Skip to main content

Advertisement

Log in

Thermostable, Solvent, Surfactant, Reducing Agent and Chelator Resistant α-Amylase from Bacillus Strain IBT108: A Suitable Candidate Enables One-Step Fermentation of Waste Potato for High Butanol and Hydrogen Production

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

α-Amylase is the major biocatalyst involved in saccharification process of starch-based biofuel production. Most of the α-amylases reported in literature are not stable and catalytically active in presence of metabolites (biosolvents, and bioacids), and other media components such as salts and reducing agents, hence starch-based biofuels are produced by two-step process of separate hydrolysis by α-amylase, and later the fermentation of biofuel production. Finding new α-amylase with special properties can assist to integrate the process of saccharification and biofuel fermentation. We report a new α-amylase produced from wild type Bacillus strain IBT108. This α-amylase (10.5 U/ml) can be produced from wheat bran (5%) based medium. It can be purified by diethylaminoethyl weak anion exchange-based fast protein liquid chromatography. Purified α-amylase has molecular mass of 68 kDa with a high specific activity (734.8 U/mg), and significant Vmax (1428.6 U/mg) and Km (2.8 mg/ml). Protein fingerprinting analysis reveals that it is a unique member of super-families of AmyAc and MaltAmyC which can act on both α-1,4 and α-1,6-glycosidic linkages of starch. It shows optimal activity at pH 7 and 70 °C, retains 72–92% of its activity in acidic pH range between 4 and 6.5, and stable at 60 °C for 2 h. Notably, it is resistant to 5 mM concentration of urea, dithiothreitol, β-mercaptoethanol, surfactants and EDTA, also shows > 70% of its activity in presence of 1 M solvents. Consequently, adding this α-amylase (2.5–3 U/ml) assists Clostridia to effectively utilize 375 g/l waste potato, and produce high concentration of butanol (20.41–23.74 g/l) and hydrogen (3.20–4.38 l/l).

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Enzymes, B.: Global Biofuel Enzymes Industry. https://prnewswire.com/news-releases/global-biofuel-enzymes-industry-300671711 (2018). Accessed 20 May 2019

  2. Novozymes: Liquozyme®: Fewer chemicals. More yield. https://novozymes.com/en/advance-your-business/bioenergy/Liquozyme (2019). Accessed 10 Aug 2019

  3. Enzymes, N.: Biofuel and bioenergy, thermostable alpha amylase. https://enzyme-india.com/amylase-enzymes-biofuel (2015). Accessed 20 May 2019

  4. Virunanon, C., Ouephanit, C., Burapatana, V., Chulalaksananukul, W.: Cassava pulp enzymatic hydrolysis process as a preliminary step in bio-alcohols production from waste starchy resources. J. Clean. Prod. 39, 273–279 (2013)

    Article  Google Scholar 

  5. Li, H.G., Ma, X.X., Zhang, Q.H., Luo, W., Wu, Y.Q., Li, X.H.: Enhanced butanol production by solvent tolerance Clostridium acetobutylicum SE25 from cassava flour in a fibrous bed bioreactor. Bioresour. Technol. 221, 412–418 (2016)

    Article  Google Scholar 

  6. Li, X., Li, Z., Zheng, J., Shi, Z., Li, L.: Yeast extract promotes phase shift of bio-butanol fermentation by Clostridium acetobutylicum ATCC824 using cassava as substrate. Bioresour. Technol. 125, 43–51 (2012)

    Article  Google Scholar 

  7. Sharma, A., Satyanarayana, T.: Microbial acid-stable α-amylases: characteristics, genetic engineering and applications. Process Biochem. 48(2), 201–211 (2013)

    Article  Google Scholar 

  8. Van der Maarel, M.J.E.C., van der Veen, B., Uitdehaag, J.C.M., Leemhuis, H., Dijkhuizen, L.: Properties and applications of starch-converting enzymes of the α-amylase family. J. Biotechnol. 94(2), 137–155 (2002)

    Article  Google Scholar 

  9. Liu, Y.H., Lu, F.P., Li, Y., Yin, X.B., Wang, Y., Gao, C.: Characterisation of mutagenised acid-resistant alpha-amylase expressed in Bacillus subtilis WB600. Appl. Microbiol. Biotechnol. 78(1), 85–94 (2008)

