Skip to main content
Log in

Expression and characterization of a maltogenic amylase from Lactobacillus plantarum in Escherichia coli and its application in extending bread shelf life

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

A Lactobacillus sp. was screened from various cereal sourdoughs and was designated as Lactobacillus plantarum YXY418 based on the 16S rRNA gene analysis. A putative Lactobacillus plantarum maltogenic amylase, LpMA, was discovered based on computer-aided analysis. Then, its encoding gene (lpma) was expressed in E. coli BL21(DE3). The expressed recombinant LpMA (reLpMA) was efficiently purified to 12.2-fold using the one-step nickel-nitrilotriacetic acid (Ni–NTA) affinity chromatography. The final recovery yield and specific activity of the purified reLpMA were 61% and 36.4 U/mg towards soluble starch, respectively. The purified reLpMA exhibited optimal amylolytic activity towards soluble starch at 45 °C and pH 6.0, with a good pH stability ranging from pH 5.0 to 8.0. Besides, the reLpMA also hydrolyzed soluble starch, β-CD and pullulan to maltose with specific activity of 96.4 SU/mL, 78.2 CU/mL and 2.0 PU/mL, respectively. The reLpMA hydrolytic activity was increased in the presence of metal ions especially Ca2+ and Zn2+, which could be applied to different processing processes. Baking test indicated after 7-day storage, the reLpMA at a dosage of 2000 U/300 g could significantly reduce hardness and chewiness by 29.5% and 26.4%, respectively, compared with the control. Adding reLpMA improved bread quality, increased bread volume and decreased hardness during storage, thus extending its shelf life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Stam MR, Danchin EG, Rancurel C, Coutinho PM, Henrissat B. Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng Des Sel. 2006;19(12):555–62. https://doi.org/10.1093/protein/gzl044.

    Article  CAS  PubMed  Google Scholar 

  2. Zhou J, Li ZK, Zhang H, Wu JL, Ye XF, Dong WL, et al. Novel maltogenic amylase CoMA from Corallococcus sp. strain EGB catalyzes the conversion of maltooligosaccharides and soluble starch to maltose. Appl Environ Microbiol. 2018;84(14):e00152-e218. https://doi.org/10.1128/AEM.00152-18.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kuchtova A, Janecek S. Domain evolution in enzymes of the neopullulanase subfamily. Microbiology. 2016;162(12):2099–115. https://doi.org/10.1099/mic.0.000390.

    Article  CAS  PubMed  Google Scholar 

  4. Kim TJ, Kim MJ, Kim BC, Kim JC, Cheong TK, Kim JW, et al. Modes of action of acarbose hydrolysis and transglycosylation catalyzed by a thermostable maltogenic amylase, the gene for which was cloned from a Thermus strain. Appl Environ Microb. 1999;65(4):1644–51.

    Article  ADS  CAS  Google Scholar 

  5. Nawawi NN, Hashim Z, Manas NHA, Azelee NIW, Illias RM. A porous-cross linked enzyme aggregates of maltogenic amylase from Bacillus lehensis G1: robust biocatalyst with improved stability and substrate diffusion. Int J Biol Macromol. 2020;148:1222–31. https://doi.org/10.1016/j.ijbiomac.2019.10.101.

    Article  CAS  PubMed  Google Scholar 

  6. Park KH, Kim TJ, Cheong TK, Kim JW, Oh BH, Svensson B. Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the α-amylase family. BBA. 2000;1478(2):165–85. https://doi.org/10.1016/S0167-4838(00)00041-8.

    Article  CAS  PubMed  Google Scholar 

  7. Zheng Y, Zhang HX, Li RM, Zhu XL, Zhu MW. Effects of maltogenic α-amylase treatment on the proportion of slowly digestible starch and the structural properties of pea starch. Food Biosci. 2022;48:101810. https://doi.org/10.1016/j.fbio.2022.101810.

    Article  CAS  Google Scholar 

  8. Ruan YQ, Xu Y, Zhang WC, Zhang RZ. A new maltogenic amylase from Bacillus licheniformis R-53 significantly improves bread quality and extends shelf life. Food Chem. 2021;344:128599. https://doi.org/10.1016/j.foodchem.2020.128599.

