Skip to main content

Advertisement

Log in

Construction and analysis of an integrated biological network of Escherichia coli

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Escherichia coli is a model organism with a clear genetic background that is widely used in metabolic engineering and synthetic biology research. To gain a complete picture of the complexly metabolic and regulatory interactions in E. coli, researchers often need to retrieve information from various databases which cover different types of interactions. A central one-stop service integrating various molecular interactions in E. coli would be helpful for the community. We constructed a database called E. coli integrated network (EcoIN) by integrating known molecular interaction information from databases and literature. EcoIN contains nearly 160,000 pairs of interactions and users can easily search the different types of interacting partners for a metabolite, gene or protein, and thus gain access to a more comprehensive interaction map of E. coli. To illustrate the application of EcoIN, we used the full path algorithm to identify metabolic feedback/feedforward regulatory loops having at least two different types of regulatory interactions. Applying this algorithm to analyze the regulatory loops for the amino acid biosynthetic pathways, we found some multi-step regulation loops which may affect the metabolic flux and are potential new engineering targets. The EcoIN database is freely accessible at http://ecoin.ibiodesign.net/ and analysis codes are available at GitHub: https://github.com/maozhitao/EcoIN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets supporting the conclusions of this article are included at GitHub: https://github.com/maozhitao/EcoIN.

Code availability

All analysis codes supporting the conclusions of this article are included at GitHub: https://github.com/maozhitao/EcoIN.

References

  1. Baumler DJ, Peplinski RG, Reed JL, Glasner JD, Perna NT. The evolution of metabolic networks of E. coli. BMC Syst Biol. 2011;5:182.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhou X, Wu H, Li Z, Zhou X, Bai L, Deng Z. Over-expression of UDP-glucose pyrophosphorylase increases validamycin A but decreases validoxylamine A production in Streptomyces hygroscopicus var. jinggangensis 5008. Metab Eng. 2011;13(6):768–76.

    Article  CAS  PubMed  Google Scholar 

  3. Dhamankar H, Tarasova Y, Martin CH, Prather KL. Engineering E. coli for the biosynthesis of 3-hydroxy-gamma-butyrolactone (3HBL) and 3,4-dihydroxybutyric acid (3,4-DHBA) as value-added chemicals from glucose as a sole carbon source. Metab Eng. 2014;25:72–81.

    Article  CAS  PubMed  Google Scholar 

  4. Curran KA, Leavitt JM, Karim AS, Alper HS. Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metab Eng. 2013;15:55–66.

    Article  CAS  PubMed  Google Scholar 

  5. Covert MW, Schilling CH, Palsson B. Regulation of gene expression in flux balance models of metabolism. J Theor Biol. 2001;213(1):73–88.

    Article  CAS  PubMed  Google Scholar 

  6. Shlomi T, Eisenberg Y, Sharan R, Ruppin E. A genome-scale computational study of the interplay between transcriptional regulation and metabolism. Mol Syst Biol. 2007;3:101.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chandrasekaran S, Price ND. Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. PNAS. 2010;107(41):17845–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carrera J, Estrela R, Luo J, Rai N, Tsoukalas A, Tagkopoulos I. An integrative, multi-scale, genome-wide model reveals the phenotypic landscape of Escherichia coli. Mol Syst Biol. 2014;10:735.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Covert MW, Xiao N, Chen TJ, Karr JR. Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics. 2008;24(18):2044–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee JM, Gianchandani EP, Eddy JA, Papin JA. Dynamic analysis of integrated signaling, metabolic, and regulatory networks. PLoS Comput Biol. 2008;4(5):e1000086.

    Article  PubMed  Google Scholar 

  11. Orth JD, Thiele I, Palsson BO. What is flux balance analysis? Nat Biotechnol. 2010;28(3):245–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kuhn M, Szklarczyk D, Pletscher-Frankild S, Blicher TH, von Mering C, Jensen LJ, Bork P. STITCH 4: integration of protein-chemical interactions with user data. Nucleic Acids Res. 2014;42:D401-407.

    Article  CAS  PubMed  Google Scholar 

  13. Whitehead E. The regulation of enzyme activity and allosteric transition. Prog Biophys Mol Biol. 1970;21:321–97.

    Article  CAS  PubMed  Google Scholar 

  14. Latchman DS. Transcription factors: an overview. Int J Biochem Cell Biol. 1997;29(12):1305–12.

    Article  CAS  PubMed  Google Scholar 

  15. Missiakas D, Raina S. The extracytoplasmic function sigma factors: role and regulation. Mol Microbiol. 1998;28(6):1059–66.

