Skip to main content
Log in

Cloning, expression and improvement of catalytic activity of alginate lyase by site-directed mutation

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Alginate lyase mainly produces active alginate oligosaccharides (AOS) by degrading alginate via β-elimination process. In this study, the Pseudoalteromonas sp. Alg6B alginate lyase-encoding gene alg6B-7 from polysaccharide lyase (PL)-7 family was successfully cloned, sequenced, expressed in Escherichia coli. Based on rational design and amino acid sequence alignment of the alginate lyase from various sources, four positive mutants were obtained. The specific enzyme activities of four mutants I62A, A99K, V132S, and L157T were 38.84%, 42.85%, 75.8% and 51.83% higher than that of the wild enzyme, respectively. The Kcat/Km values of the four mutants were both increased, and the catalytic efficiency of V132S was 1.92-fold higher than that of the wild enzyme, especially. The rational design that was employed in this study achieved the dramatic improvement of catalytic activity, which may provide the application potential in industrial production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All generated or analyzed data in this study are included in this article and supplementary information documents.

References

  1. Duan G, Han F, Yu W. Cloning, sequence analysis, and expression of gene alyPI encoding an alginate lyase from marine bacterium Pseudoalteromonas sp. CY24. Can J Microbiol. 2009;55(9):1113–8. https://doi.org/10.1139/w09-051.

    Article  CAS  PubMed  Google Scholar 

  2. Preiss J, Ashwell G. Alginic acid metabolism in bacteria. I. Enzymatic formation of unsaturated oligosac-charides and 4-deoxy-l-erythro-5-hexoseulose uronic acid. J Biol Chem. 1962;237:309–16. https://doi.org/10.1016/S0021-9258(18)93920-7.

    Article  CAS  PubMed  Google Scholar 

  3. Aitouguinane M, Bouissil S, Mouhoub A, Rchid H, Fendri I, Abdelkafi S, El-Hadj MDO, Boual Z, Dubessay P, Gardarin C, Michaud P, El Alaoui-Talibi Z, El Modafar C, Pierre G, Delattre C. Induction of natural defenses in tomato seedlings by using alginate and oligoalginates derivatives extracted from moroccan brown algae. Mar Drugs. 2020;18(10):521–33. https://doi.org/10.3390/md18100521.

    Article  CAS  PubMed Central  Google Scholar 

  4. Jiang ZD, Zhang XW, Wu LY, Li HB, Chen YH, Li LJ, Ni H, Li QB, Zhu YB. Exolytic products of alginate by the immobilized alginate lyase confer antioxidant and antiapoptotic bioactivities in human umbilical vein endothelial cells. Carbohydr Polym. 2021;251:116976–83. https://doi.org/10.1016/j.carbpol.2020.116976.

    Article  CAS  PubMed  Google Scholar 

  5. Liu M, Liu L, Zhang HF, Yi B, Everaert N. Alginate oligosaccharides preparation, biological activities and their application in livestock and poultry. J Integr Agric. 2021;20(1):24–34. https://doi.org/10.1016/s2095-3119(20)63195-1.

    Article  CAS  Google Scholar 

  6. Tusi SK, Khalaj L, Ashabi G, Kiaei M, Khodagholi F. Alginate oligosaccharide protects against endoplasmic reticulum- and mitochondrial-mediated apoptotic cell death and oxidative stress. Biomaterials. 2011;32(23):5438–58. https://doi.org/10.1016/j.biomaterials.2011.04.024.

    Article  CAS  PubMed  Google Scholar 

  7. Cheng DY, Jiang CC, Xu JC, Liu Z, Mao XZ. Characteristics and applications of alginate lyases: a review. Int J Biol Macromol. 2020;164:1304–20. https://doi.org/10.1016/j.ijbiomac.2020.07.199.

    Article  CAS  PubMed  Google Scholar 

  8. Gao S, Zhang Z, Li S, Su H, Tang L, Tan Y, Yu W, Han F. Characterization of a new endo-type polysaccharide lyase (PL) family 6 alginate lyase with cold-adapted and metal ions-resisted property. Int J Biol Macromol. 2018;120(Pt A):729–35. https://doi.org/10.1016/j.ijbiomac.2018.08.164.

    Article  CAS  PubMed  Google Scholar 

  9. Osawa T, Matsubara Y, Muramatsu T, Kimura M, Kakuta Y. Crystal structure of the alginate (poly alpha-l-guluronate) lyase from Corynebacterium sp. at 1.2 A resolution. J Mol Biol. 2005;345(5):1111–8. https://doi.org/10.1016/j.jmb.2004.10.081.