    Article  Google Scholar 

  10. Arikan, B.: Highly thermostable, thermophilic, alkaline, SDS and chelator resistant amylase from a thermophilic Bacillus sp. isolate A3-15. Bioresour. Technol. 99(8), 3071–3076 (2008)

    Article  Google Scholar 

  11. Asoodeh, A., Chamani, J., Lagzian, M.: A novel thermostable, acidophilic α-amylase from a new thermophilic “Bacillus sp. Ferdowsicous” isolated from Ferdows hot mineral spring in Iran: purification and biochemical characterization. Int. J. Biol. Macromol. 46(3), 289–297 (2010)

    Article  Google Scholar 

  12. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959)

    Article  Google Scholar 

  13. Rajagopalan, G., He, J., Yang, K.L.: Production, purification, and characterization of α-amylase from solventogenic Clostridium sp. BOH3. Bioenergy Res. 7(1), 132–141 (2014)

    Article  Google Scholar 

  14. Rajagopalan, G., He, J., Yang, K.L.: A highly efficient NADH-dependent butanol dehydrogenase from high-butanol-producing Clostridium sp. BOH3. Bioenergy Res. 6(1), 240–251 (2013)

    Article  Google Scholar 

  15. Paquet, V., Croux, C., Goma, G., Soucaille, P.: Purification and characterization of the extracellular alpha-amylase from Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol. 57(1), 212–218 (1991)

    Article  Google Scholar 

  16. Abernathy, D.G., Spedding, G., Starcher, B.: Analysis of protein and total usable nitrogen in beer and wine using a microwell ninhydrin assay. J. Inst. Brew. 115(2), 122–127 (2009)

    Article  Google Scholar 

  17. Shirazi, O.U., Khattak, M.M.A.K., Shukri, N.A.: Quantitative analysis of minerals in the selected formulations of spices and herbs using ICP-MS. Prog. Nutr. 18, 161–165 (2016)

    Google Scholar 

  18. Rajagopalan, G., He, J., Yang, K.L.: Direct fermentation of xylan by Clostridium strain BOH3 for the production of butanol and hydrogen using optimized culture medium. Bioresour. Technol. 154, 38–43 (2014)

    Article  Google Scholar 

  19. Burton, K.: A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J. 62(2), 315–323 (1956)

    Article  Google Scholar 

  20. Rajagopalan, G., Krishnan, C.: Optimization of agro-residual medium for α-amylase production from a hyper-producing Bacillus subtilis KCC103 in submerged fermentation. J. Chem. Technol. Biotechnol. 84(4), 618–625 (2009)

    Article  Google Scholar 

  21. Tiwari, S., Shukla, N., Mishra, P., Gaur, R.: Enhanced production and characterization of a solvent stable amylase from solvent tolerant Bacillus tequilensis RG-01: thermostable and surfactant resistant. Sci. World J. 2014, 972763 (2014)

    Article  Google Scholar 

  22. Burhan, A., Nisa, U., Gökhan, C., Ömer, C., Ashabil, A., Osman, G.: Enzymatic properties of a novel thermostable, thermophilic, alkaline and chelator resistant amylase from an alkaliphilic Bacillus sp. isolate ANT-6. Process Biochem. 38(10), 1397–1403 (2003)

    Article  Google Scholar 

  23. Abdel-Fattah, Y., Soliman, N., El-Toukhy, N., El-Gendi, H., Ahmed, R.: Production, purification, and characterization of thermostable α-amylase produced by Bacillus licheniformis isolate AI20. J. Chem. 2013, 11 (2012)

    Google Scholar 

  24. Asoodeh, A., Alemi, A., Heydari, A., Akbari, J.: Purification and biochemical characterization of an acidophilic amylase from a newly isolated Bacillus sp. DR90. Extremophiles 17, 339–348 (2013)

    Article  Google Scholar 

  25. Asoodeh, A., Emtenani, S., Emtenani, S., Jalal, R., Housaindokht, M.R.: Molecular cloning and biochemical characterization of a thermoacidophilic, organic-solvent tolerant α-amylase from a Bacillus strain in Escherichia coli. J. Mol. Catal. B 99, 114–120 (2014)

    Article  Google Scholar 

  26. Bernhardsdotter, E., Garriott, O., Pusey, M.: Enzymic properties of an alkaline chelator-resistant α-amylase from an alkaliphilic Bacillus sp. isolate L1711. Process Biochem. 40, 2401–2408 (2005)