    Article  CAS  PubMed  Google Scholar 

  16. Na D, Yoo SM, Chung H, Park H, Park JH, Lee SY. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat Biotechnol. 2013;31(2):170–4.

    Article  CAS  PubMed  Google Scholar 

  17. Yanofsky C. Attenuation in the control of expression of bacterial operons. Nature. 1981;289(5800):751–8.

    Article  CAS  PubMed  Google Scholar 

  18. Wolfe AJ. Bacterial protein acetylation: new discoveries unanswered questions. Curr Genet. 2015;62:335–41.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hu LI, Lima BP, Wolfe AJ. Bacterial protein acetylation: the dawning of a new age. Mol Microbiol. 2010;77(1):15–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Su C, Peregrin-Alvarez JM, Butland G, Phanse S, Fong V, Emili A, Parkinson J. Bacteriome.org—an integrated protein interaction database for E. coli. Nucleic Acids Res. 2007;36(suppl_1):D632–6.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kim H, Shim JE, Shin J, Lee I. EcoliNet: a database of cofunctional gene network for Escherichia coli. Database J Biol Databases Curation. 2015;2015:1–8.

    Article  Google Scholar 

  22. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13.

    Article  CAS  Google Scholar 

  23. Gumerov VM, Ortega DR, Adebali O, Ulrich LE, Zhulin IB. MiST 3.0: an updated microbial signal transduction database with an emphasis on chemosensory systems. Nucleic Acids Res. 2020;48(D1):D459–64.

    Article  CAS  PubMed  Google Scholar 

  24. Santos-Zavaleta A, Salgado H, Gama-Castro S, Sanchez-Perez M, Gomez-Romero L, Ledezma-Tejeida D, Garcia-Sotelo JS, Alquicira-Hernandez K, Muniz-Rascado LJ, Pena-Loredo P, et al. RegulonDB v 10.5: tackling challenges to unify classic and high throughput knowledge of gene regulation in E. coli K-12. Nucleic Acids Res. 2019;47(D1):D212–20.

    Article  CAS  PubMed  Google Scholar 

  25. Chang A, Jeske L, Ulbrich S, Hofmann J, Koblitz J, Schomburg I, Neumann-Schaal M, Jahn D, Schomburg D. BRENDA, the ELIXIR core data resource in 2021: new developments and updates. Nucleic Acids Res. 2021;49(D1):D498–508.

    Article  CAS  PubMed  Google Scholar 

  26. Keseler IM, Mackie A, Santos-Zavaleta A, Billington R, Bonavides-Martínez C, Caspi R, Fulcher C, Gama-Castro S, Kothari A, Krummenacker M, et al. The EcoCyc database: reflecting new knowledge about Escherichia coli K-12. Nucleic Acids Res. 2016;45(D1):D543–50.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Szklarczyk D, Santos A, von Mering C, Jensen LJ, Bork P, Kuhn M. STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 2016;44(D1):D380-384.

    Article  CAS  PubMed  Google Scholar 

  28. AbouElfetouh A, Kuhn ML, Hu LI, Scholle MD, Sorensen DJ, Sahu AK, Becher D, Antelmann H, Mrksich M, Anderson WF, et al. The E. coli sirtuin CobB shows no preference for enzymatic and nonenzymatic lysine acetylation substrate sites. MicrobiologyOpen. 2015;4(1):66–83.

    Article  CAS  PubMed  Google Scholar 

  29. Colak G, Xie ZY, Zhu AY, Dai LZ, Lu ZK, Zhang Y, Wan XL, Chen Y, Cha YH, Lin HN, et al. Identification of lysine succinylation substrates and the succinylation regulatory enzyme CobB in Escherichia coli. Mol Cell Proteomics. 2013;12(12):3509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kuhn ML, Zemaitaitis B, Hu LI, Sahu A, Sorensen D, Minasov G, Lima BP, Scholle M, Mrksich M, Anderson WF, et al. Structural, kinetic and proteomic characterization of acetyl phosphate-dependent bacterial protein acetylation. PLoS One. 2014;9(4):e94816.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schilling B, Christensen D, Davis R, Sahu AK, Hu LI, Walker-Peddakotla A, Sorensen DJ, Zemaitaitis B, Gibson BW, Wolfe AJ. Protein acetylation dynamics in response to carbon overflow in Escherichia coli. Mol Microbiol. 2015;98(5):847–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schmidt A, Kochanowski K, Vedelaar S, Ahrne E, Volkmer B, Callipo L, Knoops K, Bauer M, Aebersold R, Heinemann M. The quantitative and condition-dependent Escherichia coli proteome. Nat Biotechnol. 2016;34(1):104–10.

