Skip to main content

Advertisement

Log in

Lipid-lowering drugs and cancer: an updated perspective

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Statins and non-statin medications used for the management of dyslipidemia have been shown to possess antitumor properties. Since the use of these drugs has steadily increased over the past decades, more knowledge is required about their relationship with cancer. Lipid-lowering agents are heterogeneous compounds; therefore, it remains to be revealed whether anticancer potential is a class effect or related to them all. Here, we reviewed the literature on the influence of lipid-lowering medications on various types of cancer during development or metastasis. We also elaborated on the underlying mechanisms associated with the anticancer effects of antihyperlipidemic agents by linking the reported in vivo and in vitro studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

3-MA:

3-Methyladenine

ACLY:

Adenosine triphosphate-citrate lyase

Akt:

Protein kinase B

ALA:

Alpha-linolenic acid

ANGPTLs:

Angiopoietin-like proteins

AMPK:

AMP-activated protein kinase

Baf-A1:

Bafilomycin A1

BCG:

Bacillus Calmette-Guérin

Bcl-2:

B-cell lymphoma-2

CDK:

Cyclin-dependent kinase

Cox-2:

Cyclooxygenase-2

DHA:

Docosahexaenoic acid

DMBA:

7,12 Dimethylbenzanthracene

DR5:

Death receptor 5

EGF:

Epidermal growth factor

ERK:

Extracellular signal-regulated kinase

EPA:

Eicosapentaenoic acid

FAK:

Focal adhesion kinase

FasL:

Fas Ligand

FGF2:

Fibroblast growth factor 2

FoxO:

Fork-head box O

FPP:

Farnesyl diphosphate

GGPP:

Geranylgeranyl diphosphate

GPR109A:

G-protein coupled receptor 109A

HER:

Human epidermal growth factor receptor

HDL:

High-density lipoprotein

HMG-CoA:

3-Hydroxyl-3 methylglutaryl coenzyme A

HOXA13:

Homeobox A13

HUVECs:

Human umbilical vein endothelial cells

IGF1:

Insulin-like growth factor 1

JAK:

Janus kinase

JNK:

C-Jun N-terminal kinase

LDL:

Low-density lipoprotein

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

MEG3:

Maternally expressed gene 3

mTOR:

Mammalian target of rapamycin

MMPs:

Matrix metallopeptidase

MTP:

Microsomal triglyceride transfer

NAD:

Nicotinamide adenine dinucleotide

NADP:

Nicotinamide adenine dinucleotide phosphate

NF-κB:

Nuclear factor κB

NSAIDs:

Nonsteroidal anti-inflammatory drugs

NNK:

Nicotine-derived nitrosamine ketone

NHANES:

National Health and Nutrition Examination Survey NPC1L1

NPC1L1:

Neimann-Pick C1-Like 1

ONECUT2:

One-cut homeobox-2

PCSK9:

Proprotein convertase subtilisin/kexin type 9

PI3K:

Phosphoinositide 3-kinases

PPARs:

Peroxisome proliferator-activated receptors

PTEN:

Phosphatase and tensin homolog

RAS:

Reticular activating system

Raf:

Rapidly accelerated fibrosarcoma

RCTs:

Randomized controlled trials

RIP:

Receptor-interacting serine/threonine

ROS:

Reactive oxygen species

SEAS:

Simvastatin and ezetimibe in Aortic Stenosis

SHARP:

Study of Heart and Renal Protection

SOCS3:

Suppressor of cytokine signaling 3

STAT:

Signal transducer and activator of transcription

SSTR5:

Somatostatin receptor subtype 5

TGF:

Transforming growth factor

TLR4:

Toll-like receptor 4

TNF:

Tumor necrosis factor

Traf1:

TNF receptor-associated factor 1

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

TSP-1:

Thombospndin-1

VEGF:

Vascular endothelial growth factor

VLDL:

Very low-density lipoprotein

WHO:

World Health Organization

ZDHHC5:

Zinc finger DHHC-type palmitoyltransferase 5

References

  1. Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, et al. Cancer statistics for the year 2020: an overview. Int J Cancer. 2021;149:778–89.

    Article  CAS  Google Scholar 

  2. Pilevarzadeh M, Amirshahi M, Afsargharehbagh R, Rafiemanesh H, Hashemi S-M, Balouchi A. Global prevalence of depression among breast cancer patients: a systematic review and meta-analysis. Breast Cancer Res Treat. 2019;176:519–33.

    Article  PubMed  Google Scholar 

  3. Mattiuzzi C, Lippi G. Current cancer epidemiology. J Epidemiol Global Health. 2019;9:217.

    Article  Google Scholar 

  4. Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol. 2021;14:85.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Luo J, Yang H, Song B-L. Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol. 2020;21:225–45.

    Article  CAS  PubMed  Google Scholar 

  6. Riscal R, Skuli N, Simon MC. Even cancer cells watch their cholesterol! Mol Cell. 2019;76:220–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vona R, Iessi E, Matarrese P. Role of cholesterol and lipid rafts in cancer signaling: a promising therapeutic opportunity? Front Cell Dev Biol. 2021;9: 622908.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Morofuji Y, Nakagawa S, Ujifuku K, Fujimoto T, Otsuka K, Niwa M, et al. Beyond lipid-lowering: effects of statins on cardiovascular and cerebrovascular diseases and cancer. Pharmaceuticals. 2022;15:151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maqsood MH, Messerli FH, Waters D, Skolnick AH, Maron DJ, Bangalore S. Timing of statin dose: a systematic review and meta-analysis of randomized clinical trials. Eur J Prev Cardiol. 2022;29:e319–22.

    Article  PubMed  Google Scholar 

  10. Mayengbam SS, Singh A, Pillai AD, Bhat MK. Influence of cholesterol on cancer progression and therapy. Transl Oncol. 2021;14: 101043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang J, Wang L, Jia R. Role of de novo cholesterol synthesis enzymes in cancer. J Cancer. 2020;11:1761–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hassanabad AF. Current perspectives on statins as potential anti-cancer therapeutics: clinical outcomes and underlying molecular mechanisms. Transl Lung Cancer Res. 2019;8:692.

    Article  CAS  Google Scholar 

  13. Pedersen TR. Lipid-lowering drugs and risk for cancer. Curr Atheroscler Rep. 2009;11:350–7.

    Article  CAS  PubMed  Google Scholar 

  14. Sahebkar A, Watts GF. New LDL-cholesterol lowering therapies: pharmacology, clinical trials, and relevance to acute coronary syndromes. Clin Ther. 2013;35:1082–98.

    Article  CAS  PubMed  Google Scholar 

  15. Sahebkar A, Watts GF. New therapies targeting apoB metabolism for high-risk patients with inherited dyslipidaemias: What can the clinician expect? Cardiovasc Drugs Ther. 2013;27:559–67.

    Article  CAS  PubMed  Google Scholar 

  16. Banach M, Burchardt P, Chlebus K, Dobrowolski P, Dudek D, Dyrbuś K, et al. PoLA/CFPiP/PCS/PSLD/PSD/PSH guidelines on diagnosis and therapy of lipid disorders in Poland 2021. Arch Med Sci. 2021;17:1447–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Banach M, Reiner Z, Cicero AFG, Sabouret P, Viigimaa M, Sahebkar A, et al. 2022: The year in cardiovascular disease—the year of upfront lipid lowering combination therapy. Arch Med Sci. 2022;18:1429–34.

    PubMed  PubMed Central  Google Scholar 

  18. Khonsary SA. Goodman and Gilman’s the pharmacological basis of therapeutics. Surg Neurol Int. 2023;14:91.

    Article  PubMed Central  Google Scholar 

  19. Bahrami A, Parsamanesh N, Atkin SL, Banach M, Sahebkar A. Effect of statins on toll-like receptors: a new insight to pleiotropic effects. Pharmacol Res. 2018;135:230–8.

    Article  CAS  PubMed  Google Scholar 

  20. Chruściel P, Sahebkar A, Rembek-Wieliczko M, Serban MC, Ursoniu S, Mikhailidis DP, et al. Impact of statin therapy on plasma adiponectin concentrations: a systematic review and meta-analysis of 43 randomized controlled trial arms. Atherosclerosis. 2016;253:194–208.

