Advertisement

Log in

Effects of statins on the biological features of mesenchymal stem cells and therapeutic implications

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Statins are well-known lipid-lowering drugs. The pleiotropic effects of statins have brought about some beneficial effects on improving the therapeutic outcomes of cell therapy and tissue engineering approaches. In this review, the impact of statins on mesenchymal stem cell behaviors including differentiation, apoptosis, proliferation, migration, and angiogenesis, as well as molecular pathways which are responsible for such phenomena, are discussed. A better understanding of pathways and mechanisms of statin-mediated effects on mesenchymal stem cells will pave the way for the expansion of statin applications. Furthermore, since designing a suitable carrier for statins is required to maintain a sufficient dose of active statins at the desired site of the body, different systems for local delivery of statins are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

APC:

Adenomatous polyposis coli

AKT:

Protein kinase B

ATV:

Atorvastatin

ALP:

Alkaline phosphatase

AMPK:

AMP-activated protein kinase

bFGF:

Basic fibroblast growth factor

BMP-2:

Bone morphogenic protein 2

CBFA1:

Core binding factor α1

C/EBPα:

CCAAT/enhancer-binding protein a

COL1A1:

Collagen type I alpha 1

CV:

Cardiovascular

CXCL8:

C-X-C motif chemokine ligand 8

CXCR-4:

CXC chemokine receptor-4

DKK1:

Dickkopf Wnt signaling pathway inhibitor 1

DNMT:

DNA methyltransferase

ECM:

Extracellular matrix

ELISA:

Enzyme-linked immunosorbent assay

eNOS:

Endothelial nitric oxide synthase

ERK:

Extracellular signal-regulated kinase

FACS:

Fluorescence-activated cell sorting

FLV:

Fluvastatin

FoxO3a:

Forkhead box O3

GFAP:

Glial fibrillary acid protein

GLUT4:

Glucose transporter isoform 4

GGPP:

Geranylgeranyl pyrophosphate

GSK3b:

Glycogen synthesis kinase 3 β

HDL:

High-density lipoprotein

HIF-1a:

Hypoxia-inducible factor 1α

HIV:

Human immunodeficiency virus

HLA-DRB1:

Human leukocyte antigen-D-related β1

HGF:

Hepatocyte growth factor

HMG:

Hydroxymethylglutaryl

HMGB1:

High mobility group box 1

hs-CRP:

High sensitivity C-reactive protein

HUVECs:

Human umbilical vein endothelial cells

IGF-1:

Insulin-like growth factor

IL:

Interleukin

JAK:

Janus kinase

KDR:

Kinase insert domain receptor

LC3-II:

Type II of light chain 3

LDL:

Low-density lipoprotein

LOV:

Lovastatin

MAP-2:

Microtubule-associated protein 2

MAPK:

Mitogen-activated protein kinase

MEK:

Mitogen-activated protein kinase

MEV:

Mevastatin

MRC1:

Mannose receptor C-type 1

MSCs:

Mesenchymal stem cells

NOS2:

Nitric oxide synthase 2

mTOR:

Mammalian target of rapamycin

NF-κB:

Nuclear factor kappa B

NO:

Nitric oxide

NSE:

Neuron-specific enolase

OCN:

Osteocalcin

OPG:

Osteoprotegerin

OPN:

Osteopontin

PDGF-BB:

Platelet-derived growth factor-BB

PI3K:

Phosphatidylinositol-3 kinase

PLGA:

Poly(lactic-co-glycolic acid)

PPARγ:

Peroxisome proliferator-activated receptor γ

PRA:

Pravastatin

PROM1:

Prominin-like protein 1

PTV:

Pitavastatin

RAS:

Rat sarcoma

RhoA:

RAS homolog gene family member A

RhoGDIα:

Rho guanine nucleotide dissociation inhibitor

ROCK:

Rho/Rho-associated coiled-coil forming kinase

RSV:

Rosuvastatin

RUNX2:

Runt-related transcription factor 2

SDF-1α:

Stromal cell-derived factor 1 α

SIM:

Simvastatin

α-SMA:

α-Smooth muscle actin

SMCs:

Smooth muscle cells

SOD:

Superoxide dismutase

STAT:

Signal transducers and activators of the transcription

TGF-β1:

Transforming growth factor β1

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

TRAP:

Tartrate-resistant acid phosphatase

Treg:

