Konieczny MR, Senyurt H, Krauspe R (2013) Epidemiology of adolescent idiopathic scoliosis. J Child Orthop 7(1):3–9. https://doi.org/10.1007/s11832-012-0457-4
Article
PubMed
Google Scholar
Daruwalla JS, Balasubramaniam P, Chay SO, Rajan U, Lee HP (1985) Idiopathic scoliosis. Prevalence and ethnic distribution in Singapore schoolchildren. J Bone Jt Surg Br 67(2):182–184. https://doi.org/10.1302/0301-620x.67b2.3980521
CAS
Article
Google Scholar
Soucacos PN, Soucacos PK, Zacharis KC, Beris AE, Xenakis TA (1997) School-screening for scoliosis. A prospective epidemiological study in northwestern and central Greece. J Bone Jt Surg Am 79(10):1498–1503. https://doi.org/10.2106/00004623-199710000-00006
CAS
Article
Google Scholar
Ratahi ED, Crawford HA, Thompson JM, Barnes MJ (2002) Ethnic variance in the epidemiology of scoliosis in New Zealand. J Pediatr Orthop 22(6):784–787
PubMed
Google Scholar
Wong HK, Hui JH, Rajan U, Chia HP (2005) Idiopathic scoliosis in Singapore schoolchildren: a prevalence study 15 years into the screening program. Spine (Phila Pa 1976) 30(10):1188–1196. https://doi.org/10.1097/01.brs.0000162280.95076.bb
Article
Google Scholar
Kamtsiuris P, Atzpodien K, Ellert U, Schlack R, Schlaud M (2007) Prävalenz von somatischen Erkrankungen bei Kindern und Jugendlichen in Deutschland. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 50(5):686–700. https://doi.org/10.1007/s00103-007-0230-x
CAS
Article
PubMed
Google Scholar
Cilli K, Tezeren G, Taş T, Bulut O, Oztürk H, Oztemur Z et al (2009) School screening for scoliosis in Sivas, Turkey. Acta Orthop Traumatol Turc 43(5):426–430. https://doi.org/10.3944/aott.2009.426
Article
PubMed
Google Scholar
Nery LS, Halpern R, Nery PC, Nehme KP, Stein AT (2010) Prevalence of scoliosis among school students in a town in southern Brazil. Sao Paulo Med J 128(2):69–73. https://doi.org/10.1590/s1516-31802010000200005
Article
PubMed
Google Scholar
Suh SW, Modi HN, Yang JH, Hong JY (2011) Idiopathic scoliosis in Korean schoolchildren: a prospective screening study of over 1 million children. Eur Spine J 20(7):1087–1094. https://doi.org/10.1007/s00586-011-1695-8
Article
PubMed
PubMed Central
Google Scholar
Dunn J, Henrikson N, Morrison C et al (2018) Screening for adolescent idiopathic scoliosis: a systematic evidence review for the US Preventive Services Task Force [Internet]. Evidence synthesis. Agency for Healthcare Research and Quality (AHRQ), Rockville
Book
Google Scholar
Jada A, Mackel CE, Hwang SW, Samdani AF, Stephen JH, Bennett JT et al (2017) Evaluation and management of adolescent idiopathic scoliosis: a review. Neurosurg Focus 43(4):E2. https://doi.org/10.3171/2017.7.Focus17297
Article
PubMed
Google Scholar
Bettany-Saltikov J, Turnbull D, Ng SY, Webb R (2017) Management of spinal deformities and evidence of treatment effectiveness. Open Orthop J 11:1521–1547. https://doi.org/10.2174/1874325001711011521
Article
PubMed
PubMed Central
Google Scholar
Ovadia D (2013) Classification of adolescent idiopathic scoliosis (AIS). J Child Orthop 7(1):25–28. https://doi.org/10.1007/s11832-012-0459-2
Article
PubMed
Google Scholar
Al-Mohrej OA, Aldakhil SS, Al-Rabiah MA, Al-Rabiah AM (2020) Surgical treatment of adolescent idiopathic scoliosis: complications. Ann Med Surg 52:19–23. https://doi.org/10.1016/j.amsu.2020.02.004
Article
Google Scholar
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA): transparent reporting of systematic reviews and meta-analyses (2021). http://www.prisma-statement.org/. Accessed 18 Apr 2021
Newhouse R, Dearholt S, Poe S, Pugh LC, White KM (2005) Evidence-based practice: a practical approach to implementation. J Nurs Adm 35(1):35–40. https://doi.org/10.1097/00005110-200501000-00013