    Article  CAS  PubMed  Google Scholar 

  33. Weinert BT, Iesmantavicius V, Wagner SA, Scholz C, Gummesson B, Beli P, Nystrom T, Choudhary C. Acetyl-phosphate is a critical determinant of lysine acetylation in E. coli. Mol Cell. 2013;51(2):265–72.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang K, Zheng S, Yang JS, Chen Y, Cheng Z. Comprehensive profiling of protein lysine acetylation in Escherichia coli. J Proteome Res. 2013;12(2):844–51.

    Article  CAS  PubMed  Google Scholar 

  35. Soares NC, Spat P, Krug K, Macek B. Global dynamics of the Escherichia coli proteome and phosphoproteome during growth in minimal medium. J Proteome Res. 2013;12(6):2611–21.

    Article  CAS  PubMed  Google Scholar 

  36. Potel CM, Lin M-H, Heck AJR, Lemeer S. Widespread bacterial protein histidine phosphorylation revealed by mass spectrometry-based proteomics. Nat Methods. 2018;15:187.

    Article  CAS  PubMed  Google Scholar 

  37. Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, Palsson BO. A comprehensive genome-scale reconstruction of Escherichia coli metabolism–2011. Mol Syst Biol. 2011;7:535.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ortet P, Whitworth DE, Santaella C, Achouak W, Barakat M. P2CS: updates of the prokaryotic two-component systems database. Nucleic Acids Res. 2015;43:D536-541.

    Article  CAS  PubMed  Google Scholar 

  39. Kim M, Rai N, Zorraquino V, Tagkopoulos I. Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli. Nat Commun. 2016;7:13090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hu P, Janga SC, Babu M, Diaz-Mejia JJ, Butland G, Yang W, Pogoutse O, Guo X, Phanse S, Wong P, et al. Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins. PLoS Biol. 2009;7(4):e96.

    Article  PubMed  Google Scholar 

  41. Ma HW, Zeng AP. Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics. 2003;19(2):270–7.

    Article  CAS  PubMed  Google Scholar 

  42. Lopez-Ibanez J, Pazos F, Chagoyen M. MBROLE 2.0-functional enrichment of chemical compounds. Nucleic Acids Res. 2016;44(W1):W201-204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. ChEBI in 2016: improved services and an expanding collection of metabolites. Nucleic Acids Res. 2016;44(D1):D1214-1219.

    Article  CAS  PubMed  Google Scholar 

  44. Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49(D1):D545–51.

    Article  CAS  PubMed  Google Scholar 

  45. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vazquez-Fresno R, Sajed T, Johnson D, Li C, Karu N, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2018;46(D1):D608–17.

    Article  CAS  PubMed  Google Scholar 

  46. von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, Bork P. Comparative assessment of large-scale data sets of protein-protein interactions. Nature. 2002;417(6887):399–403.

    Article  Google Scholar 

  47. Sprinzak E, Sattath S, Margalit H. How reliable are experimental protein-protein interaction data? J Mol Biol. 2003;327(5):919–23.

    Article  CAS  PubMed  Google Scholar 

  48. Hart GT, Ramani AK, Marcotte EM. How complete are current yeast and human protein-interaction networks? Genome Biol. 2006;7(11):120.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Diallo I, Seve M, Cunin V, Minassian F, Poisson JF, Michelland S, Bourgoin-Voillard S. Current trends in protein acetylation analysis. Expert Rev Proteomic. 2019;16(2):139–59.

    Article  CAS  Google Scholar 

  50. Rahman SA, Schomburg D. Observing local and global properties of metabolic pathways: ‘load points’ and ‘choke points’ in the metabolic networks. Bioinformatics. 2006;22(14):1767–74.

    Article  CAS  PubMed  Google Scholar 

  51. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2013;41:D36-42.