    Article  PubMed  Google Scholar 

  21. Ferretti G, Bacchetti T, Sahebkar A. Effect of statin therapy on paraoxonase-1 status: a systematic review and meta-analysis of 25 clinical trials. Prog Lipid Res. 2015;60:50–73.

    Article  CAS  PubMed  Google Scholar 

  22. Koushki K, Shahbaz SK, Mashayekhi K, Sadeghi M, Zayeri ZD, Taba MY, et al. Anti-inflammatory action of statins in cardiovascular disease: the role of inflammasome and toll-like receptor pathways. Clin Rev Allergy Immunol. 2021;60:175–99.

    Article  CAS  PubMed  Google Scholar 

  23. Serban C, Sahebkar A, Ursoniu S, Mikhailidis DP, Rizzo M, Lip GYH, et al. A systematic review and meta-analysis of the effect of statins on plasma asymmetric dimethylarginine concentrations. Sci Rep. 2015. https://doi.org/10.1038/srep09902.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sohrevardi SM, Nasab FS, Mirjalili MR, Bagherniya M, Tafti AD, Jarrahzadeh MH, et al. Effect of atorvastatin on delirium status of patients in the intensive care unit: a randomized controlled trial. Arch Med Sci. 2021;17:1423.

    Article  CAS  PubMed  Google Scholar 

  25. Sahebkar A, Serban C, Mikhailidis DP, et al. Association between statin use and plasma D-dimer levels. A systematic review and meta-analysis of randomised controlled trials. Thromb Haemost. 2015;114(3):546–57. https://doi.org/10.1160/TH14-11-0937

    Article  PubMed  Google Scholar 

  26. Vahedian-Azimi A, Mohammadi SM, Beni FH, Banach M, Guest PC, Jamialahmadi T, et al. Improved COVID-19 ICU admission and mortality outcomes following treatment with statins: a systematic review and meta-analysis. Arch Med Sci. 2021;17:579–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gorabi AM, Kiaie N, Pirro M, Bianconi V, Jamialahmadi T, Sahebkar A. Effects of statins on the biological features of mesenchymal stem cells and therapeutic implications. Heart Fail Rev. 2021;26:1259–72.

    Article  PubMed  Google Scholar 

  28. Kandelouei T, Abbasifard M, Imani D, Aslani S, Razi B, Fasihi M, et al. Effect of statins on serum level of hs-CRP and CRP in patients with cardiovascular diseases: a systematic review and meta-analysis of randomized controlled trials. Mediators Inflamm. 2022. https://doi.org/10.1155/2022/8732360.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bland AR, Payne FM, Ashton JC, Jamialahmadi T, Sahebkar A. The cardioprotective actions of statins in targeting mitochondrial dysfunction associated with myocardial ischaemia-reperfusion injury. Pharmacol Res. 2022;175: 105986.

    Article  CAS  PubMed  Google Scholar 

  30. Sahebkar A, Serban C, Ursoniu S, et al. The impact of statin therapy on plasma levels of von Willebrand factor antigen. Systematic review and meta-analysis of randomised placebo-controlled trials. Thromb Haemost. 2016;115(3):520–32. https://doi.org/10.1160/TH15-08-0620

    Article  PubMed  Google Scholar 

  31. Vahedian-Azimi A, Mannarino MR, Shojaie S, Rahimibashar F, Galeh HEG, Banach M, et al. Effect of statins on prevalence and mortality of influenza virus infection: a systematic review and meta-analysis. Arch Med Sci. 2022;18(6):1–44.

    Article  Google Scholar 

  32. Banach M, Serban C, Ursoniu S, Rysz J, Muntner P, Toth PP, et al. Statin therapy and plasma coenzyme Q10 concentrations—a systematic review and meta-analysis of placebo-controlled trials. Pharmacol Res. 2015;99:329–36.

    Article  CAS  PubMed  Google Scholar 

  33. Bytyçi I, Penson PE, Mikhailidis DP, Wong ND, Hernandez AV, Sahebkar A, et al. Prevalence of statin intolerance: a meta-Analysis. Eur Heart J. 2022;43:3213–23.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ward NC, Watts GF, Eckel RH. Statin toxicity. Circ Res. 2019;124:328–50.

    Article  CAS  PubMed  Google Scholar 

  35. Climent E, Benaiges D, Pedro-Botet J. Hydrophilic or lipophilic statins? Front Cardiovasc Med. 2021;8: 687585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Afshari AR, Mollazadeh H, Henney NC, Jamialahmad T, Sahebkar A. Effects of statins on brain tumors: a review. Semin cancer biol. Elsevier; 2021. p. 116–33.

    Google Scholar 

  37. Beckwitt CH, Brufsky A, Oltvai ZN, Wells A. Statin drugs to reduce breast cancer recurrence and mortality. Breast Cancer Res. 2018;20:144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cruz PM, Mo H, McConathy WJ, Sabnis N, Lacko AG. The role of cholesterol metabolism and cholesterol transport in carcinogenesis: a review of scientific findings, relevant to future cancer therapeutics. Front Pharmacol. 2013;4:119.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA. Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res. 2014;2014:1–19.

    Article  Google Scholar 

  40. Amin F, Fathi F, Reiner Ž, Banach M, Sahebkar A. The role of statins in lung cancer. Arch Med Sci. 2022;18:141–52.

    CAS  PubMed  Google Scholar 

  41. Grabarek BO, Boroń D, Morawiec E, Michalski P, Palazzo-Michalska V, Pach Ł, et al. Crosstalk between statins and cancer prevention and therapy: an update. Pharmaceuticals (Basel, Switzerland). 2021;14:1220.

    Article  CAS  PubMed  Google Scholar 

  42. Shi M, Zheng H, Nie B, Gong W, Cui X. Statin use and risk of liver cancer: an update meta-analysis. BMJ Open. 2014;4: e005399.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nielsen SF, Nordestgaard BG, Bojesen SE. Statin use and reduced cancer-related mortality. N Engl J Med. 2013;368:576–7.

    CAS  PubMed  Google Scholar 

  44. Tuyet Kristensen D, Kisbye Øvlisen A, Hjort Kyneb Jakobsen L, Tang Severinsen M, Hannig LH, Starklint J, et al. Use of statins and risk of myeloproliferative neoplasms: a Danish nationwide case-control study. Blood Adv. 2023;7:3450–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Singh H, Mahmud SM, Turner D, Xue L, Demers AA, Bernstein CN. Long-term use of statins and risk of colorectal cancer: a population-based study. ACG. 2009;104:3015–23.

    CAS  Google Scholar 

  46. Wang J, Li C, Tao H, Cheng Y, Han L, Li X, et al. Statin use and risk of lung cancer: a meta-analysis of observational studies and randomized controlled trials. PLoS One. 2013;8: e77950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Babcook MA, Joshi A, Montellano JA, Shankar E, Gupta S. Statin use in prostate cancer: an update. Nutr Metab Insights. 2016;9:S38362.

    Article  Google Scholar 

  48. Ahern TP, Lash TL, Damkier P, Christiansen PM, Cronin-Fenton DP. Statins and breast cancer prognosis: evidence and opportunities. Lancet Oncol. 2014;15:461–8.

    Article  Google Scholar 

  49. Mihaylova B, Emberson J, Blackwell L, Keech A, Simes J, Barnes EH, et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet (London, England). 2012;380:581–90.

    Article  CAS  PubMed  Google Scholar 

  50. Carter P, Vithayathil M, Kar S, Potluri R, Mason AM, Larsson SC, et al. Predicting the effect of statins on cancer risk using genetic variants from a Mendelian randomization study in the UK Biobank. Elife. 2020;9: e57191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Alsheikh-Ali AA, Maddukuri PV, Han H, Karas RH. Effect of the magnitude of lipid lowering on risk of elevated liver enzymes, rhabdomyolysis, and cancer: insights from large randomized statin trials. J Am Coll Cardiol. 2007;50:409–18.

    Article  CAS  PubMed  Google Scholar 

  52. Hoffmann P, Roumeguère T, Schulman C, van Velthoven R. Use of statins and outcome of BCG treatment for bladder cancer. N Engl J Med. 2006;355:2705–7.