Article
PubMed
Google Scholar
Dearholt S, Dang D (2012) Johns Hopkins nursing evidence-based practice: model and guidelines, 2nd edn. Nursisng IFJH, Berlin
Google Scholar
Qiu Y, Zhu F, Wang B, Yu Y, Zhu Z, Qian B et al (2011) Comparison of surgical outcomes of lenke type 1 idiopathic scoliosis: vertebral coplanar alignment versus derotation technique. J Spinal Disord Tech 24(8):492–499. https://doi.org/10.1097/BSD.0b013e3182060337
Article
PubMed
Google Scholar
Etemadifar MR, Andalib A, Rahimian A, Nodushan S (2018) Cobalt chromium-titanium rods versus titanium-titanium rods for treatment of adolescent idiopathic scoliosis; which type of rod has better postoperative outcomes? Rev Assoc Med Bras (1992) 64(12):1085–1090. https://doi.org/10.1590/1806-9282.64.12.1085
Article
Google Scholar
Faldini C, Perna F, Geraci G, Pardo F, Mazzotti A, Pilla F et al (2018) Triplanar correction of adolescent idiopathic scoliosis by asymmetrically shaped and simultaneously applied rods associated with direct vertebral rotation: clinical and radiological analysis of 36 patients. Eur Spine J 27(Suppl 2):165–174. https://doi.org/10.1007/s00586-018-5595-z
Article
PubMed
Google Scholar
Sabah Y, Clément JL, Solla F, Rosello O, Rampal V (2018) Cobalt-chrome and titanium alloy rods provide similar coronal and sagittal correction in adolescent idiopathic scoliosis. Orthop Traumatol Surg Res 104(7):1073–1077. https://doi.org/10.1016/j.otsr.2018.07.018
Article
PubMed
Google Scholar
Sudo H, Abe Y, Kokabu T, Kuroki K, Iwata A, Iwasaki N (2018) Impact of multilevel facetectomy and rod curvature on anatomical spinal reconstruction in thoracic adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 43(19):E1135–E1142. https://doi.org/10.1097/brs.0000000000002628
Article
Google Scholar
Miyazaki M, Ishihara T, Abe T, Kanezaki S, Notani N, Kataoka M et al (2019) Effect of thoracic kyphosis formation and rotational correction by direct vertebral rotation after the simultaneous double rod rotation technique for idiopathic scoliosis. Clin Neurol Neurosurg 178:56–62. https://doi.org/10.1016/j.clineuro.2019.01.014
Article
PubMed
Google Scholar
Abul-Kasim K, Karlsson MK, Ohlin A (2011) Increased rod stiffness improves the degree of deformity correction by segmental pedicle screw fixation in adolescent idiopathic scoliosis. Scoliosis 6:13. https://doi.org/10.1186/1748-7161-6-13
Article
PubMed
PubMed Central
Google Scholar
Machino M, Kawakami N, Ohara T, Saito T, Tauchi R, Imagama S (2021) Three-dimensional analysis of preoperative and postoperative rib cage parameters by simultaneous biplanar radiographic scanning technique in adolescent idiopathic scoliosis: minimum 2-year follow-up. Spine (Phila Pa 1976) 46(2):E105–E113. https://doi.org/10.1097/brs.0000000000003743
Article
Google Scholar
Kluck D, Newton PO, Sullivan TB, Yaszay B, Jeffords M, Bastrom TP et al (2020) A 3D parameter can guide concave rod contour for the correction of hypokyphosis in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 45(19):E1264–E1271. https://doi.org/10.1097/brs.0000000000003566
Article
Google Scholar
Shen K, Clement RC, Yaszay B, Bastrom T, Upasani VV, Newton PO (2020) Three-dimensional analysis of the sagittal profile in surgically treated Lenke 5 curves in adolescent idiopathic scoliosis. Spine Deform 8(6):1287–1294. https://doi.org/10.1007/s43390-020-00168-4
Article
PubMed
Google Scholar
Miyazaki M, Ishihara T, Abe T, Kanezaki S, Notani N, Kataoka M et al (2020) Analysis of reciprocal changes in upper cervical profiles after posterior spinal fusion with the simultaneous double rod rotation technique for adolescent idiopathic scoliosis. Orthop Traumatol Surg Res 106(7):1275–1279. https://doi.org/10.1016/j.otsr.2020.03.017