Regulatory T cell

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end labeling

VCAM-1:

Vascular cell adhesion molecule 1

VEGF:

Vascular endothelial growth factor

vWF:

von Willebrand factor

References

  1. Cai J, Yu X, Zhang B, Zhang H, Fang Y, Liu S, Liu T, Ding X (2014) Atorvastatin improves survival of implanted stem cells in a rat model of renal ischemia-reperfusion injury. Am J Nephrol 39:466–475

    Article  CAS  PubMed  Google Scholar 

  2. Aktas O, Albrecht P, Hartung HP (2016) Optic neuritis as a phase 2 paradigm for neuroprotection therapies of multiple sclerosis: update on current trials and perspectives. Curr Opin Neurol 29:199–204

    Article  CAS  PubMed  Google Scholar 

  3. Chruściel P, Sahebkar A, Rembek-Wieliczko M, Serban MC, Ursoniu S, Mikhailidis DP et al (2016) Impact of statin therapy on plasma adiponectin concentrations: a systematic review and meta-analysis of 43 randomized controlled trial arms. Atherosclerosis. 253:194–208

    Article  PubMed  CAS  Google Scholar 

  4. Sahebkar A, Kotani K, Serban C, Ursoniu S, Mikhailidis DP, Jones SR, Ray KK, Blaha MJ, Rysz J, Toth PP, Muntner P, Lip GY, Banach M, Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group (2015) Statin therapy reduces plasma endothelin-1 concentrations: a meta-analysis of 15 randomized controlled trials. Atherosclerosis. 241:433–442

    Article  CAS  PubMed  Google Scholar 

  5. Bianconi V, Sahebkar A, Banach M, Pirro M (2017) Statins, haemostatic factors and thrombotic risk. Curr Opin Cardiol 32:460–466

    Article  PubMed  Google Scholar 

  6. Serban C, Sahebkar A, Ursoniu S, Mikhailidis DP, Rizzo M, Lip GY et al (2015) A systematic review and meta-analysis of the effect of statins on plasma asymmetric dimethylarginine concentrations. Sci Rep 5:9902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sahebkar A, Serban C, Mikhailidis DP, Undas A, Lip GY, Muntner P et al (2015) Association between statin use and plasma d-dimer levels: a systematic review and meta-analysis of randomised controlled trials. Thromb Haemost 114:546–557

    Article  PubMed  Google Scholar 

  8. Sahebkar A, Serban C, Ursoniu S, Mikhailidis DP, Undas A, Lip GY et al (2016) The impact of statin therapy on plasma levels of von Willebrand factor antigen: systematic review and meta-analysis of randomised placebo-controlled trials. Thromb Haemost 115:520–532

    Article  PubMed  Google Scholar 

  9. Parizadeh SM, Azarpazhooh MR, Moohebati M, Nematy M, Ghayour-Mobarhan M, Tavallaie S, Rahsepar AA, Amini M, Sahebkar A, Mohammadi M, Ferns GA (2011) Simvastatin therapy reduces prooxidant-antioxidant balance: results of a placebo-controlled cross-over trial. Lipids. 46(4):333–340

    Article  CAS  PubMed  Google Scholar 

  10. Bianconi V, Fallarino F, Mannarino MR, Bagaglia F, Kararoudi MN, Aragona CO, Romani R, Pirro M (2018) Autologous cell therapy for vascular regeneration: the role of proangiogenic cells. Curr Med Chem 25:4518–4534

    Article  CAS  PubMed  Google Scholar 

  11. Bianconi V, Sahebkar A, Kovanen P, Bagaglia F, Ricciuti B, Calabro P et al (2018) Endothelial and cardiac progenitor cells for cardiovascular repair: a controversial paradigm in cell therapy. Pharmacol Ther 181:156–168

    Article  CAS  PubMed  Google Scholar 

  12. Dai G, Xu Q, Luo R, Gao J, Chen H, Deng Y et al (2015) Atorvastatin treatment improves effects of implanted mesenchymal stem cells: meta-analysis of animal models with acute myocardial infarction. BMC Cardiovasc Disord 15:170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Niu J, Ding G, Zhang L (2015) Effects of simvastatin on the osteogenic differentiation and immunomodulation of bone marrow mesenchymal stem cells. Mol Med Rep 12:8237–8240