    Article  CAS  PubMed  Google Scholar 

  10. Sun X, Shen W, Gao Y, Cai M, Zhou M, Zhang Y. Heterologous expression and purification of a marine alginate lyase in Escherichia coli. Protein Expr Purif. 2019;153:97–104. https://doi.org/10.1016/j.pep.2018.09.002.

    Article  CAS  PubMed  Google Scholar 

  11. Zhu B, Chen M, Yin H, Du Y, Ning L. Enzymatic hydrolysis of alginate to produce oligosaccharides by a new purified endo-type alginate lyase. Mar Drugs. 2016;14(6):108–18. https://doi.org/10.3390/md14060108.

    Article  CAS  PubMed Central  Google Scholar 

  12. Liu YH, Huang L, Jia LB, Gui S, Fu Y, Zheng D, Guo W, Lu FP. Improvement of the acid stability of Bacillus licheniformis alpha amylase by site-directed mutagenesis. Process Biochem. 2017;58:174–80. https://doi.org/10.1016/j.procbio.2017.04.040.

    Article  CAS  Google Scholar 

  13. Yang M, Yang SX, Liu ZM, Li NN, Li L, Mou HJ. Rational design of alginate lyase from Microbulbifer sp. Q7 to improve thermal stability. Mar Drugs. 2019;17(6):378–90. https://doi.org/10.3390/md17060378.

    Article  CAS  PubMed Central  Google Scholar 

  14. Zhang D, Zhu X, Hu D, Wen Z, Zhang C, Wu M. Improvement in the catalytic performance of a phenylpyruvate reductase from Lactobacillus plantarum by site-directed and saturation mutagenesis based on the computer-aided design. 3 Biotech. 2021;11(2):69–77. https://doi.org/10.1007/s13205-020-02633-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Durdic KI, Ostafe R, Prodanovic O, Delmas AD, Popovic N, Fischer R, Schillberg S, Prodanovic R. Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls. Front Environ Sci Eng. 2021;15(2):19–29. https://doi.org/10.1007/s11783-020-1311-4.

    Article  CAS  Google Scholar 

  16. Ma Y, Li J, Zhang XY, Ni HD, Wang FB, Wang HY, Wang ZP. Characterization of a new intracellular alginate lyase with metal ions-tolerant and pH-stable properties. Mar Drugs. 2020;18:8. https://doi.org/10.3390/md18080416.

    Article  CAS  Google Scholar 

  17. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31(3):426–8. https://doi.org/10.1021/ac60147a030.

    Article  CAS  Google Scholar 

  18. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–5. https://doi.org/10.1038/227680a0.

    Article  CAS  PubMed  Google Scholar 

  19. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54. https://doi.org/10.1006/abio.1976.9999.

    Article  CAS  PubMed  Google Scholar 

  20. Zeng J, An D, Jiao C, Xiao Q, Weng H, Yang Q, Xiao A. Cloning, expression, and characterization of a new pH- and heat-stable alginate lyase from Pseudoalteromonas carrageenovora ASY5. J Food Biochem. 2019;43(7):12886–98. https://doi.org/10.1111/jfbc.12886.

    Article  CAS  Google Scholar 

  21. Xie M, Li J, He P, Lin X. Expression and characterization of a bifunctional alginate lyase named Al163 from the antarctic bacterium Pseudoalteromonas sp. NJ-21. J Oceanol. 2018;36(4):1304–14. https://doi.org/10.1007/s00343-018-7074-0.

    Article  CAS  Google Scholar 

  22. Martin ACR, MacArthur MW, Thornton JM. Assessment of comparative modeling in CASP2. Proteins Struct Funct Bioinf. 1997;29(Suppl 1):14–28. https://doi.org/10.1002/(sici)1097-0134(1997)1+%3c14::aid-prot4%3e3.3.co;2-f.

    Article  Google Scholar 

  23. Chen XL, Dong S, Xu F, Dong F, Li PY, Zhang XY, Zhou BC, Zhang YZ, Xie BB. Characterization of a new cold-adapted and salt-activated polysaccharide lyase family 7 alginate lyase from Pseudoalteromonas sp. SM0524. Front Microbiol. 2016;7:1120–8. https://doi.org/10.3389/fmicb.2016.01120.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hamza A, Piao YL, Kim MS, Choi CH, Zhan CG, Cho H. Insight into the binding of the wild type and mutated alginate lyase (AlyVI) with its substrate: a computational and experimental study. Biochim Biophys Acta. 2011;1814(12):1739–47. https://doi.org/10.1016/j.bbapap.2011.08.018.

    Article  CAS  PubMed  Google Scholar 

  25. Xu X, Zeng D, Wu D, Lin J. Single-point mutation near active center increases substrate affinity of alginate lyase AlgL-CD. Appl Biochem Biotechnol. 2021;193(5):1513–31. https://doi.org/10.1007/s12010-021-03507-x.