Article
PubMed
Google Scholar
Feeley I, Hughes A, Cassidy N, Green C (2020) Use of a novel corrective device for correction of deformities in adolescent idiopathic scoliosis. Ir J Med Sci 189(1):203–210. https://doi.org/10.1007/s11845-019-02031-6
Article
PubMed
Google Scholar
Chang DG, Suk SI, Song KS, Kim YH, Oh IS, Kim SI et al (2019) How to avoid distal adding-on phenomenon for rigid curves in major thoracolumbar and lumbar adolescent idiopathic scoliosis? identifying the incidence of distal adding-on by selection of lowest instrumented vertebra. World Neurosurg 132:e472–e478. https://doi.org/10.1016/j.wneu.2019.08.110
Article
PubMed
Google Scholar
Violas P, Bryand C, Gomes C, Sauleau P, Lucas G (2019) Correction of thoracic adolescent idiopathic scoliosis via a direct convex rod manoeuvre. Orthop Traumatol Surg Res 105(6):1171–1174. https://doi.org/10.1016/j.otsr.2019.05.007
Article
PubMed
Google Scholar
Newton PO, Wu KW, Bastrom TP, Bartley CE, Upasani VV, Yaszay B (2019) What factors are associated with kyphosis restoration in lordotic adolescent idiopathic scoliosis patients? Spine Deform 7(4):596–601. https://doi.org/10.1016/j.jspd.2018.11.006
Article
PubMed
Google Scholar
Lastikka M, Oksanen H, Helenius L, Pajulo O, Helenius I (2019) Comparison of circular and sagittal reinforced rod options on sagittal balance restoration in adolescents undergoing pedicle screw instrumentation for idiopathic scoliosis. World Neurosurg 127:e1020–e1025. https://doi.org/10.1016/j.wneu.2019.04.028
Article
PubMed
Google Scholar
Mac-Thiong JM, Remondino R, Joncas J, Parent S, Labelle H (2019) Long-term follow-up after surgical treatment of adolescent idiopathic scoliosis using high-density pedicle screw constructs: Is 5-year routine visit required? Eur Spine J 28(6):1296–1300. https://doi.org/10.1007/s00586-019-05887-5
Article
PubMed
Google Scholar
Uehara M, Takahashi J, Ikegami S, Oba H, Kuraishi S, Futatsugi T et al (2019) Determination of optimal screw number based on correction angle for main thoracic curve in adolescent idiopathic scoliosis. J Orthop Sci 24(3):415–419. https://doi.org/10.1016/j.jos.2018.11.004
Article
PubMed
Google Scholar
Zhang H, Sucato DJ (2019) A novel posterior rod-link-reducer system provides safer, easier, and better correction of severe scoliosis. Spine Deform 7(3):445–453. https://doi.org/10.1016/j.jspd.2018.09.001
Article
PubMed
Google Scholar
Clément JL, Pelletier Y, Solla F, Rampal V (2019) Surgical increase in thoracic kyphosis increases unfused lumbar lordosis in selective fusion for thoracic adolescent idiopathic scoliosis. Eur Spine J 28(3):581–589. https://doi.org/10.1007/s00586-018-5740-8
Article
PubMed
Google Scholar
Ilharreborde B, Simon AL, Ferrero E, Mazda K (2019) How to optimize axial correction without altering thoracic sagittal alignment in hybrid constructs with sublaminar bands: description of the “frame” technique. Spine Deform 7(2):245–253. https://doi.org/10.1016/j.jspd.2018.08.013
Article
PubMed
Google Scholar
Ketenci IE, Yanik HS, Erdem S (2018) The effect of upper instrumented vertebra level on cervical sagittal alignment in Lenke 1 adolescent idiopathic scoliosis. Orthop Traumatol Surg Res 104(5):623–629. https://doi.org/10.1016/j.otsr.2018.06.003
Article
PubMed
Google Scholar
Kaliya-Perumal AK, Yeh YC, Niu CC, Chen LH, Chen WJ, Lai PL (2018) Is convex derotation equally effective as concave derotation for achieving adequate correction of selective lenke’s type- 1 scoliosis? Indian J Orthop 52(4):363–368. https://doi.org/10.4103/ortho.IJOrtho_447_16