    Article  CAS  PubMed  Google Scholar 

  14. Yao GT, Song LP, Xue WH, Su GH, Ning AH, Wang J (2018) Nano-particle engineered atorvastatin delivery to support mesenchymal stem cell survival in infarcted myocardium. Saudi J Biol Sci 25:1016–1021

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y, Li J, Wang Y, Gao M (2016) Rosuvastatin combined with umbilical cord blood mesenchymal stem cell transplantation improves cardiac function after acute myocardial infarction. Chin J Tissue Eng Res 20:2796–2802

    CAS  Google Scholar 

  16. Van Den Broek LJ, Niessen FB, Scheper RJ, Gibbs S (2012) Development, validation, and testing of a human tissue engineered hypertrophic scar model. ALTEX. 29:389–402

    Article  PubMed  Google Scholar 

  17. Lee TC, Wang YH, Huang SH, Chen CH, Ho ML, Fu YC et al (2018) Evaluations of clinical-grade bone substitute-combined simvastatin carriers to enhance bone growth: in vitro and in vivo analyses. J Bioact Compat Polym 33:160–177

    Article  CAS  Google Scholar 

  18. Sukul M, Min YK, Lee SY, Lee BT (2015) Osteogenic potential of simvastatin loaded gelatin-nanofibrillar cellulose-β tricalcium phosphate hydrogel scaffold in critical-sized rat calvarial defect. Eur Polym J 73:308–323

    Article  CAS  Google Scholar 

  19. Qi Y, Zhao T, Yan W, Xu K, Shi Z, Wang J (2013) Mesenchymal stem cell sheet transplantation combined with locally released simvastatin enhances bone formation in a rat tibia osteotomy model. Cytotherapy. 15:44–56

    Article  CAS  PubMed  Google Scholar 

  20. De Matos MB, Puga AM, Alvarez-Lorenzo C, Concheiro A, Braga ME, De Sousa HC (2015) Osteogenic poly(ε-caprolactone)/poloxamine homogeneous blends prepared by supercritical foaming. Int J Pharm 479:11–22

    Article  PubMed  CAS  Google Scholar 

  21. Liu YS, Ou ME, Liu H, Gu M, Lv LW, Fan C, Chen T, Zhao XH, Jin CY, Zhang X, Ding Y, Zhou YS (2014) The effect of simvastatin on chemotactic capability of SDF-1α and the promotion of bone regeneration. Biomaterials. 35:4489–4498

    Article  CAS  PubMed  Google Scholar 

  22. Yueyi C, Xiaoguang H, Jingying W, Quansheng S, Jie T, Xin F, Yingsheng X, Chunli S (2013) Calvarial defect healing by recruitment of autogenous osteogenic stem cells using locally applied simvastatin. Biomaterials. 34:9373–9380

    Article  PubMed  CAS  Google Scholar 

  23. Lee MH, Kang JH, Lee SW (2012) The significance of differential expression of genes and proteins in human primary cells caused by microgrooved biomaterial substrata. Biomaterials. 33:3216–3234

    Article  CAS  PubMed  Google Scholar 

  24. Wang CZ, Fu YC, Jian SC, Wang YH, Liu PL, Ho ML et al (2014) Synthesis and characterization of cationic polymeric nanoparticles as simvastatin carriers for enhancing the osteogenesis of bone marrow mesenchymal stem cells. J Colloid Interface Sci 432:190–199

    Article  CAS  PubMed  Google Scholar 

  25. Pullisaar H, Reseland JE, Haugen HJ, Brinchmann JE, Ostrup E (2014) Simvastatin coating of TiO2 scaffold induces osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells. Biochem Biophys Res Commun 447:139–144

    Article  CAS  PubMed  Google Scholar 

  26. Zhang HX, Xiao GY, Wang X, Dong ZG, Ma ZY, Li L, Li YH, Pan X, Nie L (2015) Biocompatibility and osteogenesis of calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres for bone tissue engineering. J Biomed Mater Res A 103:3250–3258

    Article  CAS  PubMed  Google Scholar 

  27. Zhao BJ, Liu YH (2014) Simvastatin induces the osteogenic differentiation of human periodontal ligament stem cells. Fundam Clin Pharmacol 28:583–592

    Article  CAS  PubMed  Google Scholar 

  28. Zhang M, Bian YQ, Tao HM, Yang XF, Mu WD (2018) Simvastatin induces osteogenic differentiation of MSCs via Wnt/β-catenin pathway to promote fracture healing. Eur Rev Med Pharmacol Sci 22:2896–2905