    Article  CAS  PubMed  Google Scholar 

  53. Symvoulidis P, Tsioutis C, Zamboglou C, Agouridis AP. The effect of statins on the incidence and prognosis of bladder cancer: a systematic review and meta-analysis. Curr Oncol. 2023;30:6648–65.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ahern TP, Pedersen L, Tarp M, Cronin-Fenton DP, Garne JP, Silliman RA, et al. Statin prescriptions and breast cancer recurrence risk: a Danish nationwide prospective cohort study. J Natl Cancer Inst. 2011;103:1461–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu B, Yi Z, Guan X, Zeng YX, Ma F. The relationship between statins and breast cancer prognosis varies by statin type and exposure time: a meta-analysis. Breast Cancer Res Treat. 2017;164:1–11.

    Article  CAS  PubMed  Google Scholar 

  56. Murtola TJ, Visvanathan K, Artama M, Vainio H, Pukkala E. Statin use and breast cancer survival: a nationwide cohort study from Finland. PLoS One. 2014;9: e110231.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cardwell CR, Hicks BM, Hughes C, Murray LJ. Statin use after diagnosis of breast cancer and survival: a population-based cohort study. Epidemiology. 2015;26:68–78.

    Article  PubMed  Google Scholar 

  58. Mc Menamin ÚC, Murray LJ, Hughes CM, Cardwell CR. Statin use and breast cancer survival: a nationwide cohort study in Scotland. BMC Cancer. 2016;16:600.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jalving M, Koornstra J, De Jong S, De Vries E, Kleibeuker J. the potential of combinational regimen with non-steroidal anti-inflammatory drugs in the chemoprevention of colorectal cancer. Aliment Pharmacol Ther. 2005;21:321–39.

    Article  CAS  PubMed  Google Scholar 

  60. Agarwal B, Rao CV, Bhendwal S, Ramey WR, Shirin H, Reddy BS, et al. Lovastatin augments sulindac-induced apoptosis in colon cancer cells and potentiates chemopreventive effects of sulindac. Gastroenterology. 1999;117:838–47.

    Article  CAS  PubMed  Google Scholar 

  61. Xiao H, Zhang Q, Lin Y, Reddy BS, Yang CS. Combination of atorvastatin and celecoxib synergistically induces cell cycle arrest and apoptosis in colon cancer cells. Int J Cancer. 2008;122:2115–24.

    Article  CAS  PubMed  Google Scholar 

  62. Reddy BS, Wang CX, Kong A-N, Khor TO, Zheng X, Steele VE, et al. Prevention of azoxymethane-induced colon cancer by combination of low doses of atorvastatin, aspirin, and celecoxib in F 344 rats. Cancer Res. 2006;66:4542–6.

    Article  CAS  PubMed  Google Scholar 

  63. Holstein SA, Hohl RJ. Synergistic interaction of lovastatin and paclitaxel in human cancer cells. Mol Cancer Ther. 2001;1:141–9.

    CAS  PubMed  Google Scholar 

  64. Wang G, Cao R, Wang Y, Qian G, Dan HC, Jiang W, et al. Simvastatin induces cell cycle arrest and inhibits proliferation of bladder cancer cells via PPARγ signalling pathway. Sci Rep. 2016;6:35783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Goc A, Kochuparambil ST, Al-Husein B, Al-Azayzih A, Mohammad S, Somanath PR. Simultaneous modulation of the intrinsic and extrinsic pathways by simvastatin in mediating prostate cancer cell apoptosis. BMC Cancer. 2012;12:409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Spampanato C, De Maria S, Sarnataro M, Giordano E, Zanfardino M, Baiano S, et al. Simvastatin inhibits cancer cell growth by inducing apoptosis correlated to activation of Bax and down-regulation of BCL-2 gene expression. Int J Oncol. 2012;40:935–41.

    Article  CAS  PubMed  Google Scholar 

  67. Peng X, Li W, Yuan L, Mehta RG, Kopelovich L, McCormick DL. Inhibition of proliferation and induction of autophagy by atorvastatin in PC3 prostate cancer cells correlate with downregulation of Bcl2 and upregulation of miR-182 and p21. PLoS One. 2013;8: e70442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nooshabadi VT, Khanmohammadi M, Shafei S, Banafshe HR, Malekshahi ZV, Ebrahimi-Barough S, et al. Impact of atorvastatin loaded exosome as an anti-glioblastoma carrier to induce apoptosis of U87 cancer cells in 3D culture model. Biochem Biophys Rep. 2020;23: 100792.

    PubMed  PubMed Central  Google Scholar 

  69. Sheng B, Song Y, Zhang J, Li R, Wang Z, Zhu X. Atorvastatin suppresses the progression of cervical cancer via regulation of autophagy. Am J Transl Res. 2020;12:5252–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim W, Yoon JH, Kim JR, Jang IJ, Bang YJ, Kim YJ, et al. Synergistic anti-tumor efficacy of lovastatin and protein kinase C-β inhibitor in hepatocellular carcinoma. Cancer Chemother Pharmacol. 2009;64:497–507.

    Article  CAS  PubMed  Google Scholar 

  71. Liu PC, Lu G, Deng Y, Wang CD, Su XW, Zhou JY, et al. Inhibition of NF-κB pathway and modulation of MAPK signaling pathways in glioblastoma and implications for lovastatin and tumor necrosis factor-related apoptosis inducing ligand (TRAIL) combination therapy. PLoS One. 2017;12: e0171157.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wang Z, Zhang L, Wan Z, He Y, Huang H, Xiang H, et al. Atorvastatin and caffeine in combination regulates apoptosis, migration, invasion and tumorspheres of prostate cancer cells. Pathol Oncol Res. 2020;26:209–16.

    Article  CAS  PubMed  Google Scholar 

  73. He Y, Huang H, Farischon C, Li D, Du Z, Zhang K, et al. Combined effects of atorvastatin and aspirin on growth and apoptosis in human prostate cancer cells. Oncol Rep. 2017;37:953–60.

    Article  CAS  PubMed  Google Scholar 

  74. Abolghasemi R, Ebrahimi-Barough S, Bahrami N, Aid J. Atorvastatin inhibits viability and migration of MCF7 breast cancer cells. Asian Pac J Cancer Prev. 2022;23:867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hu MB, Zhang JW, Gao JB, Qi YW, Gao Y, Xu L, et al. Atorvastatin induces autophagy in MDA-MB-231 breast cancer cells. Ultrastruct Pathol. 2018;42:409–15.

    Article  PubMed  Google Scholar 

  76. Beckwitt CH, Shiraha K, Wells A. Lipophilic statins limit cancer cell growth and survival, via involvement of Akt signaling. PLoS One. 2018;13: e0197422.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chen X, Liu Y, Wu J, Huang H, Du Z, Zhang K, et al. Mechanistic study of inhibitory effects of atorvastatin and docetaxel in combination on prostate cancer. Cancer Genom Proteom. 2016;13:151–60.

    CAS  Google Scholar 

  78. Ghalali A, Wiklund F, Zheng H, Stenius U, Högberg J. Atorvastatin prevents ATP-driven invasiveness via P2X7 and EHBP1 signaling in PTEN-expressing prostate cancer cells. Carcinogenesis. 2014;35:1547–55.

    Article  CAS  PubMed  Google Scholar 

  79. Ma Q, Gao Y, Xu P, Li K, Xu X, Gao J, et al. Atorvastatin inhibits breast cancer cells by downregulating PTEN/AKT pathway via promoting ras homolog family member B (RhoB). BioMed Res Int. 2019. https://doi.org/10.1155/2019/3235021.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Teresi RE, Shaiu CW, Chen CS, Chatterjee VK, Waite KA, Eng C. Increased PTEN expression due to transcriptional activation of PPARγ by Lovastatin and Rosiglitazone. Int J Cancer. 2006;118:2390–8.

    Article  CAS  PubMed  Google Scholar 

  81. Ghosh-Choudhury N, Mandal CC, Ghosh-Choudhury N, Ghosh CG. Simvastatin induces derepression of PTEN expression via NFκB to inhibit breast cancer cell growth. Cell Signal. 2010;22:749–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Martinez TA, Zeybek ND, Müftüoğlu S. Evaluation of the cytotoxic and autophagic effects of atorvastatin on MCF-7 breast cancer cells. Balkan Med J. 2018;35:256–62.