Article
PubMed
PubMed Central
Google Scholar
Berger RJ, Sultan AA, Tanenbaum JE, Cantrell WA, Gurd DP, Kuivila TE et al (2018) Cervical sagittal alignment and the impact of posterior spinal instrumented fusion in patients with Lenke type 1 adolescent idiopathic scoliosis. J Spine Surg 4(2):342–348. https://doi.org/10.21037/jss.2018.05.17
Article
PubMed
PubMed Central
Google Scholar
Seki S, Newton PO, Yahara Y, Makino H, Nakano M, Hirano N et al (2018) Differential rod contouring is essential for improving vertebral rotation in patients with adolescent idiopathic scoliosis: thoracic curves assessed with intraoperative CT. Spine (Phila Pa 1976) 43(10):E585–E591. https://doi.org/10.1097/brs.0000000000002428
Article
Google Scholar
Cheung JPY, Samartzis D, Yeung K, To M, Luk KDK, Cheung KM (2018) A randomized double-blinded clinical trial to evaluate the safety and efficacy of a novel superelastic nickel-titanium spinal rod in adolescent idiopathic scoliosis: 5-year follow-up. Eur Spine J 27(2):327–339. https://doi.org/10.1007/s00586-017-5245-x
Article
PubMed
Google Scholar
Allia J, Clément JL, Rampal V, Leloutre B, Rosello O, Solla F (2018) Influence of derotation connectors on 3d surgical correction of adolescent idiopathic scoliosis. Clin Spine Surg 31(3):E209–E215. https://doi.org/10.1097/bsd.0000000000000621
Article
PubMed
Google Scholar
Luo M, Jiang H, Wang W, Li N, Shen M, Li P et al (2017) Influence of screw density on thoracic kyphosis restoration in hypokyphotic adolescent idiopathic scoliosis. BMC Musculoskelet Disord 18(1):526. https://doi.org/10.1186/s12891-017-1877-6
Article
PubMed
PubMed Central
Google Scholar
Zifang H, Hengwei F, Yaolong D, Wenyuan S, Qifei W, Lei C et al (2017) Convex-rod derotation maneuver on lenke type I adolescent idiopathic scoliosis. Neurosurgery 81(5):844–851. https://doi.org/10.1093/neuros/nyx102
Article
PubMed
Google Scholar
Ohrt-Nissen S, Dragsted C, Dahl B, Ferguson JAI, Gehrchen M (2017) Improved restoration of thoracic kyphosis using a rod construct with differentiated rigidity in the surgical treatment of adolescent idiopathic scoliosis. Neurosurg Focus 43(4):E6. https://doi.org/10.3171/2017.7.Focus17351
Article
PubMed
Google Scholar
Faldini C, Perna F, Borghi R, Chehrassan M, Stefanini N, Ruffilli A et al (2017) Direct vertebral rotation and differently shaped dual rod translation technique in adolescent idiopathic scoliosis. J Biol Regul Homeost Agents 31(4 suppl 1):91–96
CAS
PubMed
Google Scholar
Lamerain M, Bachy M, Dubory A, Kabbaj R, Scemama C, Vialle R (2017) All-pedicle screw fixation with 6-mm-diameter cobalt-chromium rods provides optimized sagittal correction of adolescent idiopathic scoliosis. Clin Spine Surg 30(7):E857–E863. https://doi.org/10.1097/bsd.0000000000000413
Article
PubMed
Google Scholar
Le Navéaux F, Labelle H, Parent S, Newton PO, Aubin CE (2017) Are there 3D changes in spine and rod shape in the 2 years after adolescent idiopathic scoliosis instrumentation? Spine (Phila Pa 1976) 42(15):1158–1164. https://doi.org/10.1097/brs.0000000000002056
Article
Google Scholar
Chang DG, Yang JH, Suk SI, Suh SW, Kim YH, Cho W et al (2017) Importance of distal fusion level in major thoracolumbar and lumbar adolescent idiopathic scoliosis treated by rod derotation and direct vertebral rotation following pedicle screw instrumentation. Spine (Phila Pa 1976) 42(15):E890-e898. https://doi.org/10.1097/brs.0000000000001998
Article
Google Scholar