    Article  CAS  PubMed  Google Scholar 

  9. Oh KW, Kim MJ, Kim HY, Kim BY, Baik MY, Auh JH, et al. Enzymatic characterization of a maltogenic amylase from Lactobacillus gasseri ATCC 33323 expressed in Escherichia coli. FEMS Microbiol Lett. 2005;252(1):175–81. https://doi.org/10.1016/j.femsle.2005.08.050.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang ZW, Lv JL, Pan L, Zhang YG. Roles and applications of probiotic Lactobacillus strains. Appl Microbiol Biotechnol. 2018;102(19):8135–43. https://doi.org/10.1007/s00253-018-9217-9.

    Article  CAS  PubMed  Google Scholar 

  11. Sousa MA, Rama GR, Souza CFV, Granada CE. Acid lactic lactobacilli as a biotechnological toll to improve food quality and human health. Biotechnol Prog. 2020;36(2):e2937. https://doi.org/10.1002/btpr.2937.

    Article  CAS  PubMed  Google Scholar 

  12. Yang D, Yu XM, Wu YP, Chen XX, Wei H, Shah NP, et al. Enhancing flora balance in the gastrointestinal tract of mice by lactic acid bacteria from Chinese sourdough and enzyme activities indicative of metabolism of protein, fat, and carbohydrate by the flora. J Dairy Sci. 2016;99(10):7809–20. https://doi.org/10.3168/jds.2016-11467.

    Article  CAS  PubMed  Google Scholar 

  13. Xing XL, Suo B, Yang Y, Li Z, Nie WJ, Ai ZL. Application of Lactobacillus as adjunct cultures in wheat dough fermentation. J Food Sci. 2019;84(4):842–7. https://doi.org/10.1111/1750-3841.14496.

    Article  CAS  PubMed  Google Scholar 

  14. Woo SH, Shin YJ, Jeong HM, Kim JS, Ko DS, Hong JS, et al. Effects of maltogenic amylase from Lactobacillus plantarum on retrogradation of bread. J Cereal Sci. 2020. https://doi.org/10.1016/j.jcs.2020.102976.

    Article  Google Scholar 

  15. Fadda C, Sanguinetti AM, Caro AD, Collar C, Piga A. Bread staling: updating the view. Compr Rev Food Sci Saf. 2014;13(4):473–92. https://doi.org/10.1111/1541-4337.12064.

    Article  CAS  Google Scholar 

  16. Kharazi SH, Kasaai MR, Milani JM, Khajeh K. Antistaling properties of encapsulated maltogenic amylase in gluten-free bread. Food Sci Nutr. 2020;8(11):5888–97. https://doi.org/10.1002/fsn3.1865.

    Article  CAS  Google Scholar 

  17. Eom HJ, Moon JS, Seo EY, Han NS. Heterologous expression and secretion of Lactobacillus amylovorus α-amylase in Leuconostoc citreum. Biotechnol Lett. 2009;31(11):1783–8. https://doi.org/10.1007/s10529-009-0079-1.

    Article  CAS  PubMed  Google Scholar 

  18. Sanoja RR, Guyot JM, Jore J, Pintado J, Juge N, Guyot JP. Comparative characterization of complete and truncated forms of Lactobacillus amylovorus α-Amylase and role of the C-terminal direct repeats in raw-starch binding. Appl Environ Microbiol. 2000;66(8):3350–6. https://doi.org/10.1128/AEM.66.8.3350-3356.2000.

    Article  ADS  CAS  Google Scholar 

  19. Vera A, Rigobello V, Demarigny Y. Comparative study of culture media used for sourdough lactobacilli. Food Microbiol. 2009;26(7):728–33. https://doi.org/10.1016/j.fm.2009.07.010.

    Article  CAS  PubMed  Google Scholar 

  20. Chandok H, Shah P, Akare UR, Hindala M, Bhadoriya SS, Ravi GV, et al. Screening, isolation and identification of probiotic producing Lactobacillus acidophilus strains EMBS081 & EMBS082 by 16S rRNA gene sequencing. Interdiscip Sci Comput Life Sci. 2015;7(3):242–8. https://doi.org/10.1007/s12539-015-0002-5.

    Article  CAS  Google Scholar 

  21. Hou QC, Bai XY, Li WC, Gao X, Zhang FM, Sun ZH, et al. Design of primers for evaluation of lactic acid bacteria populations in complex biological samples. Front Microbiol. 2018;9:2045. https://doi.org/10.3389/fmicb.2018.02045.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhou CY, Bai JY, Deng SS, Wang J, Zhu J, Wu MC, et al. Cloning of a xylanase gene from Aspergillus usamii and its expression in Escherichia coli. Bioresour Technol. 2018;99(4):831–8. https://doi.org/10.1016/j.biortech.2007.01.035.