    Article  CAS  Google Scholar 

  83. El-Ashmawy NE, Al-Ashmawy GM, Amr EA, Khedr EG. Inhibition of lovastatin- and docosahexaenoic acid-initiated autophagy in triple negative breast cancer reverted resistance and enhanced cytotoxicity. Life Sci. 2020;259: 118212.

    Article  CAS  PubMed  Google Scholar 

  84. Yang Z, Lee M-J, Zhao Y, Yang CS. Metabolism of tocotrienols in animals and synergistic inhibitory actions of tocotrienols with atorvastatin in cancer cells. Genes Nutr. 2012;7:11–8.

    Article  CAS  PubMed  Google Scholar 

  85. Yang Z, Xiao H, Jin H, Koo PT, Tsang DJ, Yang CS. Synergistic actions of atorvastatin with γ-tocotrienol and celecoxib against human colon cancer HT29 and HCT116 cells. Int J Cancer. 2010;126:852–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Islam M, Sharma S, Kumar B, Teknos TN. Atorvastatin inhibits RhoC function and limits head and neck cancer metastasis. Oral Oncol. 2013;49:778–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Toepfer N, Childress C, Parikh A, Rukstalis D, Yang W. Atorvastatin induces autophagy in prostate cancer PC3 cells through activation of LC3 transcription. Cancer Biol Ther. 2011;12:691–9.

    Article  CAS  PubMed  Google Scholar 

  88. Gurgle HE, Blumenthal DK. Drug therapy for dyslipidemias. In: Brunton LL, Hilal-Dandan R, Knollmann BC, editors. Goodman & Gilman’s: the pharmacological basis of therapeutics. 13th ed. New York, NY: McGraw-Hill Education; 2017.

    Google Scholar 

  89. Derosa G, Sahebkar A, Maffioli P. The role of various peroxisome proliferator-activated receptors and their ligands in clinical practice. J Cell Physiol. 2018;233:153–61.

    Article  CAS  PubMed  Google Scholar 

  90. Hl J, Zhao B-l. Cytotoxic effect of peroxisome proliferator fenofibrate on human HepG2 hepatoma cell line and relevant mechanisms. Toxicol Appl Pharmacol. 2002;185:172–9.

    Article  Google Scholar 

  91. Drukala J, Urbanska K, Wilk A, Grabacka M, Wybieralska E, Del Valle L, et al. ROS accumulation and IGF-IR inhibition contribute to fenofibrate/PPARα-mediated inhibition of glioma cell motility in vitro. Mol Cancer. 2010;9:1–15.

    Article  Google Scholar 

  92. Grabacka M, Placha W, Plonka PM, Pajak S, Urbanska K, Laidler P, et al. Inhibition of melanoma metastases by fenofibrate. Arch Dermatol Res. 2004;296:54–8.

    Article  CAS  PubMed  Google Scholar 

  93. Saidi SA, Holland CM, Charnock-Jones DS, Smith SK. In vitro and in vivo effects of the PPAR-alpha agonists fenofibrate and retinoic acid in endometrial cancer. Mol Cancer. 2006;5:1–14.

    Article  Google Scholar 

  94. Han D, Zhang J, Wei W, Tao T, Hu Q, Wang Y, et al. Fenofibrate induces G 0/G 1 phase arrest by modulating the PPARα/FoxO1/p27 kip pathway in human glioblastoma cells. Tumour Biol. 2015;36:3823–9.

    Article  CAS  PubMed  Google Scholar 

  95. Liu J, Ge YY, Zhu HC, Yang X, Cai J, Zhang C, et al. Fenofibrate increases radiosensitivity in head and neck squamous cell carcinoma via inducing G2/M arrest and apoptosis. Asian Pac J Cancer Prev. 2014;15:6649–55.

    Article  PubMed  Google Scholar 

  96. Majeed Y, Upadhyay R, Alhousseiny S, Taha T, Musthak A, Shaheen Y, et al. Potent and PPARα-independent anti-proliferative action of the hypolipidemic drug fenofibrate in VEGF-dependent angiosarcomas in vitro. Sci Rep. 2019;9:1–14.

    Article  Google Scholar 

  97. Grabacka M, Plonka PM, Urbanska K, Reiss K. Peroxisome proliferator–activated receptor α activation decreases metastatic potential of melanoma cells in vitro via down-regulation of Akt. Clin Cancer Res. 2006;12:3028–36.

    Article  CAS  PubMed  Google Scholar 

  98. Yamasaki D, Kawabe N, Nakamura H, Tachibana K, Ishimoto K, Tanaka T, et al. Fenofibrate suppresses growth of the human hepatocellular carcinoma cell via PPARα-independent mechanisms. Eur J Cell Biol. 2011;90:657–64.

    Article  CAS  PubMed  Google Scholar 

  99. You B-J, Hour M-J, Chen L-Y, Luo S-C, Hsu P-H, Lee H-Z. Fenofibrate induces human hepatoma Hep3B cells apoptosis and necroptosis through inhibition of thioesterase domain of fatty acid synthase. Sci Rep. 2019;9:1–12.

    Article  Google Scholar 

  100. Kong R, Wang N, Han W, Bao W, Lu J. Fenofibrate exerts antitumor effects in colon cancer via regulation of DNMT1 and CDKN2A. PPAR Res. 2021. https://doi.org/10.1155/2021/6663782.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Zhao H, Zhu C, Qin C, Tao T, Li J, Cheng G, et al. Fenofibrate down-regulates the expressions of androgen receptor (AR) and AR target genes and induces oxidative stress in the prostate cancer cell line LNCaP. Biochem Biophys Res Commun. 2013;432:320–5.

    Article  CAS  PubMed  Google Scholar 

  102. Wybieralska E, Szpak K, Górecki A, Bonarek P, Miękus K, Drukała J, et al. Fenofibrate attenuates contact-stimulated cell motility and gap junctional coupling in DU-145 human prostate cancer cell populations. Oncol Rep. 2011;26:447–53.

    CAS  PubMed  Google Scholar 

  103. Drukala J, Urbanska K, Wilk A, Grabacka M, Wybieralska E, Del Valle L, et al. ROS accumulation and IGF-IR inhibition contribute to fenofibrate/PPARα -mediated inhibition of Glioma cell motility in vitro. Mol Cancer. 2010;9:159.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Panigrahy D, Kaipainen A, Huang S, Butterfield CE, Barnés CM, Fannon M, et al. PPARα agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition. Proc Natl Acad Sci. 2008;105:985–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang MS, Han QS, Jia ZR, Chen CS, Qiao C, Liu QQ, et al. PPARα agonist fenofibrate relieves acquired resistance to gefitinib in non-small cell lung cancer by promoting apoptosis via PPARα/AMPK/AKT/FoxO1 pathway. Acta Pharmacol Sin. 2022;43:167–76.

    Article  PubMed  Google Scholar 

  106. Jan CI, Tsai MH, Chiu CF, Huang YP, Liu CJ, Chang NW. Fenofibrate suppresses oral tumorigenesis via reprogramming metabolic processes: potential drug repurposing for oral cancer. Int J Biol Sci. 2016;12:786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lian X, Gu J, Gao B, Li Y, Damodaran C, Wei W, et al. Fenofibrate inhibits mTOR-p70S6K signaling and simultaneously induces cell death in human prostate cancer cells. Biochem Biophys Res Commun. 2018;496:70–5.

    Article  CAS  PubMed  Google Scholar 

  108. Koltai T. Fenofibrate in cancer: mechanisms involved in anticancer activity. F1000Research. 2015;4:55.

    Article  Google Scholar 

  109. Hu D, Su C, Jiang M, Shen Y, Shi A, Zhao F, et al. Fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of LncRNA MEG3. Biochem Biophys Res Commun. 2016;471:290–5.

    Article  CAS  PubMed  Google Scholar 

  110. Watanabe A, Tanabe A, Maruoka R, Nakamura K, Hatta K, Ono YJ, et al. Fibrates protect against vascular endothelial dysfunction induced by paclitaxel and carboplatin chemotherapy for cancer patients: a pilot study. Int J Clin Oncol. 2015;20:829–38.