Urbanski W, Wolanczyk MJ, Jurasz W, Kulej M, Morasiewicz P, Dragan SL et al (2017) The impact of direct vertebral rotation (DVR) on radiographic outcome in surgical correction of idiopathic scoliosis. Arch Orthop Trauma Surg 137(7):879–885. https://doi.org/10.1007/s00402-017-2700-4
Article
PubMed
PubMed Central
Google Scholar
Angelliaume A, Ferrero E, Mazda K, Le Hanneur M, Accabled F, de Gauzy JS et al (2017) Titanium vs cobalt chromium: what is the best rod material to enhance adolescent idiopathic scoliosis correction with sublaminar bands? Eur Spine J 26(6):1732–1738. https://doi.org/10.1007/s00586-016-4838-0
Article
PubMed
Google Scholar
Lonner BS, Ren Y, Newton PO, Shah SA, Samdani AF, Shufflebarger HL et al (2017) Risk factors of proximal junctional kyphosis in adolescent idiopathic scoliosis-the pelvis and other considerations. Spine Deform 5(3):181–188. https://doi.org/10.1016/j.jspd.2016.10.003
Article
PubMed
Google Scholar
Kim SS, Kim JH, Suk SI (2017) Effect of direct vertebral rotation on the uninstrumented lumbar curve in thoracic adolescent idiopathic scoliosis. Asian Spine J 11(1):127–137. https://doi.org/10.4184/asj.2017.11.1.127
Article
PubMed
PubMed Central
Google Scholar
Panya-amornwat T, Methatien A, Pattarapongsanti A (2017) Comparison of surgical results of direct vertebral rotation with those of simple rod derotation for correction of adolescent idiopathic scoliosis. J Med Assoc Thai 100(Suppl 1):S116–S123
PubMed
Google Scholar
Sudo H, Abe Y, Kokabu T, Ito M, Abumi K, Ito YM et al (2016) Correlation analysis between change in thoracic kyphosis and multilevel facetectomy and screw density in main thoracic adolescent idiopathic scoliosis surgery. Spine J 16(9):1049–1054. https://doi.org/10.1016/j.spinee.2016.04.014
Article
PubMed
Google Scholar
Kokabu T, Sudo H, Abe Y, Ito M, Ito YM, Iwasaki N (2016) Effects of multilevel facetectomy and screw density on postoperative changes in spinal rod contour in thoracic adolescent idiopathic scoliosis surgery. PLoS ONE 11(8):e0161906. https://doi.org/10.1371/journal.pone.0161906
CAS
Article
PubMed
PubMed Central
Google Scholar
Gehrchen M, Ohrt-Nissen SR, Hallager DW, Dahl B (2016) A uniquely shaped rod improves curve correction in surgical treatment of adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 41(14):1139–1145. https://doi.org/10.1097/brs.0000000000001504
Article
Google Scholar
Huang Z, Wang Q, Yang J, Yang J, Li F (2016) Vertebral derotation by vertebral column manipulator improves postoperative radiographs outcomes of lenke 5C patients for follow-up of minimum 2 years. Clin Spine Surg 29(3):E157–E161. https://doi.org/10.1097/bsd.0000000000000123
Article
PubMed
Google Scholar
Seki S, Kawaguchi Y, Nakano M, Makino H, Mine H, Kimura T (2016) Rod rotation and differential rod contouring followed by direct vertebral rotation for treatment of adolescent idiopathic scoliosis: effect on thoracic and thoracolumbar or lumbar curves assessed with intraoperative computed tomography. Spine J 16(3):365–371. https://doi.org/10.1016/j.spinee.2015.11.032
Article
PubMed
Google Scholar
Sudo H, Abe Y, Abumi K, Iwasaki N, Ito M (2016) Surgical treatment of double thoracic adolescent idiopathic scoliosis with a rigid proximal thoracic curve. Eur Spine J 25(2):569–577. https://doi.org/10.1007/s00586-015-4139-z
Article
PubMed
Google Scholar
Pankowski R, Roclawski M, Ceynowa M, Mikulicz M, Mazurek T, Kloc W (2016) Direct vertebral rotation versus single concave rod rotation: low-dose intraoperative computed tomography evaluation of spine derotation in adolescent idiopathic scoliosis surgery. Spine (Phila Pa 1976) 41(10):864–871. https://doi.org/10.1097/brs.0000000000001363
Article
Google Scholar