    Article  Google Scholar 

  27. Hagihara, H., Igarashi, K., Hayashi, Y., Endo, K., Ikawa-Kitayama, K., Ozaki, K., Kawai, S., Ito, S.: Novel alpha-amylase that is highly resistant to chelating reagents and chemical oxidants from the alkaliphilic Bacillus isolate KSM-K38. Appl. Environ. Microbiol. 67(4), 1744–1750 (2001)

    Article  Google Scholar 

  28. Kalpana, B.J., Pandian, S.K.: Halotolerant, acid-alkali stable, chelator resistant and raw starch digesting alpha-amylase from a marine bacterium Bacillus subtilis S8–18. J. Basic Microbiol. 54(8), 802–811 (2014)

    Article  Google Scholar 

  29. Mamo, G., Gessesse, A.: Purification and characterization of two raw-starch-digesting thermostable α-amylases from a thermophilic Bacillus. Enzyme Microb. Technol. 25(3), 433–438 (1999)

    Article  Google Scholar 

  30. Sajedi, R.H., Naderi-Manesh, H., Khajeh, K., Ahmadvand, R., Ranjbar, B., Asoodeh, A., Moradian, F.: A Ca-independent α-amylase that is active and stable at low pH from the Bacillus sp. KR-8104. Enzyme Microb. Technol. 36(5), 666–671 (2005)

    Article  Google Scholar 

  31. Nagarajan, D.R., Rajagopalan, G., Krishnan, C.: Purification and characterization of a maltooligosaccharide-forming α-amylase from a new Bacillus subtilis KCC103. Appl. Microbiol. Biotechnol. 73(3), 591–597 (2006)

    Article  Google Scholar 

  32. Emtenani, S., Asoodeh, A., Emtenani, S.: Gene cloning and characterization of a thermostable organic-tolerant α-amylase from Bacillus subtilis DR8806. Int. J. Biol. Macromol. 72, 290–298 (2015)

    Article  Google Scholar 

  33. Dheeran, P., Kumar, S., Jaiswal, Y.K., Adhikari, D.K.: Characterization of hyperthermostable alpha-amylase from Geobacillus sp. IIPTN. Appl. Microbiol. Biotechnol. 86(6), 1857–1866 (2010)

    Article  Google Scholar 

  34. Liu, B., Wang, Y., Zhang, X.: Characterization of a recombinant maltogenic amylase from deep sea thermophilic Bacillus sp. WPD616. Enzyme Microb. Technol. 39(4), 805–810 (2006)

    Article  Google Scholar 

  35. Mitchell, W.J.: Carbohydrate uptake and utilization by Clostridium beijerinckii NCIMB 8052. Anaerobe 2(6), 379–384 (1996)

    Article  Google Scholar 

  36. Mitchell, W.J.: The phosphotransferase system in solventogenic Clostridia. J. Mol. Microbiol. Biotechnol. 25(2–3), 129–142 (2015)

    Article  Google Scholar 

  37. Moon, H.G., Jang, Y.S., Cho, C., Lee, J., Binkley, R., Lee, S.Y.: One hundred years of clostridial butanol fermentation. FEMS Microbiol. Lett. 363(3), 1–15 (2016)

    Google Scholar 

  38. METACYC: A member of the BioCyc database collection. https://metacyc.org (2020). Accessed 26 Feb 2020

  39. FAOSTAT: Food and Agriculture Organization of the United Nations https://fao.org (2019). Accessed 10 Aug 2019.

  40. Potatopro: Food Innovation online crop https://potatopro.com (2019). Accessed 5 Mar 2019

  41. Nimcevic, D., Schuster, M., Gapes, J.R.: Solvent production by Clostridium beijerinckii NRRL B592 growing on different potato media. Appl. Microbiol. Biotechnol. 50(4), 426–428 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Engineering Research Board, Department of Science and Technology, Government of India (ECR/2016/000722); and Faculty Startup Grant (FSG/2016/108) from SAU, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gobinath Rajagopalan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahato, R.K., Fatema, I.T. & Rajagopalan, G. Thermostable, Solvent, Surfactant, Reducing Agent and Chelator Resistant α-Amylase from Bacillus Strain IBT108: A Suitable Candidate Enables One-Step Fermentation of Waste Potato for High Butanol and Hydrogen Production. Waste Biomass Valor 12, 223–238 (2021). https://doi.org/10.1007/s12649-020-01017-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01017-1

Keywords

Navigation