    Article  CAS  PubMed  Google Scholar 

  26. Zhu B, Ni F, Sun Y, Ning L, Yao Z. Elucidation of degrading pattern and substrate recognition of a novel bifunctional alginate lyase from Flammeovirga sp. NJ-04 and its use for preparation alginate oligosaccharides. Biotechnol Biofuels. 2019;12:13. https://doi.org/10.1186/s13068-019-1352-8.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ogura K, Yamasaki M, Mikami B, Hashimoto W, Murata K. Substrate recognition by family 7 alginate lyase from Sphingomonas sp. A1. J Mol Biol. 2008;380(2):373–85. https://doi.org/10.1016/j.jmb.2008.05.008.

    Article  CAS  PubMed  Google Scholar 

  28. Yamamoto S, Sahara T, Sato D, Kawasaki K, Ohgiya S, Inoue A, Ojima T. Catalytically important amino-acid residues of abalone alginate lyase HdAly assessed by site-directed mutagenesis. Enzyme Microb Technol. 2008;43(6):396–402. https://doi.org/10.1016/j.enzmictec.2008.06.006.

    Article  CAS  Google Scholar 

  29. Vester JK, Glaring MA, Stougaard P. Discovery of novel enzymes with industrial potential from a cold and alkaline environment by a combination of functional metagenomics and culturing. Microb Cell Fact. 2014;13:72–85. https://doi.org/10.1186/1475-2859-13-72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. De Santi C, Tedesco P, Ambrosino L, Altermark B, Willassen NP, de Pascale D. A new alkaliphilic cold-active esterase from the psychrophilic marine bacterium Rhodococcus sp.: functional and structural studies and biotechnological potential. Appl Biochem Biotechnol. 2014;172(6):3054–68. https://doi.org/10.1007/s12010-013-0713-1.

    Article  CAS  PubMed  Google Scholar 

  31. Wang ZP, Cao M, Li B, Ji XF, Zhang XY, Zhang YQ, Wang HY. Cloning, secretory expression and characterization of a unique pH-stable and cold-adapted alginate lyase. Mar Drugs. 2020;18:4. https://doi.org/10.3390/md18040189.

    Article  CAS  Google Scholar 

  32. Li S, Yang X, Zhang L, Yu W, Han F. Cloning, expression, and characterization of a cold-adapted and surfactant-stable alginate lyase from marine bacterium Agarivorans sp. L11. J Microbiol Biotechnol. 2015;25(5):681–6. https://doi.org/10.4014/jmb.1409.09031.

    Article  CAS  PubMed  Google Scholar 

  33. Santi CD, Tedesco P, Ambrosino L, Altermark B, Willassen NP, Pascale DD. A new alkaliphilic cold-active esterase from the psychrophilic marine bacterium Rhodococcus sp.: functional and structural studies and biotechnological potential. Appl Microbiol Biotechnol. 2014;172(6):3054–68.

    Google Scholar 

  34. Kobayashi T, Uchimura K, Miyazaki M, Nogi Y, Horikoshi K. A new high-alkaline alginate lyase from a deep-sea bacterium Agarivorans sp. Extremophiles. 2009;13(1):121–9. https://doi.org/10.1007/s00792-008-0201-7.

    Article  CAS  PubMed  Google Scholar 

  35. Sakatoku A, Tanaka D, Nakamura S. Purification and characterization of an alkaliphilic alginate lyase algMytC from Saccharophagus sp Myt-1. J Microbiol Biotechnol. 2013;23(6):872–7. https://doi.org/10.4014/jmb.1301.01075.

    Article  CAS  PubMed  Google Scholar 

  36. Gao SK, Yin R, Wang XC, Jiang HN, Liu XX, Lv W, Ma Y, Zhou YX. Structure characteristics, biochemical properties, and pharmaceutical applications of alginate lyases. Mar Drugs. 2021;19:11. https://doi.org/10.3390/md19110628.

    Article  CAS  Google Scholar 

  37. Zhang S, Keshwani DR, Xu Y, Hanna MA. Alkali combined extrusion pretreatment of corn stover to enhance enzyme saccharification. Ind Crops Prod. 2012;37(1):352–7. https://doi.org/10.1016/j.indcrop.2011.12.001.

    Article  CAS  Google Scholar 

  38. Jun J, Jun L, Shaoqing Y, Shuai M, Qiaojuan Y, Zhengqiang J. High level expression of alginate lyase from Flavobacterium sp. and its application in preparation of alginate oligosaccharides. J Food Sci. 2021;42(4):145–52. https://doi.org/10.7506/spkx1002-6630-20191213-149.