Liu H, Li Z, Li S, Zhang K, Yang H, Wang J et al (2015) Main thoracic curve adolescent idiopathic scoliosis: association of higher rod stiffness and concave-side pedicle screw density with improvement in sagittal thoracic kyphosis restoration. J Neurosurg Spine 22(3):259–266. https://doi.org/10.3171/2014.10.Spine1496
Article
PubMed
Google Scholar
Terai H, Toyoda H, Suzuki A, Dozono S, Yasuda H, Tamai K et al (2015) A new corrective technique for adolescent idiopathic scoliosis: convex manipulation using 6.35 mm diameter pure titanium rod followed by concave fixation using 6.35 mm diameter titanium alloy. Scoliosis 10(Suppl 2):S14. https://doi.org/10.1186/1748-7161-10-s2-s14
Article
PubMed
PubMed Central
Google Scholar
Tang X, Zhao J, Zhang Y (2015) Radiographic, clinical, and patients’ assessment of segmental direct vertebral body derotation versus simple rod derotation in main thoracic adolescent idiopathic scoliosis: a prospective, comparative cohort study. Eur Spine J 24(2):298–305. https://doi.org/10.1007/s00586-014-3650-y
Article
PubMed
Google Scholar
Takahashi J, Ikegami S, Kuraishi S, Shimizu M, Futatsugi T, Kato H (2014) Skip pedicle screw fixation combined with Ponte osteotomy for adolescent idiopathic scoliosis. Eur Spine J 23(12):2689–2695. https://doi.org/10.1007/s00586-014-3505-6
Article
PubMed
Google Scholar
Huang TH, Ma HL, Wang ST, Chou PH, Ying SH, Liu CL et al (2014) Does the size of the rod affect the surgical results in adolescent idiopathic scoliosis? 5.5-mm versus 6.35-mm rod. Spine J 14(8):1545–1550. https://doi.org/10.1016/j.spinee.2013.09.026
Article
PubMed
Google Scholar
Clement JL, Chau E, Geoffray A, Suisse G (2014) Restoration of thoracic kyphosis by simultaneous translation on two rods for adolescent idiopathic scoliosis. Eur Spine J 23(Suppl 4):S438–S445. https://doi.org/10.1007/s00586-014-3340-9
Article
PubMed
Google Scholar
de Sales GJ, Jouve JL, Ilharreborde B, Blondel B, Accadbled F, Mazda K (2014) Use of the Universal Clamp in adolescent idiopathic scoliosis. Eur Spine J 23(Suppl 4):S446–S451. https://doi.org/10.1007/s00586-014-3341-8
Article
Google Scholar
Cao Y, Xiong W, Li F (2014) Pedicle screw versus hybrid construct instrumentation in adolescent idiopathic scoliosis: meta-analysis of thoracic kyphosis. Spine (Phila Pa 1976) 39(13):E800–E810. https://doi.org/10.1097/brs.0000000000000342
Article
Google Scholar
Sudo H, Ito M, Abe Y, Abumi K, Takahata M, Nagahama K et al (2014) Surgical treatment of Lenke 1 thoracic adolescent idiopathic scoliosis with maintenance of kyphosis using the simultaneous double-rod rotation technique. Spine (Phila Pa 1976) 39(14):1163–1169. https://doi.org/10.1097/brs.0000000000000364
Article
Google Scholar
Lamerain M, Bachy M, Delpont M, Kabbaj R, Mary P, Vialle R (2014) CoCr rods provide better frontal correction of adolescent idiopathic scoliosis treated by all-pedicle screw fixation. Eur Spine J 23(6):1190–1196. https://doi.org/10.1007/s00586-014-3168-3
Article
PubMed
Google Scholar
Voleti PB, Shen FH, Arlet V (2014) Failure of monoaxial pedicle screws at the distal end of scoliosis constructs: a case series. Spine Deform 2(2):110–121. https://doi.org/10.1016/j.jspd.2013.11.004
Article
PubMed
Google Scholar
Prince DE, Matsumoto H, Chan CM, Gomez JA, Hyman JE, Roye DP Jr et al (2014) The effect of rod diameter on correction of adolescent idiopathic scoliosis at two years follow-up. J Pediatr Orthop 34(1):22–28. https://doi.org/10.1097/BPO.0b013e318288b3c1
Article
PubMed
Google Scholar
Di Silvestre M, Lolli F, Bakaloudis G, Maredi E, Vommaro F, Pastorelli F (2013) Apical vertebral derotation in the posterior treatment of adolescent idiopathic scoliosis: myth or reality? Eur Spine J 22(2):313–323. https://doi.org/10.1007/s00586-012-2372-2