    Article  CAS  Google Scholar 

  23. Wu XQ, Koiwa H. One-step casting of Laemmli discontinued sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel. Anal Biochem. 2012;421(1):347–9. https://doi.org/10.1016/j.ab.2011.10.004.

    Article  CAS  PubMed  Google Scholar 

  24. Miller GL. Use of dinitrosalicyclic acid reagent for determination of reducing sugars. Anal Chem. 1959;31:426–8. https://doi.org/10.1021/ac60147a030.

    Article  CAS  Google Scholar 

  25. Pareyt B, Finnie SM, Putseys JA, Delcour JA. Lipids in bread making: Sources, interactions, and impact on bread quality. J Cereal Sci. 2011;54(3):266–79. https://doi.org/10.1016/j.jcs.2011.08.011.

    Article  CAS  Google Scholar 

  26. Quinton LA, Kennedy JF. Approved methods of the American association of cereal chemists. American Association of Cereal Chemists, Approved Methods Committee (2000).

  27. Mabrouk SB, Messaoud EB, Ayadi D, Jemli S, Roy A, Mezghani M, et al. Cloning and sequencing of an original gene encoding a maltogenic amylase from Bacillus sp. US149 strain and characterization of the recombinant activity. Mol Biotechnol. 2008;38(3):211–9. https://doi.org/10.1007/s12033-007-9017-4.

    Article  CAS  PubMed  Google Scholar 

  28. Kim JW, Kim YH, Lee HS, Yang SJ, Kim YW, Lee MH, et al. Molecular cloning and biochemical characterization of the first archaeal maltogenic amylase from the hyperthermophilic archaeon Thermoplasma volcanium GSS1. Biochim Biophys Acta. 2007;1774(5):661–9. https://doi.org/10.1016/j.bbapap.2007.03.010.

    Article  CAS  PubMed  Google Scholar 

  29. Liu B, Wang YQ, Zhang XB. Characterization of a recombinant maltogenic amylase from deep sea thermophilic Bacillus sp. WPD616. Enzyme Microb Technol. 2006;39(4):805–10. https://doi.org/10.1016/j.enzmictec.2006.01.003.

    Article  CAS  Google Scholar 

  30. Sulong MR, Leow TC, Rahman RN, Basri M, Salleh AB. Characteristics of recombinant maltogenic amylase from Geobacillus sp. SK70. Indian J Biotechnol. 2017;16(1):91–9.

    CAS  Google Scholar 

  31. Sahlström S, Brathen E. Effects of enzyme preparations for baking, mixing time and resting time on bread quality and bread staling. Food Chem. 1997;58(1):75–80. https://doi.org/10.1016/S0308-8146(96)00216-6.

    Article  Google Scholar 

  32. Goesaert H, Leman P, Bijttebier A, Delcour JA. Antifirming effects of starch degrading enzymes in bread crumb. Food Chem. 2009;57(6):2346–55. https://doi.org/10.1021/jf803058v.

    Article  CAS  Google Scholar 

  33. Ding SY, Yang J. The effects of sugar alcohols on rheological properties, functionalities, and texture in baked products—a review. Trends Food Sci Technol. 2021;111:670–9. https://doi.org/10.1016/j.tifs.2021.03.009.

    Article  CAS  Google Scholar 

  34. Vandeputte GE, Vermeylen R, Geeroms J, Delcour JA. Rice starches. III. structural aspects provide insight in amylopectin retrogradation properties and gel texture. J Cereal Sci. 2003;38(1):61–8. https://doi.org/10.1016/s0733-5210(02)00142-x.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21676117) and the Natural Science Foundation of Jiangsu Province for Youth of China (No. BK20180622).

Author information

Authors and Affiliations

Authors

Contributions

Experimental design was done by WL, MW and WH; experiments conducted and analyzed by WL, JH, YL, ZD and XS; WL wrote the manuscript; WL and DZ edited the manuscript. All the authors finally approved the manuscript.

Corresponding authors

Correspondence to Weining Huang or Minchen Wu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

All the authors agreed to submit the manuscript for publication in SMAB.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1230 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, W., Zhang, D., Huang, J. et al. Expression and characterization of a maltogenic amylase from Lactobacillus plantarum in Escherichia coli and its application in extending bread shelf life. Syst Microbiol and Biomanuf 4, 318–327 (2024). https://doi.org/10.1007/s43393-022-00155-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-022-00155-y

Keywords

Navigation