    CAS  PubMed  Google Scholar 

  29. Huang ZN, Feng XM, Wang JC, Chen T, Bi SC, Zhang L (2017) Simvastatin regulates endogenous stem cells to reconstruct the degenerative intervertebral disc. Chin J Tissue Eng Res 21:809–814

    Google Scholar 

  30. Liu Y, Zhang X, Liu Y, Jin X, Fan C, Ye H et al (2014) Bi-functionalization of a calcium phosphate-coated titanium surface with slow-release simvastatin and metronidazole to provide antibacterial activities and pro-osteodifferentiation capabilities. PLoS One 9:e97741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Yu WL, Sun TW, Qi C, Zhao HK, Ding ZY, Zhang ZW et al (2017) Enhanced osteogenesis and angiogenesis by mesoporous hydroxyapatite microspheres-derived simvastatin sustained release system for superior bone regeneration. Sci Rep 7:44129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lai M, Yan X, Jin Z (2018) The response of bone cells to titanium surfaces modified by simvastatin-loaded multilayered films. J Biomater Sci Polym Ed 29:1895–1908

    Article  CAS  PubMed  Google Scholar 

  33. Mendes Junior D, Domingues JA, Hausen MA, Cattani SMM, Aragones A, Oliveira ALR, Inácio RF, Barbo MLP, Duek EAR (2017) Study of mesenchymal stem cells cultured on a poly(lactic-co-glycolic acid) scaffold containing simvastatin for bone healing. J Appl Biomater Funct Mater 15:e133–e141

    PubMed  Google Scholar 

  34. de Lara Janz F, Favero GM, Bohatch MS Jr, Aguiar Debes A, Bydlowski SP (2014) Simvastatin induces osteogenic differentiation in human amniotic fluid mesenchymal stem cells (AFMSC). Fundam Clin Pharmacol 28:211–216

    Article  PubMed  CAS  Google Scholar 

  35. Huang X, Huang Z, Li W (2014) Highly efficient release of simvastatin from simvastatin-loaded calcium sulphate scaffolds enhances segmental bone regeneration in rabbits. Mol Med Rep 9:2152–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li Y, Zhang Z, Zhang Z (2018) Porous chitosan/nano-hydroxyapatite composite scaffolds incorporating simvastatin-loaded PLGA microspheres for bone repair. Cells Tissues Organs 205:20–31

    Article  CAS  PubMed  Google Scholar 

  37. Kupcsik L, Meurya T, Flury M, Stoddart M, Alini M (2009) Statin-induced calcification in human mesenchymal stem cells is cell death related. J Cell Mol Med 13:4465–4473

    Article  CAS  PubMed  Google Scholar 

  38. Galiullina LF, Aganova OV, Latfullin IA, Musabirova GS, Aganov AV, Klochkov VV (1859) Interaction of different statins with model membranes by NMR data. Biochim Biophys Acta Biomembr 2017:295–300

    Google Scholar 

  39. Zhang Q, Wang H, Yang YJ, Dong QT, Wang TJ, Qian HY, Li N, Wang XM, Jin C (2014) Atorvastatin treatment improves the effects of mesenchymal stem cell transplantation on acute myocardial infarction: the role of the RhoA/ROCK/ERK pathway. Int J Cardiol 176:670–679

    Article  PubMed  Google Scholar 

  40. Tai IC, Wang YH, Chen CH, Chuang SC, Chang JK, Ho ML (2015) Simvastatin enhances Rho/actin/cell rigidity pathway contributing to mesenchymal stem cells’ osteogenic differentiation. Int J Nanomedicine 10:5881–5894

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chuang SC, Chen CH, Fu YC, Tai IC, Li CJ, Chang LF et al (2015) Estrogen receptor mediates simvastatin-stimulated osteogenic effects in bone marrow mesenchymal stem cells. Biochem Pharmacol 98:453–464

    Article  CAS  PubMed  Google Scholar 

  42. Beg M, Shankar K, Varshney S, Rajan S, Singh SP, Jagdale P, Puri A, Chaudhari BP, Sashidhara KV, Gaikwad AN (2015) A clerodane diterpene inhibit adipogenesis by cell cycle arrest and ameliorate obesity in C57BL/6 mice. Mol Cell Endocrinol 399:373–385