    Article  CAS  PubMed  Google Scholar 

  111. Goncalves MD, Hwang S-K, Pauli C, Murphy CJ, Cheng Z, Hopkins BD, et al. Fenofibrate prevents skeletal muscle loss in mice with lung cancer. Proc Natl Acad Sci. 2018;115:E743–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fitzgerald JE, Sanyer JL, Schardein JL, Lake RS, McGuire EJ, de la Iglesia FA. Carcinogen bioassay and mutagenicity studies with the hypolipidemic agent gemfibrozil. J Natl Cancer Inst. 1981;67:1105–16.

    CAS  PubMed  Google Scholar 

  113. Karimi MA, Goudarzi M, Khodayar MJ, Khorsandi L, Mehrzadi S, Fatemi I. Gemfibrozil palliates adriamycin-induced testicular injury in male rats via modulating oxidative, endocrine and inflammatory changes in rats. Tissue Cell. 2023;82: 102037.

    Article  CAS  PubMed  Google Scholar 

  114. Grabacka MM, Wilk A, Antonczyk A, Banks P, Walczyk-Tytko E, Dean M, et al. Fenofibrate induces ketone body production in melanoma and glioblastoma cells. Front Endocrinol. 2016;7:5.

    Article  Google Scholar 

  115. Li T, Zhang Q, Zhang J, Yang G, Shao Z, Luo J, et al. Fenofibrate induces apoptosis of triple-negative breast cancer cells via activation of NF-κB pathway. BMC Cancer. 2014;14:96.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Dana N, Haghjooy Javanmard S, Vaseghi G. The effect of fenofibrate, a PPARα activator on toll-like receptor-4 signal transduction in melanoma both in vitro and in vivo. Clin Transl Oncol. 2020;22:486–94.

    Article  CAS  PubMed  Google Scholar 

  117. Su T-R, Yu C-C, Chao S-C, Huang C-C, Liao Y-W, Hsieh P-L, et al. Fenofibrate diminishes the self-renewal and metastasis potentials of oral carcinoma stem cells through NF-κB signaling. J Formos Med Assoc. 2022;121:1900–7.

    Article  CAS  PubMed  Google Scholar 

  118. Tsai SC, Tsai MH, Chiu CF, Lu CC, Kuo SC, Chang NW, et al. AMPK-dependent signaling modulates the suppression of invasion and migration by fenofibrate in CAL 27 oral cancer cells through NF-κ B pathway. Environ Toxicol. 2016;31:866–76.

    Article  CAS  PubMed  Google Scholar 

  119. Zhang N, Chu ES, Zhang J, Li X, Liang Q, Chen J, et al. Peroxisome proliferator activated receptor alpha inhibits hepatocarcinogenesis through mediating NF-κB signaling pathway. Oncotarget. 2014;5:8330.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Cornu-Chagnon M-C, Dupont H, Edgar A. Fenofibrate: metabolism and species differences for peroxisome proliferation in cultured hepatocytes. Fundam Appl Toxicol. 1995;26:63–74.

    Article  CAS  PubMed  Google Scholar 

  121. Peters JM, Cheung C, Gonzalez FJ. Peroxisome proliferator-activated receptor-α and liver cancer: where do we stand? J Mol Med. 2005;83:774–85.

    Article  CAS  PubMed  Google Scholar 

  122. Lian X, Wang G, Zhou H, Zheng Z, Fu Y, Cai L. Anticancer properties of fenofibrate: a repurposing use. J Cancer. 2018;9:1527.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Salvo F, Bazin F, Kostrzewa A, Bandre C, Robinson P, Moore N, et al. Fibrates and risk of cancer in tissues with high PPAR-α concentration: a nested case-control study. Drug Saf. 2014;37:361–8.

    Article  CAS  PubMed  Google Scholar 

  124. Bonovas S, Nikolopoulos GK, Bagos PG. Use of fibrates and cancer risk: a systematic review and meta-analysis of 17 long-term randomized placebo-controlled trials. PLoS ONE. 2012;7: e45259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang L-J, Song B-L. Niemann-Pick C1-Like 1 and cholesterol uptake. Biochim Biophys Acta Mol Cell Biol Lipids. 2012;1821:964–72.

    Article  CAS  Google Scholar 

  126. Halleck M, Davis H, Kirschmeier P, Levitan D, Snyder R, Treinen K, et al. An assessment of the carcinogenic potential of ezetimibe using nonclinical data in a weight-of-evidence approach. Toxicology. 2009;258:116–30.

    Article  CAS  PubMed  Google Scholar 

  127. Zheng Y, Yang W, Jia Y, Ji J, Wu L, Feng J, et al. Promotion of colorectal cancer cell death by ezetimibe via mTOR signaling-dependent mitochondrial dysfunction. Front Pharmacol. 2023. https://doi.org/10.3389/fphar.2023.1081980.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Solomon KR, Pelton K, Boucher K, Joo J, Tully C, Zurakowski D, et al. Ezetimibe is an inhibitor of tumor angiogenesis. Am J Pathol. 2009;174:1017–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Allott EH, Masko EM, Freedland AR, Macias E, Pelton K, Solomon KR, et al. Serum cholesterol levels and tumor growth in a PTEN-null transgenic mouse model of prostate cancer. Prostate Cancer Prostatic Dis. 2018;21:196–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Miura K, Ohnishi H, Morimoto N, Minami S, Ishioka M, Watanabe S, et al. Ezetimibe suppresses development of liver tumors by inhibiting angiogenesis in mice fed a high-fat diet. Cancer Sci. 2019;110:771–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Rad F, Davaran S, Babazadeh M, Akbarzadeh A, Pazoki-Toroudi H. Biodegradable electrospun polyester-urethane nanofiber scaffold: codelivery investigation of doxorubicin-ezetimibe and its synergistic effect on prostate cancer cell line. J Nanomater. 2022;2022:8818139. https://doi.org/10.1155/2022/8818139

  132. Yousefnezhad M, Davaran S, Babazadeh M, Akbarzadeh A, Pazoki-Toroudi H. PCL-based nanoparticles for doxorubicin-ezetimibe co-delivery: a combination therapy for prostate cancer using a drug repurposing strategy. BioImpacts. 2023. https://doi.org/10.34172/bi.2023.24252.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Rossebø AB, Pedersen TR, Boman K, Brudi P, Chambers JB, Egstrup K, et al. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. N Engl J Med. 2008;359:1343–56.

    Article  PubMed  Google Scholar 

  134. Baigent C, Landray MJ, Reith C, Emberson J, Wheeler DC, Tomson C, et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. The Lancet. 2011;377:2181–92.

    Article  CAS  Google Scholar 

  135. Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372:2387–97.

    Article  CAS  PubMed  Google Scholar 

  136. Alsheikh-Ali AA, Karas RH. Ezetimibe, and the combination of ezetimibe/simvastatin, and risk of cancer: a post-marketing analysis. J Clin Lipidol. 2009;3:138–42.

    Article  PubMed  Google Scholar 

  137. Green A, Ramey DR, Emneus M, Iachina M, Stavem K, Bolin K, et al. Incidence of cancer and mortality in patients from the Simvastatin and Ezetimibe in Aortic Stenosis (SEAS) trial. Am J Cardiol. 2014;114:1518–22.

    Article  CAS  PubMed  Google Scholar 

  138. Kobberø Lauridsen B, Stender S, Frikke-Schmidt R, Nordestgaard BG, Tybjærg-Hansen A. Using genetics to explore whether the cholesterol-lowering drug ezetimibe may cause an increased risk of cancer. Int J Epidemiol. 2017;46:1777–85.

    Article  PubMed  Google Scholar 

  139. Nigro ND, Bhadrachari N, Chomchai C. A rat model for studying colonic cancer: effect of cholestyramine on induced tumors. Dis Colon Rectum. 1973;16:438–43.

    Article  CAS  PubMed  Google Scholar 

  140. Nigro ND, Campbell RL, Gantt JS, Lin YN, Singh DV. A comparison of the effects of the hypocholesteremic agents, cholestyramine and candicidin, on the induction of intestinal tumors in rats by azoxymethane. Cancer Res. 1977;37:3198–203.