    Article  CAS  PubMed  Google Scholar 

  52. Maglott D, Ostell J, Pruitt KD, Tatusova T. Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res. 2011;39:D52–7.

    Article  CAS  PubMed  Google Scholar 

  53. Hagberg A, Swart P, S Chult D. Exploring network structure, dynamics, and function using NetworkX. 2008.

  54. Lu Y, Valentine JS. Engineering metal-binding sites in proteins. Curr Opin Struct Biol. 1997;7(4):495–500.

    Article  CAS  PubMed  Google Scholar 

  55. Gray HB. Biological inorganic chemistry at the beginning of the 21st century. PNAS. 2003;100(7):3563–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wilson CJ, Apiyo D, Wittung-Stafshede P. Role of cofactors in metalloprotein folding. Q Rev Biophys. 2004;37(3–4):285–314.

    Article  CAS  PubMed  Google Scholar 

  57. Chen W, Bailey JE. Application of the cross-regulation system as a metabolic switch. Biotechnol Bioeng. 1994;43(11):1190–3.

    Article  CAS  PubMed  Google Scholar 

  58. Li Y, Cong H, Liu B, Song J, Sun X, Zhang J, Yang Q. Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NADPH level. Antonie Van Leeuwenhoek. 2016;109(9):1185–97.

    Article  CAS  PubMed  Google Scholar 

  59. Park JH, Lee KH, Kim TY, Lee SY. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. PNAS. 2007;104(19):7797–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim SY, Lee J, Lee SY. Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine. Biotechnol Bioeng. 2015;112(2):416–21.

    Article  CAS  PubMed  Google Scholar 

  61. Chen Z, Bommareddy RR, Frank D, Rappert S, Zeng AP. Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum. Appl Environ Microbiol. 2014;80(4):1388–93.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Geng F, Chen Z, Zheng P, Sun J, Zeng AP. Exploring the allosteric mechanism of dihydrodipicolinate synthase by reverse engineering of the allosteric inhibitor binding sites and its application for lysine production. Appl Microbiol Biotechnol. 2013;97(5):1963–71.

    Article  CAS  PubMed  Google Scholar 

  63. Papin JA, Hunter T, Palsson BO, Subramaniam S. Reconstruction of cellular signalling networks and analysis of their properties. Nat Rev Mol Cell Biol. 2005;6:99.

    Article  CAS  PubMed  Google Scholar 

  64. Weng G, Bhalla US, Iyengar R. Complexity in biological signaling systems. Science. 1999;284(5411):92–6.

    Article  CAS  PubMed  Google Scholar 

  65. Urbanowski ML, Stauffer LT, Stauffer GV. The gcvB gene encodes a small untranslated RNA involved in expression of the dipeptide and oligopeptide transport systems in Escherichia coli. Mol Microbiol. 2000;37(4):856–68.

    Article  CAS  PubMed  Google Scholar 

  66. Nielsen AAK, Der BS, Shin J, Vaidyanathan P, Paralanov V, Strychalski EA, Ross D, Densmore D, Voigt CA. Genetic circuit design automation. Science. 2016;352(6281):aac7341.

    Article  PubMed  Google Scholar 

  67. Zhang F, Carothers JM, Keasling JD. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol. 2012;30:354.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFA0900300, 2018YFA0901400); the International Partnership Program of Chinese Academy of Sciences (153D31KYSB20170121); Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project (TSBICIP-PTJS-001, TSBICIP-KJGG-005).

Funding

Publication costs are funded by the National Key Research and Development Program of China (2018YFA0900300, 2018YFA0901400); the International Partnership Program of Chinese Academy of Sciences (153D31KYSB20170121); Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project (TSBICIP-PTJS-001, TSBICIP-KJGG-005).

Author information

Authors and Affiliations

Authors

Contributions

ZM and HM participated in the design of the study. ZM collected and analyzed the data. ZM and TH designed the online website. ZM, HM, TH and QY wrote and edited the manuscript. All authors revised and approved the final manuscript.

Corresponding author

Correspondence to Hongwu Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Written informed consent for publication was obtained from all participants.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1113 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Z., Huang, T., Yuan, Q. et al. Construction and analysis of an integrated biological network of Escherichia coli. Syst Microbiol and Biomanuf 2, 165–176 (2022). https://doi.org/10.1007/s43393-021-00051-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-021-00051-x

Keywords

Navigation