    Article  CAS  PubMed  Google Scholar 

  43. Hernandez-Vallejo SJ, Beaupere C, Larghero J, Capeau J, Lagathu C (2013) HIV protease inhibitors induce senescence and alter osteoblastic potential of human bone marrow mesenchymal stem cells: beneficial effect of pravastatin. Aging Cell 12:955–965

    Article  CAS  PubMed  Google Scholar 

  44. Chen PY, Sun JS, Tsuang YH, Chen MH, Weng PW, Lin FH (2010) Simvastatin promotes osteoblast viability and differentiation via Ras/Smad/Erk/BMP-2 signaling pathway. Nutr Res 30:191–199

    Article  CAS  PubMed  Google Scholar 

  45. Wu T, Tan L, Cheng N, Yan Q, Zhang YF, Liu CJ et al (2016) PNIPAAM modified mesoporous hydroxyapatite for sustained osteogenic drug release and promoting cell attachment. Mater Sci Eng C Mater Biol Appl 62:888–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen G, Deng C, Li YP (2012) TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 8:272–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Taghizadeh M, Noruzinia M (2017) Lovastatin reduces stemness via epigenetic reprograming of BMP2 and GATA2 in human endometrium and endometriosis. Cell J 19:50–64

    PubMed  Google Scholar 

  48. Zhang K, Liu G, Tian F, Zhang L (2016) Regulatory effect of simvastatin on middle/late stage osteogenic differentiation of bone marrow mesenchymal stem cells via p38MAPK pathway. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 30:1038–1043

    PubMed  Google Scholar 

  49. Zhang Y, Zhang R, Li Y, He G, Zhang D, Zhang F (2012) Simvastatin augments the efficacy of therapeutic angiogenesis induced by bone marrow-derived mesenchymal stem cells in a murine model of hindlimb ischemia. Mol Biol Rep 39:285–293

    Article  PubMed  CAS  Google Scholar 

  50. Cai A, Zheng D, Dong Y, Qiu R, Huang Y, Song Y et al (2011) Efficacy of atorvastatin combined with adipose-derived mesenchymal stem cell transplantation on cardiac function in rats with acute myocardial infarction. Acta Biochim Biophys Sin (Shanghai) 43:857–866

    Article  CAS  PubMed  Google Scholar 

  51. Xu H, Yang YJ, Qian HY, Tang YD, Wang H, Zhang Q (2011) Rosuvastatin treatment activates JAK-STAT pathway and increases efficacy of allogeneic mesenchymal stem cell transplantation in infarcted hearts. Circ J 75:1476–1485

    Article  CAS  PubMed  Google Scholar 

  52. Yang Y, Zhu Y, Fan X (2017) Mesenchymal stem cells joint simvastatin therapy improves oleic acid induced acute lung injury in rats. Int J Clin Exp Med 10:2590–2597

    CAS  Google Scholar 

  53. Izadpanah R, Schächtele DJ, Pfnür AB, Lin D, Slakey DP, Kadowitz PJ, Alt EU (2015) The impact of statins on biological characteristics of stem cells provides a novel explanation for their pleiotropic beneficial and adverse clinical effects. Am J Phys Cell Phys 309:C522–C531

    Article  CAS  Google Scholar 

  54. Kim KH, Kim YM, Lee MJ, Ko HC, Kim MB, Kim JH (2012) Simvastatin inhibits sphingosylphosphorylcholine-induced differentiation of human mesenchymal stem cells into smooth muscle cells. Exp Mol Med 44:159–166

    Article  CAS  PubMed  Google Scholar 

  55. Kiaie N, Aghdam RM, Tafti SHA, Gorabi AM (2018) Stem cell-mediated angiogenesis in tissue engineering constructs. Curr Stem Cell Res Ther 14:249–258

    Article  Google Scholar 

  56. Pirzad Jahromi GP, Shabanzadeh A, Mokhtari Hashtjini M, Sadr SS, Rasouli Vani J, Raouf Sarshoori J et al (2018) Bone marrow-derived mesenchymal stem cell and simvastatin treatment leads to improved functional recovery and modified c-Fos expression levels in the brain following ischemic stroke. Iran J Basic Med Sci 21:1004–1012