    CAS  PubMed  Google Scholar 

  141. Melhem MF, Gabriel HF, Eskander ED, Rao KN. Cholestyramine promotes 7,12-dimethylbenzanthracene induced mammary cancer in Wistar rats. Br J Cancer. 1987;56:45–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gabriel H, Melhem M, Rao K. Enhancement of DMBA-induced mammary cancer in Wistar rats by unsaturated fat and cholestyramine. In Vivo (Athens, Greece). 1987;1:303–7.

    CAS  PubMed  Google Scholar 

  143. Wedlake L, Thomas K, Lalji A, Anagnostopoulos C, Andreyev HJN. Effectiveness and tolerability of colesevelam hydrochloride for bile-acid malabsorption in patients with cancer: a retrospective chart review and patient questionnaire. Clin Ther. 2009;31:2549–58.

    Article  CAS  PubMed  Google Scholar 

  144. Barcenas CH, Hurvitz SA, Di Palma JA, Bose R, Chien AJ, Iannotti N, et al. Improved tolerability of neratinib in patients with HER2-positive early-stage breast cancer: the CONTROL trial. Ann Oncol. 2020;31:1223–30.

    Article  CAS  PubMed  Google Scholar 

  145. Daugherty JP. Modification of the carcinogenic process in colorectal cancer by endogenous and exogenous factors: effect of colestipol hydrochloride on tumors induced by dimethylhydrazine. Environ Health Perspect. 1983;50:91–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sachatello CR. Colon cancer and cholestyramine. N Engl J Med. 1979;301:1007.

    Article  CAS  PubMed  Google Scholar 

  147. Naranjo MC, Millan-Linares MC, Montserrat-de la Paz S. Chapter 14—Niacin and hyperlipidemia. In: Patel VB, editor. Molecular nutrition. Academic Press; 2020. p. 263–81.

    Chapter  Google Scholar 

  148. Lloyd-Jones DM, Morris PB, Ballantyne CM, Birtcher KK, Daly DD Jr, DePalma SM, et al. 2016 ACC expert consensus decision pathway on the role of non-statin therapies for LDL-cholesterol lowering in the management of atherosclerotic cardiovascular disease risk: a report of the american college of cardiology task force on clinical expert consensus documents. J Am Coll Cardiol. 2016;68:92–125.

    Article  PubMed  Google Scholar 

  149. Yaku K, Okabe K, Hikosaka K, Nakagawa T. NAD metabolism in cancer therapeutics. Front Oncol. 2018;8:622.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Elangovan S, Pathania R, Ramachandran S, Ananth S, Padia RN, Lan L, et al. The Niacin/Butyrate receptor GPR109A suppresses mammary tumorigenesis by inhibiting cell survivalGPR109A is a tumor suppressor in mammary gland. Cancer Res. 2014;74:1166–78.

    Article  CAS  PubMed  Google Scholar 

  151. Shah GM, Shah RG, Veillette H, Kirkland JB, Pasieka JL, Warner RR. Biochemical assessment of niacin deficiency among carcinoid cancer patients. ACG. 2005;100:2307–14.

    CAS  Google Scholar 

  152. Kirkland JB. Niacin and carcinogenesis. Nutr Cancer. 2003;46:110–8.

    Article  CAS  PubMed  Google Scholar 

  153. Chen AC, Martin AJ, Choy B, Fernández-Peñas P, Dalziell RA, McKenzie CA, et al. A phase 3 randomized trial of nicotinamide for skin-cancer chemoprevention. N Engl J Med. 2015;373:1618–26.

    Article  CAS  PubMed  Google Scholar 

  154. Park SM, Li T, Wu S, Li WQ, Weinstock M, Qureshi AA, et al. Niacin intake and risk of skin cancer in US women and men. Int J Cancer. 2017;140:2023–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hirakawa N, Okauchi R, Miura Y, Yagasaki K. Anti-invasive activity of niacin and trigonelline against cancer cells. Biosci Biotechnol Biochem. 2005;69:653–8.

    Article  CAS  PubMed  Google Scholar 

  156. Lohani M, Dhasmana A, Haque S, Dar SA, Jawed A, Wahid M, et al. Niacin deficiency modulates genes involved in cancer: Are smokers at higher risk? J Cell Biochem. 2019;120:232–42.

    Article  CAS  PubMed  Google Scholar 

  157. Premkumar VG, Yuvaraj S, Sathish S, Shanthi P, Sachdanandam P. Anti-angiogenic potential of CoenzymeQ10, riboflavin and niacin in breast cancer patients undergoing tamoxifen therapy. Vascul Pharmacol. 2008;48:191–201.

    Article  CAS  PubMed  Google Scholar 

  158. Premkumar VG, Yuvaraj S, Shanthi P, Sachdanandam P. Co-enzyme Q10, riboflavin and niacin supplementation on alteration of DNA repair enzyme and DNA methylation in breast cancer patients undergoing tamoxifen therapy. Br J Nutr. 2008;100:1179–82.

    Article  CAS  PubMed  Google Scholar 

  159. Yuvaraj S, Premkumar VG, Vijayasarathy K, Gangadaran SGD, Sachdanandam P. Ameliorating effect of coenzyme Q10, riboflavin and niacin in tamoxifen-treated postmenopausal breast cancer patients with special reference to lipids and lipoproteins. Clin Biochem. 2007;40:623–8.

    Article  CAS  PubMed  Google Scholar 

  160. Sen U, Shenoy PS, Bose B. Opposing effects of low versus high concentrations of water soluble vitamins/dietary ingredients vitamin C and niacin on colon cancer stem cells (CSCs). Cell Biol Int. 2017;41:1127–45.

    Article  CAS  PubMed  Google Scholar 

  161. Ying H, Gao L, Liao N, Xu X, Yu W, Hong W. Association between niacin and mortality among patients with cancer in the NHANES retrospective cohort. BMC Cancer. 2022;22:1–9.

    Article  Google Scholar 

  162. Wong CC, Wu J-L, Ji F, Kang W, Bian X, Chen H, et al. The cholesterol uptake regulator PCSK9 promotes and is a therapeutic target in APC/KRAS-mutant colorectal cancer. Nat Commun. 2022;13:3971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Fang S, Yarmolinsky J, Gill D, Bull CJ, Perks CM, Consortium P, et al. Association between genetically proxied PCSK9 inhibition and prostate cancer risk: a Mendelian randomisation study. PLoS Med. 2023;20: e1003988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Liu X, Bao X, Hu M, Chang H, Jiao M, Cheng J, et al. Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer. Nature. 2020;588:693–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Mahboobnia K, Pirro M, Marini E, Grignani F, Bezsonov EE, Jamialahmadi T, et al. PCSK9 and cancer: rethinking the link. Biomed Pharmacother. 2021;140: 111758.

    Article  CAS  PubMed  Google Scholar 

  166. Sun X, Essalmani R, Day R, Khatib AM, Seidah NG, Prat A. Proprotein convertase subtilisin/kexin type 9 deficiency reduces melanoma metastasis in liver. Neoplasia. 2012;14:1122-IN5.

    Article  Google Scholar 

  167. Suh JM, Son Y, Yoo J-Y, Goh Y, Seidah NG, Lee S, et al. Proprotein convertase subtilisin/kexin Type 9 is required for Ahnak-mediated metastasis of melanoma into lung epithelial cells. Neoplasia. 2021;23:993–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Yang K, Zhu J, Luo H, Yu S, Wang L. Pro-protein convertase subtilisin/kexin type 9 promotes intestinal tumor development by activating Janus kinase 2/signal transducer and activator of transcription 3/SOCS3 signaling in ApcMin/+ mice. Int J Immunopathol Pharmacol. 2021;35:20587384211038344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Quagliariello V, Bonelli A, Paccone A, Buccolo S, Iovine M, Conforti G, et al. Evolocumab, a PCSK9 inhibitor, co-incubated with doxorubicin and trastuzumab reduces death of cardiomyocytes through reduction of MyD88-NLRP3-NF-kB-mTORC1. Eur Heart J. 2021;42(Suppl 1). https://doi.org/10.1093/eurheartj/ehab724.2839

  170. Kastelein JJ, Ginsberg HN, Langslet G, Hovingh GK, Ceska R, Dufour R, et al. ODYSSEY FH I and FH II: 78 week results with alirocumab treatment in 735 patients with heterozygous familial hypercholesterolaemia. Eur Heart J. 2015;36:2996–3003.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Teramoto T, Kobayashi M, Uno K, Takagi Y, Matsuoka O, Sugimoto M, et al. Efficacy and safety of alirocumab in Japanese subjects (phase 1 and 2 studies). Am J Cardiol. 2016;118:56–63.

