Skip to main content
Log in

Petrography and whole-rock geochemistry of the Miocene Bhuban Formation of Tripura Fold Belt, North District, Tripura, India: implications for provenance, tectonic setting and weathering intensity

  • Original Article
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

Petrography and whole-rock geochemical analysis of the Miocene Bhuban Formation exposed in the Jampui Anticline of Tripura Fold Belt, Tripura, India was carried out to reveal the provenance, depositional environments, tectonic setting and intensity of paleo-weathering of the source rocks at that period is described in this work. The Bhuban sandstones have an average detrital framework composition of Q(92.51%), F(4.44%) and RF(3.05%). The sandstones are mostly composed of quartz arenite and subarkose with subordinate sublithic arenite and their bulk-rock geochemistry support the petrographic results. The provenance discrimination diagrams depict the derivation of the detritus from both plutonic and metamorphic source rocks having affinity of continental block provenance with a minor trace of the recycled source. The sandstones have moderate SiO2 contents (61.38–70.85%; average 64.04%), constitute the major portion of the oxides followed by Al2O3 (12.42–18.35 wt%) and Fe2O3 (3.73–7.44 wt%). Compared to the average sandstone value, the Bhuban sandstones are depleted in the CaO (1.73% avg.), Na2O (1.19%), K2O (2.80%) and enriched in SiO2, Al2O3 and Fe2O3. The geochemical characteristics suggest an active continental margin and oceanic island arc setup for the Bhuban sediments. The Chemical Index of Alteration (CIA) values (43.52–74.71) indicate low to moderate nature of chemical weathering of the source areas. Whereas the Chemical Index of Weathering (CIW) values (47.22–88.72) indicate low to higher degree of weathering in the source region. The Eu/Eu* 0.65, (La/Lu)N (10.48), La/Sc (2.97), Th/Sc (1.81), La/Co (0.92), Th/Co (0.55), Th/Cr (0.16) and Cr/Th (6.66) ratios as well as chondrite-normalized rare earth elements (REE) patterns with flat heavy rare earth elements (HREE) (Gd/YbN = 1.69–2.17), enrichment of Light Rare Earth Elements (LREE) (La/SmN = 3.10–3.73) and negative Eu anomaly support a felsic source rocks for the sandstones and shale of the Bhuban Formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

source rocks for Bhuban Formation after Hayashi et al., (1997). c Zr/Sc vs. Th/Sc binary plot after McLennan and Hanson (1993) representing the original source composition along with the extent of sediment recycling

Fig. 13
Fig. 14
Fig. 15

source rocks after Schoenborn and Fedo (2011). b Granite–ultramafic end-member mixing binary plot of Y/Ni vs. Cr/V after Mongelli et al. (2006). c Ternary plot of La–Th–Sc after Jinliang and Xin (2008) representing the mixing of various source for Bhuban sediments

Fig. 16
Fig. 17

source rocks. b Th vs. Th/U plot after McLennan and Hanson (1993) representing the weathering trend of Bhuban sediments

Similar content being viewed by others

References

  • Alam, M., Alam, M.M., Curray, J.R., Chowdhury, M.L.R, & Gani, M.R. (2003). An overview of the sedimentary geology of the Bengal Basin in relation to the regional tectonic framework and basin-fill history. In: M.M. Alam and J.R. Curray (Eds.), Sedimentary geology of the Bengal Basin, Bangladesh, in relation to the Asia-Greater India collision and the evolution of the eastern Bay of Bengal. Sedimentary Geology, 155, 179–208.

  • Basu, A., Young, S. W., Suttner, L. J., James, W. C., & Mack, G. H. (1975). Re-evaluation of the use of undulatory extinction and polycrystallinity in detrital quartz for provenance interpretation. Journal of Sedimentary Research. https://doi.org/10.1306/212F6E6F-2B24-11D7-8648000102C1865D

    Article  Google Scholar 

  • Bhatia, M. R. (1983). Plate tectonics and geochemical composition of sandstones. The Journal of Geology, 91, 611–627. https://doi.org/10.1086/628922

    Article  Google Scholar 

  • Bhatia, M. R., & Crook, K. W. (1986). Trace element characteristics of greywacke and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92, 181–193. https://doi.org/10.1007/BF00375292

    Article  Google Scholar 

  • Blatt, H., & Christie, J. M. (1963). Undulatory extinction in quartz of igneous and metamorphic rocks and its significance in provenance studies of sedimentary rocks. Journal of Sedimentary Research, 33, 559–579.

    Google Scholar 

  • Blatt, H., Middleton, G., & Murray, R. (1980). Origin of sedimentary rocks. Prentice-Hall.

    Google Scholar 

  • Bracciali, L., Marroni, M., Luca, P., & Sergio, R. (2007). Geochemistry and petrography of Western Tethys Cretaceous sedimentary covers (Corsica and NorthernApennines): From source areas to configuration of margins. Geological Society of America Special Paper, 420, 73–93. https://doi.org/10.1130/2006.2420(06)

    Article  Google Scholar 

  • Cox, R., Lowe, D.R., & Cullers, R.L. (1995). The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim. Cosmochim. Acta, 59, 2919–2940. https://doi.org/10.1016/0016-7037(95)00185-9.

  • Crook, K.A.W. (1974). Lithogenesis and geotectonics: The significance of compositional variation in flysch arenites (greywackes). In: Dott, R. H., Jr. and Shaver, R. H., (eds.), Modern and ancient geosynclinals sedimentation, Society for Ecology Paleology Mineralogy Special Publications, 19, 304–310.