    PubMed  PubMed Central  Google Scholar 

  57. Shibuya M (2011) Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2:1097–1105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Dellinger MT, Brekken RA (2011) Phosphorylation of Akt and ERK1/2 is required for VEGF-A/VEGFR2-induced proliferation and migration of lymphatic endothelium. PLoS One 6:e28947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cantoni S, Cavallini C, Bianchi F, Bonavita F, Vaccari V, Olivi E et al (2012) Rosuvastatin elicits KDR-dependent vasculogenic response of human placental stem cells through PI3K/AKT pathway. Pharmacol Res 65:275–284

    Article  CAS  PubMed  Google Scholar 

  60. Fu FY, Chen BY, Chen LL, Zhang FL, Luo YK, Jun F (2016) Improvement of the survival and therapeutic effects of implanted mesenchymal stem cells in a rat model of coronary microembolization by rosuvastatin treatment. Eur Rev Med Pharmacol Sci 20:2368–2381

    PubMed  Google Scholar 

  61. Kawashiri MA, Nakanishi C, Tsubokawa T, Shimojima M, Yoshida S, Yoshimuta T et al (2015) Impact of enhanced production of endogenous heme oxygenase-1 by pitavastatin on survival and functional activities of bone marrow-derived mesenchymal stem cells. J Cardiovasc Pharmacol 65:601–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mazdeh M, Noroozi R, Gharesouran J, Sayad A, Komaki A, Eftekharian MM, Habibi M, Toghi M, Taheri M (2017) The importance of VEGF-KDR signaling pathway genes should not be ignored when the risk of developing multiple sclerosis is taken into consideration. J Mol Neurosci 62:73–78

    Article  CAS  PubMed  Google Scholar 

  63. Zemankova L, Varejckova M, Dolezalova E, Fikrova P, Jezkova K, Rathouska J, Cerveny L, Botella LM, Bernabeu C, Nemeckova I, Nachtigal P (2015) Atorvastatin-induced endothelial nitric oxide synthase expression in endothelial cells is mediated by endoglin. J Physiol Pharmacol 66:403–413

    CAS  PubMed  Google Scholar 

  64. Zhang J, Wang H, Ye P (2012) Effect of atorvastatin on eNOS synthesis in organs of aging rats with myocardial ischemia-reperfusion. Nan Fang Yi Ke Da Xue Xue Bao 32:1708–1712

    CAS  PubMed  Google Scholar 

  65. Cai A, Qiu R, Li L, Zheng D, Dong Y, Yu D et al (2013) Atorvastatin treatment of rats with ischemia-reperfusion injury improves adipose-derived mesenchymal stem cell migration and survival via the SDF-1α/CXCR-4 axis. PLoS One 8:e79100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Mottaghi S, Larijani B, Sharifi AM (2013) Atorvastatin: an efficient step forward in mesenchymal stem cell therapy of diabetic retinopathy. Cytotherapy. 15:263–266

    Article  CAS  PubMed  Google Scholar 

  67. Han X, Yang N, Cui Y, Xu Y, Dang G, Song C (2012) Simvastatin mobilizes bone marrow stromal cells migrating to injured areas and promotes functional recovery after spinal cord injury in the rat. Neurosci Lett 521:136–141

    Article  CAS  PubMed  Google Scholar 

  68. Mohammadian M, Sadeghipour HR, Jahromi GP, Jafari M, Nejad AK, Khamse S, Boskabady MH (2019) Simvastatin and bone marrow-derived mesenchymal stem cells (BMSCs) affects serum IgE and lung cytokines levels in sensitized mice. Cytokine. 113:83–88

    Article  CAS  PubMed  Google Scholar 

  69. Mohammadian M, Sadeghipour HR, Kashani IR, Jahromi GP, Omidi A, Nejad AK et al (2016) Evaluation of simvastatin and bone marrow-derived mesenchymal stem cell combination therapy on airway remodeling in a mouse asthma model. Lung. 194:777–785

    Article  CAS  PubMed  Google Scholar 

  70. Li N, Yang YJ, Qian HY, Li Q, Zhang Q, Li XD et al (2015) Intravenous administration of atorvastatin-pretreated mesenchymal stem cells improves cardiac performance after acute myocardial infarction: role of CXCR4. Am J Transl Res 7:1058–1070

    PubMed  PubMed Central  Google Scholar 

  71. Bing W, Pang X, Qu Q, Bai X, Yang W, Bi Y, Bi X (2016) Simvastatin improves the homing of BMSCs via the PI3K/AKT/miR-9 pathway. J Cell Mol Med 20:949–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Aghdam RM, Shakhesi S, Najarian S, Mohammadi MM, Ahmadi Tafti SH, Mirzadeh H (2014) Fabrication of a nanofibrous scaffold for the in vitro culture of cardiac progenitor cells for myocardial regeneration. Int J Polym Mater Polym Biomater 63:229–239