    Article  CAS  PubMed  Google Scholar 

  172. Mohammadi KA, Brackin T, Schwartz GG, Steg PG, Szarek M, Manvelian G, et al. Effect of proprotein convertase subtilisin/kexin type 9 inhibition on cancer events: a pooled, post hoc, competing risk analysis of alirocumab clinical trials. Cancer Med. 2023;12:16859–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Gaba P, O’Donoghue ML, Park JG, Wiviott SD, Atar D, Kuder JF, et al. Association between achieved low-density lipoprotein cholesterol levels and long-term cardiovascular and safety outcomes: an analysis of FOURIER-OLE. Circulation. 2023;147:1192–203.

    Article  CAS  PubMed  Google Scholar 

  174. Ray KK, Troquay RPT, Visseren FLJ, Leiter LA, Scott Wright R, Vikarunnessa S, et al. Long-term efficacy and safety of inclisiran in patients with high cardiovascular risk and elevated LDL cholesterol (ORION-3): results from the 4-year open-label extension of the ORION-1 trial. Lancet Diabetes Endocrinol. 2023;11:109–19.

    Article  CAS  PubMed  Google Scholar 

  175. Kwon R, Son S. 103P Microsomal triglyceride transfer protein as a prognostic and therapeutic marker for brain cancer. ESMO Open. 2023;8: 100961.

    Article  Google Scholar 

  176. Saeed ME, Boulos JC, Muecklich SB, Leich E, Chatterjee M, Klauck SM, et al. Disruption of lipid raft microdomains, regulation of CD38, TP53, and MYC signaling, and induction of apoptosis by lomitapide in multiple myeloma cells. Cancer Genom Proteom. 2022;19:540–55.

    Article  CAS  Google Scholar 

  177. Zuo Q, Liao L, Yao Z-T, Liu Y-P, Wang D-K, Li S-J, et al. Targeting PP2A with lomitapide suppresses colorectal tumorigenesis through the activation of AMPK/Beclin1-mediated autophagy. Cancer Lett. 2021;521:281–93.

    Article  CAS  PubMed  Google Scholar 

  178. Lee B, Park SJ, Lee S, Lee J, Lee E, Yoo E-S, et al. Lomitapide, a cholesterol-lowering drug, is an anticancer agent that induces autophagic cell death via inhibiting mTOR. Cell Death Dis. 2022;13:603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wang Y, Zhang S, He H, Luo H, Xia Y, Jiang Y, et al. Repositioning Lomitapide to block ZDHHC5-dependant palmitoylation on SSTR5 leads to anti-proliferation effect in preclinical pancreatic cancer models. Cell Death Discovery. 2023;9:60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Sen P, Kandasamy T, Ghosh SS. Multi-targeting TACE/ADAM17 and gamma-secretase of notch signalling pathway in TNBC via drug repurposing approach using Lomitapide. Cell Signal. 2023;102: 110529.

    Article  CAS  PubMed  Google Scholar 

  181. Larrey D, D’Erasmo L, O’Brien S, Arca M. Long-term hepatic safety of lomitapide in homozygous familial hypercholesterolaemia. Liver Int. 2023;43:413–23.

    Article  CAS  PubMed  Google Scholar 

  182. Freitas RD, Campos MM. Protective effects of omega-3 fatty acids in cancer-related complications. Nutrients. 2019;11:945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Nabavi SF, Bilotto S, Russo GL, Orhan IE, Habtemariam S, Daglia M, et al. Omega-3 polyunsaturated fatty acids and cancer: lessons learned from clinical trials. Cancer Metastasis Rev. 2015;34:359–80.

    Article  CAS  PubMed  Google Scholar 

  184. Dyari HRE, Rawling T, Bourget K, Murray M. Synthetic ω-3 epoxyfatty acids as antiproliferative and pro-apoptotic agents in human breast cancer cells. J Med Chem. 2014;57:7459–64.

    Article  CAS  PubMed  Google Scholar 

  185. Corsetto PA, Montorfano G, Zava S, Jovenitti IE, Cremona A, Berra B, et al. Effects of n-3 PUFAs on breast cancer cells through their incorporation in plasma membrane. Lipids Health Dis. 2011;10:1–16.

    Article  Google Scholar 

  186. Xue M, Wang Q, Zhao J, Dong L, Ge Y, Hou L, et al. Docosahexaenoic acid inhibited the Wnt/β-catenin pathway and suppressed breast cancer cells in vitro and in vivo. J Nutr Biochem. 2014;25:104–10.

    Article  CAS  PubMed  Google Scholar 

  187. Fini L, Piazzi G, Ceccarelli C, Daoud Y, Belluzzi A, Munarini A, et al. Highly purified eicosapentaenoic acid as free fatty acids strongly suppresses polyps in ApcMin/+ mice. Clin Cancer Res. 2010;16:5703–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Cai F, Sorg O, Granci V, Lecumberri E, Miralbell R, Dupertuis YM, et al. Interaction of ω-3 polyunsaturated fatty acids with radiation therapy in two different colorectal cancer cell lines. Clin Nutr. 2014;33:164–70.

    Article  CAS  PubMed  Google Scholar 

  189. Ceccarelli V, Nocentini G, Billi M, Racanicchi S, Riccardi C, Roberti R, et al. Eicosapentaenoic acid activates RAS/ERK/C/EBPβ pathway through H-Ras intron 1 CpG island demethylation in U937 leukemia cells. PLoS One. 2014;9: e85025.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Zhuo Z, Zhang L, Mu Q, Lou Y, Gong Z, Shi Y, et al. The effect of combination treatment with docosahexaenoic acid and 5-fluorouracil on the mRNA expression of apoptosis-related genes, including the novel gene BCL2L12, in gastric cancer cells. In Vitro Cell Dev Biol Anim. 2009;45:69–74.

    Article  CAS  PubMed  Google Scholar 

  191. Yao Q-H, Zhang X-C, Fu T, Gu J-Z, Wang L, Wang Y, et al. ω-3 polyunsaturated fatty acids inhibit the proliferation of the lung adenocarcinoma cell line A549 in vitro. Mol Med Report. 2014;9:401–6.

    Article  CAS  Google Scholar 

  192. Brasky TM, Till C, White E, Neuhouser ML, Song X, Goodman P, et al. Serum phospholipid fatty acids and prostate cancer risk: results from the prostate cancer prevention trial. Am J Epidemiol. 2011;173:1429–39.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Cerchietti LC, Navigante AH, Castro MA. Effects of eicosapentaenoic and docosahexaenoic n-3 fatty acids from fish oil and preferential Cox-2 inhibition on systemic syndromes in patients with advanced lung cancer. Nutr Cancer. 2007;59:14–20.

    Article  CAS  PubMed  Google Scholar 

  194. Murphy R, Yeung E, Mazurak V, Mourtzakis M. Influence of eicosapentaenoic acid supplementation on lean body mass in cancer cachexia. Br J Cancer. 2011;105:1469–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Bougnoux P, Hajjaji N, Ferrasson M, Giraudeau B, Couet C, Le Floch O. Improving outcome of chemotherapy of metastatic breast cancer by docosahexaenoic acid: a phase II trial. Br J Cancer. 2009;101:1978–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Ruscica M, Banach M, Sahebkar A, Corsini A, Sirtori C. ETC-1002 (Bempedoic acid) for the management of hyperlipidemia: from preclinical studies to phase 3 trials. Expert Opin Pharmacother. 2019;20:791–803.

    Article  CAS  PubMed  Google Scholar 

  197. Zaidi N, Swinnen JV, Smans K. ATP-citrate lyase: a key player in cancer metabolismATP-citrate lyase in cancer metabolism. Cancer Res. 2012;72:3709–14.

    Article  CAS  PubMed  Google Scholar 

  198. Velez BC, Petrella CP, DiSalvo KH, Cheng K, Kravtsov R, Krasniqi D, et al. Combined inhibition of ACLY and CDK4/6 reduces cancer cell growth and invasion. Oncol Rep. 2023;49:1–11.