    Article  Google Scholar 

  39. Xu F, Chen XL, Sun XH, Dong F, Li CY, Li PY, Ding HT, Chen Y, Zhang YZ, Wang P. Structural and molecular basis for the substrate positioning mechanism of a new PL7 subfamily alginate lyase from the arctic. J Biol Chem. 2020;295(48):16380–92. https://doi.org/10.1074/jbc.RA120.015106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang YH, Shao Y, Jiao C, Yang QM, Weng HF, Xiao AF. Characterization and application of an alginate lyase, Aly1281 from marine bacterium Pseudoalteromonas carrageenovora ASY5. Mar Drugs. 2020;18(2):95–111. https://doi.org/10.3390/md18020095.

    Article  CAS  PubMed Central  Google Scholar 

  41. Kumar S, Tsai CJ, Ma BY, Nussinov R. Contribution of salt bridges toward protein thermostability. J Biomol Struct Dyn. 2000;17:79–85. https://doi.org/10.1080/07391102.2000.10506606.

    Article  PubMed  Google Scholar 

  42. Li PY, Chen XL, Ji P, Li CY, Wang P, Zhang Y, Xie BB, Qin QL, Su HN, Zhou BC, Zhang YZ, Zhang XY. Interdomain hydrophobic interactions modulate the thermostability of microbial esterases from the hormone-sensitive lipase family. J Biol Chem. 2015;290(17):11188–98. https://doi.org/10.1074/jbc.M115.646182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mamonova TB, Glyakina AV, Galzitskaya OV, Kurnikova MG. Stability and rigidity/flexibility-two sides of the same coin? Biochim Biophys Acta Proteins Proteom. 2013;1834(5):854–66. https://doi.org/10.1016/j.bbapap.2013.02.011.

    Article  CAS  Google Scholar 

  44. Whitmore L, Wallace BA. Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers. 2008;89(5):392–400. https://doi.org/10.1002/bip.20853.

    Article  CAS  PubMed  Google Scholar 

  45. Schweiker KL, Zarrine-Afsar A, Davidson AR, Gi M. Computational design of the Fyn SH3 domain with increased stability through optimization of surface charge-charge interactions. Protein Sci. 2007;16:2694–702. https://doi.org/10.1110/ps.073091607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Deng S, Ye J, Xu Q, Huizhan Z. Structural and functional studies on three alginate lyases from Vibrio alginolyticus. Protein Pept Lett. 2014;21(2):179–87. https://doi.org/10.2174/09298665113206660094.

    Article  CAS  PubMed  Google Scholar 

  47. Boyd J, Turvey JR. Isolation of poly-alpha-L-guluronate lyase from Klebsiella aerogenes. Carbohydr Res. 1977;57:163–71. https://doi.org/10.1016/s0008-6215(00)81928-x.

    Article  CAS  PubMed  Google Scholar 

  48. Thomas F, Lundqvist LC, Jam M, Jeudy A, Barbeyron T, Sandstrom C, Michel G, Czjzek M. Comparative characterization of two marine alginate lyases from Zobellia galactanivorans reveals distinct modes of action and exquisite adaptation to their natural substrate. J Biol Chem. 2013;288(32):23021–37. https://doi.org/10.1074/jbc.M113.467217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yagi H, Fujise A, Itabashi N, Ohshiro T. Characterization of a novel endo-type alginate lyase derived from Shewanella sp. YH1. J Biochem. 2018;163(4):341–50. https://doi.org/10.1093/jb/mvy001.

    Article  CAS  PubMed  Google Scholar 

  50. Wang YA, Chen XH, Bi XL, Ren YN, Han Q, Zhou Y, Han YT, Yao RY, Li SY. Characterization of an alkaline alginate lyase with pH-stable and thermo-tolerance property. Mar Drugs. 2019;17(5):14. https://doi.org/10.3390/md17050308.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the National First-class Discipline Program of the Light Industry Technology and Engineering (LITE2018-11).

Author information

Authors and Affiliations

Authors

Contributions

YL: conceptualization, methodology, software, investigation, data curation, writing—original draft preparation JZ: writing-reviewing and editing. WY: resources, investigation. LY: methodology, software, data curation. QG and XY: funding acquisition, resources, supervision.

Corresponding author

Correspondence to Xiaobin Yu.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1150 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Zhou, J., Gu, Q. et al. Cloning, expression and improvement of catalytic activity of alginate lyase by site-directed mutation. Syst Microbiol and Biomanuf 2, 555–567 (2022). https://doi.org/10.1007/s43393-022-00084-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-022-00084-w

Keywords

Navigation