Article
PubMed
Google Scholar
Okada E, Watanabe K, Hosogane N, Shiono Y, Takahashi Y, Nishiwaki Y et al (2013) Comparison of stainless steel and titanium alloy instruments in posterior correction and fusion surgery for adolescent idiopathic scoliosis-prospective cohort study with minimum 2-year follow-up. J Med Biol Eng 33:325–329
Article
Google Scholar
Demura S, Yaszay B, Carreau JH, Upasani VV, Bastrom TP, Bartley CE et al (2013) Maintenance of thoracic kyphosis in the 3D correction of thoracic adolescent idiopathic scoliosis using direct vertebral derotation. Spine Deform 1(1):46–50. https://doi.org/10.1016/j.jspd.2012.06.001
Article
PubMed
Google Scholar
Tsirikos AI, Subramanian AS (2012) Posterior spinal arthrodesis for adolescent idiopathic scoliosis using pedicle screw instrumentation: does a bilateral or unilateral screw technique affect surgical outcome? J Bone Jt Surg Br 94(12):1670–1677. https://doi.org/10.1302/0301-620x.94b12.29403
CAS
Article
Google Scholar
Anekstein Y, Mirovsky Y, Arnabitsky V, Gelfer Y, Zaltz I, Smorgick Y (2012) Reversing the concept: correction of adolescent idiopathic scoliosis using the convex rod de-rotation maneuver. Eur Spine J 21(10):1942–1949. https://doi.org/10.1007/s00586-012-2355-3
Article
PubMed
PubMed Central
Google Scholar
Larson AN, Fletcher ND, Daniel C, Richards BS (2012) Lumbar curve is stable after selective thoracic fusion for adolescent idiopathic scoliosis: a 20-year follow-up. Spine (Phila Pa 1976) 37(10):833–839. https://doi.org/10.1097/BRS.0b013e318236a59f
Article
Google Scholar
Clément JL, Chau E, Vallade MJ, Geoffray A (2011) Simultaneous translation on two rods is an effective method for correction of hypokyphosis in AIS: radiographic results of 24 hypokyphotic thoracic scoliosis with 2 years minimum follow-up. Eur Spine J 20(7):1149–1156. https://doi.org/10.1007/s00586-011-1779-5
Article
PubMed
PubMed Central
Google Scholar
Khakinahad M, Ameri E, Ghandhari H, Tari H (2012) Preservation of thoracic kyphosis is critical to maintain lumbar lordosis in the surgical treatment of adolescent idiopathic scoliosis. Acta Med Iran 50(7):477–481
PubMed
Google Scholar
Mladenov KV, Vaeterlein C, Stuecker R (2011) Selective posterior thoracic fusion by means of direct vertebral derotation in adolescent idiopathic scoliosis: effects on the sagittal alignment. Eur Spine J 20(7):1114–1117. https://doi.org/10.1007/s00586-011-1740-7
Article
PubMed
PubMed Central
Google Scholar
Canavese F, Turcot K, De Rosa V, de Coulon G, Kaelin A (2011) Cervical spine sagittal alignment variations following posterior spinal fusion and instrumentation for adolescent idiopathic scoliosis. Eur Spine J 20(7):1141–1148. https://doi.org/10.1007/s00586-011-1837-z
Article
PubMed
PubMed Central
Google Scholar
Dalal A, Upasani VV, Bastrom TP, Yaszay B, Shah SA, Shufflebarger HL et al (2011) Apical vertebral rotation in adolescent idiopathic scoliosis: comparison of uniplanar and polyaxial pedicle screws. J Spinal Disord Tech 24(4):251–257. https://doi.org/10.1097/BSD.0b013e3181edebc4
Article
PubMed
Google Scholar
Lamartina C, Petruzzi M, Macchia M, Stradiotti P, Zerbi A (2011) Role of rod diameter in comparison between only screws versus hooks and screws in posterior instrumentation of thoracic curve in idiopathic scoliosis. Eur Spine J 20(Suppl 1):S85–S89. https://doi.org/10.1007/s00586-011-1757-y
Article
PubMed
Google Scholar
Lavelle WF, Beltran AA, Carl AL, Uhl RL, Hesham K, Albanese SA (2016) Fifteen to twenty-five year functional outcomes of twenty-two patients treated with posterior Cotrel-Dubousset type instrumentation: a limited but detailed review of outcomes. Scoliosis Spinal Disord 11:18. https://doi.org/10.1186/s13013-016-0079-6