    Article  CAS  Google Scholar 

  73. Dong Q, Yang Y, Song L, Qian H, Xu Z (2011) Atorvastatin prevents mesenchymal stem cells from hypoxia and serum-free injury through activating amp-activated protein kinase. Int J Cardiol 153:311–316

    Article  PubMed  Google Scholar 

  74. Ma L, Niknejad N, Gorn-Hondermann I, Dayekh K, Dimitroulakos J (2012) Lovastatin induces multiple stress pathways including LKB1/AMPK activation that regulate its cytotoxic effects in squamous cell carcinoma cells. PLoS One 7:e46055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang ST, Ho HJ, Lin JT, Shieh JJ, Wu CY (2017) Simvastatin-induced cell cycle arrest through inhibition of STAT3/SKP2 axis and activation of AMPK to promote p27 and p21 accumulation in hepatocellular carcinoma cells. Cell Death Dis 8:e2626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bartolome A, Guillen C, Benito M (2012) Autophagy plays a protective role in endoplasmic reticulum stress-mediated pancreatic β cell death. Autophagy. 8:1757–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li R, Zhang L, Shi Q, Guo Y, Zhang W, Zhou B (2018) A protective role of autophagy in TDCIPP-induced developmental neurotoxicity in zebrafish larvae. Aquat Toxicol 199:46–54

    Article  CAS  PubMed  Google Scholar 

  78. Gao K, Wang G, Wang Y, Han D, Bi J, Yuan Y et al (2015) Neuroprotective effect of simvastatin via inducing the autophagy on spinal cord injury in the rat model. Biomed Res Int 2015:260161

    PubMed  PubMed Central  Google Scholar 

  79. Zhang Q, Yang YJ, Wang H, Dong QT, Wang TJ, Qian HY, Xu H (2012) Autophagy activation: a novel mechanism of atorvastatin to protect mesenchymal stem cells from hypoxia and serum deprivation via AMP-activated protein kinase/mammalian target of rapamycin pathway. Stem Cells Dev 21:1321–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang Z, Li S, Cui M, Gao X, Sun D, Qin X et al (2013) Rosuvastatin enhances the therapeutic efficacy of adipose-derived mesenchymal stem cells for myocardial infarction via PI3K/Akt and MEK/ERK pathways. Basic Res Cardiol 108:333

    Article  PubMed  CAS  Google Scholar 

  81. Li N, Zhang Q, Qian H, Jin C, Yang Y, Gao R (2014) Atorvastatin induces autophagy of mesenchymal stem cells under hypoxia and serum deprivation conditions by activating the mitogen- activated protein kinase/extracellular signal-regulated kinase pathway. Chin Med J 127:1046–1051

    CAS  PubMed  Google Scholar 

  82. Li Y, Müller AL, Ngo MA, Sran K, Bellan D, Arora RC, Kirshenbaum LA, Freed DH (2015) Statins impair survival of primary human mesenchymal progenitor cells via mevalonate depletion, NF-κB signaling, and Bnip3. J Cardiovasc Transl Res 8:96–105

    Article  PubMed  Google Scholar 

  83. Yang YJ, Qian HY, Huang J, Li JJ, Gao RL, Dou KF et al (2009) Combined therapy with simvastatin and bone marrow-derived mesenchymal stem cells increases benefits in infarcted swine hearts. Arterioscler Thromb Vasc Biol 29:2076–2082

    Article  PubMed  CAS  Google Scholar 

  84. Fernandez CE, Yen RW, Perez SM, Bedell HW, Povsic TJ, Reichert WM et al (2016) Human vascular microphysiological system for in vitro drug screening. Sci Rep 6:21579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pirro M, Simental-Mendia LE, Bianconi V, Watts GF, Banach M, Sahebkar A (2019) Effect of statin therapy on arterial wall inflammation based on 18F-FDG PET/CT: a systematic review and meta-analysis of interventional studies. J Clin Med 8