    Google Scholar 

  199. Wen J, Min X, Shen M, Hua Q, Han Y, Zhao L, et al. ACLY facilitates colon cancer cell metastasis by CTNNB1. J Exp Clin Cancer Res. 2019;38:1–12.

    Article  Google Scholar 

  200. Litchfield LM, Boehnke K, Brahmachary M, Mur C, Bi C, Stephens JR, et al. Combined inhibition of PIM and CDK4/6 suppresses both mTOR signaling and Rb phosphorylation and potentiates PI3K inhibition in cancer cells. Oncotarget. 2020;11:1478–92.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Liu D, Zhang T, Chen X, Zhang B, Wang Y, Xie M, et al. ONECUT2 facilitates hepatocellular carcinoma metastasis by transcriptionally upregulating FGF2 and ACLY. Cell Death Dis. 2021;12:1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Qiao C, Huang W, Chen J, Feng W, Zhang T, Wang Y, et al. IGF1-mediated HOXA13 overexpression promotes colorectal cancer metastasis through upregulating ACLY and IGF1R. Cell Death Dis. 2021;12:564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Ballantyne CM, Banach M, Mancini GJ, Lepor NE, Hanselman JC, Zhao X, et al. Efficacy and safety of bempedoic acid added to ezetimibe in statin-intolerant patients with hypercholesterolemia: a randomized, placebo-controlled study. Atherosclerosis. 2018;277:195–203.

    Article  CAS  PubMed  Google Scholar 

  204. Nissen SE, Menon V, Nicholls SJ, Brennan D, Laffin L, Ridker P, et al. Bempedoic acid for primary prevention of cardiovascular events in statin-intolerant patients. JAMA. 2023;330:131–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Carbone C, Piro G, Merz V, Simionato F, Santoro R, Zecchetto C, et al. Angiopoietin-like proteins in angiogenesis, inflammation and cancer. Int J Mol Sci. 2018;19:431.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Tang C, Chen E, Peng K, Wang H, Cheng X, Wang Y, et al. Mining the role of angiopoietin-like protein family in gastric cancer and seeking potential therapeutic targets by integrative bioinformatics analysis. Cancer Med. 2020;9:4850–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Koyama T, Ogawara K, Kasamatsu A, Okamoto A, Kasama H, Minakawa Y, et al. ANGPTL3 is a novel biomarker as it activates ERK/MAPK pathway in oral cancer. Cancer Med. 2015;4:759–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Wang Y, Yi Y, Pan S, Zhang Y, Fu J, Wu X, et al. Angiopoietin-like protein 3 promotes colorectal cancer progression and liver metastasis partly via the mitogen-activated protein kinase 14 pathway. Mol Carcinog. 2023;62:546–60.

    Article  CAS  PubMed  Google Scholar 

  209. Yu H, Zhang H, Li D, Xue H, Pan C, Zhao S, et al. Effects of ANGPTL3 antisense oligodeoxynucleotides transfection on the cell growths and invasion of human hepatocellular carcinoma cells. Hepatogastroenterology. 2011;58:1742–6.

    Article  CAS  PubMed  Google Scholar 

  210. El-Shal AS, Zidan HE, Rashad NM, Wadea FM. Angiopoietin-like protein 3 and 4 expression 4 and their serum levels in hepatocellular carcinoma. Cytokine. 2017;96:75–86.

    Article  CAS  PubMed  Google Scholar 

  211. Zhong L, Tang L, He X. Angiopoietin-like 3 (ANGPTL3) drives cell proliferation, migration and angiogenesis in cervical cancer via binding to integrin alpha v beta 3. Bioengineered. 2022;13:2971–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Lupattelli G, Pirro M, Siepi D, Mannarino MR, Roscini AR, Vaudo G, et al. Non-cholesterol sterols in different forms of primary hyperlipemias. Nutr Metab Cardiovasc Dis. 2012;22:231–6.

    Article  CAS  PubMed  Google Scholar 

  213. Vladimirov S, Gojkovic T, Zeljkovic A, Jelic-Ivanovic Z, Zeljkovic D, Antonic T, et al. Can non-cholesterol sterols indicate the presence of specific dysregulation of cholesterol metabolism in patients with colorectal cancer? Biochem Pharmacol. 2022;196: 114595.

    Article  CAS  PubMed  Google Scholar 

  214. Mannarino MR, Ministrini S, Pirro M. Nutraceuticals for the treatment of hypercholesterolemia. Eur J Int Med. 2014;25:592–9.

    Article  CAS  Google Scholar 

  215. Peter RM, Chou PJ, Shannar A, Patel K, Pan Y, Dave PD, et al. An update on potential molecular biomarkers of dietary phytochemicals targeting lung cancer interception and prevention. Pharma Res. 2023. https://doi.org/10.1007/s11095-023-03595-w

  216. Sun D, Li X, Nie S, Liu J, Wang S. Disorders of cancer metabolism: the therapeutic potential of cannabinoids. Biomed Pharmacother. 2023;157: 113993.

    Article  PubMed  Google Scholar 

  217. Kamat AM, Nelkin GM. Atorvastatin: a potential chemopreventive agent in bladder cancer. Urology. 2005;66:1209–12.

    Article  PubMed  Google Scholar 

  218. Shepherd J, Blauw GJ, Murphy MB, Bollen EL, Buckley BM, Cobbe SM, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. The lancet. 2002;360:1623–30.

    Article  CAS  Google Scholar 

  219. Seckl MJ, Ottensmeier CH, Cullen M, Schmid P, Ngai Y, Muthukumar D, et al. Multicenter, phase III, randomized, double-blind, placebo-controlled trial of pravastatin added to first-line standard chemotherapy in small-cell lung cancer (LUNGSTAR). J Clin Oncol. 2017;35:1506.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Lai S-W, Liao K-F, Lai H-C, Muo C-H, Sung F-C, Chen P-C. Statin use and risk of hepatocellular carcinoma. Eur J Epidemiol. 2013;28:485–92.

    Article  CAS  PubMed  Google Scholar 

  221. Chiu H-F, Ho S-C, Chen C-C, Yang C-Y. Statin use and the risk of liver cancer: a population-based case–control study. ACG. 2011;106:894–8.

    Google Scholar 

  222. Tsan Y-T, Lee C-H, Ho W-C, Lin M-H, Wang J-D, Chen P-C. Statins and the risk of hepatocellular carcinoma in patients with hepatitis C virus infection. J Clin Oncol. 2013;31:1514–21.

    Article  PubMed  Google Scholar 

  223. Tsan Y-T, Lee C-H, Wang J-D, Chen P-C. Statins and the risk of hepatocellular carcinoma in patients with hepatitis B virus infection. J Clin Oncol. 2012;30:623–30.

    Article  PubMed  Google Scholar 

  224. Marelli C, Gunnarsson C, Ross S, Haas S, Stroup DF, Cload P, et al. Statins and risk of cancer: a retrospective cohort analysis of 45,857 matched pairs from an electronic medical records database of 11 million adult Americans. J Am Coll Cardiol. 2011;58:530–7.

    Article  CAS  PubMed  Google Scholar 

  225. Friis S, Poulsen AH, Johnsen SP, McLaughlin JK, Fryzek JP, Dalton SO, et al. Cancer risk among statin users: a population-based cohort study. Int J Cancer. 2005;114:643–7.

    Article  CAS  PubMed  Google Scholar 

  226. El-Serag HB, Johnson ML, Hachem C, Morgana RO. Statins are associated with a reduced risk of hepatocellular carcinoma in a large cohort of patients with diabetes. Gastroenterology. 2009;136:1601–8.

    Article  CAS  PubMed  Google Scholar 

  227. Tseng C-H. Diabetes but not insulin increases the risk of lung cancer: a Taiwanese population-based study. PLoS One. 2014;9: e101553.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

AS: conceptualization, writing—review and editing; MSA, SM, MSA, LA, MA, PA: writing—original draft; AA, MRM, SB: writing—review and editing.

Corresponding author

Correspondence to Amirhossein Sahebkar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alizadehasl, A., Alavi, M.S., Boudagh, S. et al. Lipid-lowering drugs and cancer: an updated perspective. Pharmacol. Rep 76, 1–24 (2024). https://doi.org/10.1007/s43440-023-00553-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-023-00553-6

Keywords

Navigation