Article
PubMed
PubMed Central
Google Scholar
Miyanji F, Nasto LA, Bastrom T, Samdani AF, Yaszay B, Clements D et al (2018) A detailed comparative analysis of anterior versus posterior approach to lenke 5C curves. Spine (Phila Pa 1976) 43(5):E285–E291. https://doi.org/10.1097/brs.0000000000002313
Article
Google Scholar
Li J, Zhao Z, Tseng C, Zhu Z, Qiu Y, Liu Z (2018) Selective fusion in lenke 5 adolescent idiopathic scoliosis. World Neurosurg 118:e784–e791. https://doi.org/10.1016/j.wneu.2018.07.052
Article
PubMed
Google Scholar
Geck MJ, Rinella A, Hawthorne D, Macagno A, Koester L, Sides B et al (2013) Anterior dual rod versus posterior pedicle fixation surgery for the surgical treatment in lenke 5C adolescent idiopathic scoliosis: a multicenter, matched case analysis of 42 patients. Spine Deform 1(3):217–222. https://doi.org/10.1016/j.jspd.2013.01.002
Article
PubMed
Google Scholar
Cidambi KR, Glaser DA, Bastrom TP, Nunn TN, Ono T, Newton PO (2012) Postoperative changes in spinal rod contour in adolescent idiopathic scoliosis: an in vivo deformation study. Spine (Phila Pa 1976) 37(18):1566–1572. https://doi.org/10.1097/BRS.0b013e318252ccbe
Article
Google Scholar
Slivka MA, Fan YK, Eck JC (2013) The effect of contouring on fatigue strength of spinal rods: is it okay to re-bend and which materials are best? Spine Deform 1(6):395–400. https://doi.org/10.1016/j.jspd.2013.08.004
Article
PubMed
Google Scholar
Ohrt-Nissen S, Dahl B, Gehrchen M (2018) Choice of rods in surgical treatment of adolescent idiopathic scoliosis: what are the clinical implications of biomechanical properties? A review of the literature. Neurospine 15(2):123–130. https://doi.org/10.14245/ns.1836050.025
Article
PubMed
PubMed Central
Google Scholar
Ayers R, Hayne M, Burger E (2017) Spine rod straightening as a possible cause for revision. J Mater Sci Mater Med 28(8):123. https://doi.org/10.1007/s10856-017-5935-2
CAS
Article
PubMed
Google Scholar
Pienkowski D, Stephens GC, Doers TM, Hamilton DM (1998) Multicycle mechanical performance of titanium and stainless steel transpedicular spine implants. Spine (Phila Pa 1976) 23(7):782–788. https://doi.org/10.1097/00007632-199804010-00008
CAS
Article
Google Scholar
Higgins J, Thompson S, Deeks J, Altman D (2002) Statistical heterogeneity in systematic reviews of clinical trials: a critical appraisal of guidelines and practice. J Health Serv Res Policy 7(1):51–61. https://doi.org/10.1258/1355819021927674
Article
PubMed
Google Scholar
Smeeing DPJ, van der Ven DJC, Hietbrink F, Timmers TK, van Heijl M, Kruyt MC et al (2017) Surgical versus nonsurgical treatment for midshaft clavicle fractures in patients aged 16 years and older: a systematic review, meta-analysis, and comparison of randomized controlled trials and observational studies. Am J Sports Med 45(8):1937–1945. https://doi.org/10.1177/0363546516673615
Article
PubMed
Google Scholar
Abraham NS, Byrne CJ, Young JM, Solomon MJ (2010) Meta-analysis of well-designed nonrandomized comparative studies of surgical procedures is as good as randomized controlled trials. J Clin Epidemiol 63(3):238–245. https://doi.org/10.1016/j.jclinepi.2009.04.005
Article
PubMed
Google Scholar
Briere JB, Bowrin K, Taieb V, Millier A, Toumi M, Coleman C (2018) Meta-analyses using real-world data to generate clinical and epidemiological evidence: a systematic literature review of existing recommendations. Curr Med Res Opin 34(12):2125–2130. https://doi.org/10.1080/03007995.2018.1524751
Article
PubMed
Google Scholar