  86. Choi SW, Reddy P (2014) Current and emerging strategies for the prevention of graft-versus-host disease. Nat Rev Clin Oncol 11:536–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Harazono Y, Nakajima K, Raz A (2014) Why anti-Bcl-2 clinical trials fail: a solution. Cancer Metastasis Rev 33:285–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jang YO, Kim SH, Cho MY, Kim KS, Park KS, Cha SK, Kim MY, Chang SJ, Baik SK (2018) Synergistic effects of simvastatin and bone marrow-derived mesenchymal stem cells on hepatic fibrosis. Biochem Biophys Res Commun 497:264–271

    Article  CAS  PubMed  Google Scholar 

  89. Xu J, Ren D, Fu M, Gao Y, Lou Y, Cai S, Qian J, Ge J (2014) MicroRNA-210 mediates the protective effect of rosuvastatin on human mesenchymal stem cells apoptosis induced by tumor necrosis factor-α. Zhonghua Xin Xue Guan Bing Za Zhi 42:932–937

    CAS  PubMed  Google Scholar 

  90. Bavelloini A, Ramazzotti G, Poli A, Piazzi M, Focaccia E, Blalock W et al (2017) MiRNA-210: a current overview. Anticancer Res 37:6511–6521

    Google Scholar 

  91. Farouk AA, El-Stoohy F, Ali SEA, El-Atty HA, Rashed L, Abo Krysha N et al (2012) Influence of stem cell therapy on statin-induced myopathy of skeletal muscle in female rats. Turk Noroloji Dergisi 18:135–144

    Google Scholar 

  92. Salem MY, El-Eraky N, Ebrahim el-desoky R (2016) Effect of the route of stem cell transplantation on its therapeutic potential on induced myopathy in rats: a histological and immunohistochemical study. Egypt J Histol 39:74–86

    Article  Google Scholar 

  93. Kwon S, Ki SM, Park SE, Kim MJ, Hyung B, Lee NK, Shim S, Choi BO, Na DL, Lee JE, Chang JW (2016) Anti-apoptotic effects of human Wharton’s jelly-derived mesenchymal stem cells on skeletal muscle cells mediated via secretion of XCL1. Mol Ther 24:1550–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ungaro F, Catanzano O, d’Angelo I, Diaz-Gomez L, Concheiro A, Miro A, Alvarez-Lorenzo C, Quaglia F (2017) Microparticle-embedded fibroin/alginate beads for prolonged local release of simvastatin hydroxyacid to mesenchymal stem cells. Carbohydr Polym 175:645–653

    Article  CAS  PubMed  Google Scholar 

  95. Bae MS, Yang DH, Lee JB, Heo DN, Kwon YD, Youn IC, Choi K, Hong JH, Kim GT, Choi YS, Hwang EH, Kwon IK (2011) Photo-cured hyaluronic acid-based hydrogels containing simvastatin as a bone tissue regeneration scaffold. Biomaterials. 32:8161–8171

    Article  CAS  PubMed  Google Scholar 

  96. Fukui T, Ii M, Shoji T, Matsumoto T, Mifune Y, Kawakami Y, Akimaru H, Kawamoto A, Kuroda T, Saito T, Tabata Y, Kuroda R, Kurosaka M, Asahara T (2012) Therapeutic effect of local administration of low-dose simvastatin-conjugated gelatin hydrogel for fracture healing. J Bone Miner Res 27:1118–1131

    Article  CAS  PubMed  Google Scholar 

  97. Zhang J, Wang H, Shi J, Wang Y, Lai K, Yang X et al (2016) Combination of simvastatin, calcium silicate/gypsum, and gelatin and bone regeneration in rabbit calvarial defects. Sci Rep 6:23422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yan S, Ren J, Jian Y, Wang W, Yun W, Yin J (2018) Injectable maltodextrin-based micelle/hydrogel composites for simvastatin-controlled release. Biomacromolecules. 19:4554–4564

    Article  CAS  PubMed  Google Scholar 

  99. Hajihasani Biouki M, Mobedi H, Karkhaneh A, Daliri Joupari M (2019) Development of a simvastatin loaded injectable porous scaffold in situ formed by phase inversion method for bone tissue regeneration. Int J Artif Organs 42:72–79

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Sahebkar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorabi, A.M., Kiaie, N., Pirro, M. et al. Effects of statins on the biological features of mesenchymal stem cells and therapeutic implications. Heart Fail Rev 26, 1259–1272 (2021). https://doi.org/10.1007/s10741-020-09929-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-020-09929-9

Keywords

Navigation