  • Cullers, R. L. (1994). The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian–Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochimica Et Cosmochimica Acta, 58, 4955–4972. https://doi.org/10.1016/0016-7037(94)90224-0

    Article  Google Scholar 

  • Cullers, R. L. (2000). The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, USA: Implications for provenance and metamorphic studies. Lithos, 51, 181–203. https://doi.org/10.1016/S0024-4937(99)00063-8

    Article  Google Scholar 

  • Cullers, R. L., & Podkovyrov, V. N. (2002). The source and origin of terrigenous sedimentary rocks in the mesoproterozoic Ui group, southeastern Russia. Precambrian Research, 117, 157–183. https://doi.org/10.1016/S0301-9268(02)00079-7

    Article  Google Scholar 

  • Dabbagh, M. E., & Rogers, J. J. (1983). Depositional environments and tectonic significance of the Wajid sandstone of southern Saudi Arabia. J African Earth Sci, 1, 47–57.

    Google Scholar 

  • Dickinson, W. R. (1970). Interpreting detrital modes of graywacke and arkose. Journal of Sedimentary Petrology, 40, 695–707.

    Google Scholar 

  • Dickinson, W. R. (1985). Interpreting provenance relations from detrital modes of sandstones. In G. C. Zuffa (Ed.), Reading provenance from arenites (pp. 333–362). Dodrecht: Reidel. https://doi.org/10.1007/978-94-017-2809-6_15

    Chapter  Google Scholar 

  • Dickinson, W. R., Beard, L. S., Brekenridge, G. R., Erjavec, J. L., Ferguson, F. A., Inman, K. F., Knepp, R. P., Lindberg, F. A., & Ryberg, P. T. (1983). Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin, 94, 222–235.

    Article  Google Scholar 

  • Dickinson, W. R., & Suczek, C. A. (1979). Plate tectonics and sandstone compositions. American Association of Petroleum Geologists Bulletin, 63, 2164–2182. https://doi.org/10.1306/2F9188FB-16CE-11D7-8645000102C1865D

    Article  Google Scholar 

  • Evans, P. (1932). Tertiary succession in Assam. Transactions of Mining and Geological Institute of India, 27(3), 155–260.

    Google Scholar 

  • Evans, P. (1964). Tectonic framework of Assam. Journal of Geophysical Society of India, 5, 80–96.

    Google Scholar 

  • Fedo, C. M., Nesbitt, H. W., & Young, G. M. (1995). Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology. https://doi.org/10.1130/0091-7613(1995)023%3c0921:UTEOPM%3e2.3.CO

    Article  Google Scholar 

  • Folk, R. L. (1974). Petrology of sedimentary rocks (2nd ed., p. 182). Hemphill Press.

    Google Scholar 

  • Folk, R. L. (1980). Petrology of sedimentary rocks. Hemphill’s.

    Google Scholar 

  • Fyffe, L. R., & Pickerill, R. K. (1993). Geochemistry of Upper Cambrian–Lower Ordovician black shale along a northeastern Appalachian transect. Geological Society of America Bulletin, 105, 897–910. https://doi.org/10.1130/0016-7606(1993)105%3c0897:GOUCLO%3e2.3.CO;2

    Article  Google Scholar 

  • Ganguly, S. (1983). Geology and hydrocarbon prospects of Tripura–Cachar–Mizoram region. Petroleum Asia Journal, 1, 105–109.

    Google Scholar 

  • Gani, M. R., & Alam, M. M. (1999). Trench-slope controlled deepsea clastics in the lower Surma Group in the Southeastern fold belt of the Bengal Basin, Bangladesh. Sedimentary Geology, 127, 221–236.

    Article  Google Scholar 

  • Gani, M. R., & Alam, M. M. (2003). Sedimentation and basin-fill history of the Neogene clastic succession exposed in the southeastern fold belt of the Bengal Basin, Bangladesh: a high-resolution sequence stratigraphic approach. Sedimentary Geology, 155, 227–270.

  • Grantham, J.H., & Velbel, M.A. (1988). The influence of climate and topography on rockfragment abundance in modern fluival sands of the southern Blue Ridge Mountains, North Carolina. J. Sediment. Petrol. 58, 219–227. https://doi.org/10.1306/212F8D5F-2B24-11D7-8648000102C1865D.

  • Haque, M. M., Roy, M. K., Joly, N. S., Roy, P. J., & Malik, A. R. (2010). Sequences stratigraphy of the Surma Group of rocks, Bandarban Anticline, Chittagong Hill Tracts, Bangladesh. International Journal of Earth Sciences and Engineering (IJEE), 03(03), 341–356.

    Google Scholar 

  • Harnois, L. (1988). The CIW index: A new chemical index of weathering. Sedimentary Geology, 55, 319–322. https://doi.org/10.1016/0037-0738(88)90137-6

    Article  Google Scholar 

  • Hayashi, K. I., Fujisawa, H., Holland, H. D., & Ohmoto, H. (1997). Geochemistry of ∼1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica Et Cosmochimica Acta, 61, 4115–4137. https://doi.org/10.1016/S0016-7037(97)00214-7

    Article  Google Scholar 

  • Hossain, M.S., Khan, M.S.H., Chowdhury, K.R., & Abdullah, R. (2019). Synthesis of the tectonic and structural elements of the Bengal Basin. In: Mukherjee, S. (Ed.), Tectonics & Structural Geology: Indian Context. Springer International Publishing AG, Cham, p. 84. https://doi.org/10.1007/978-3-319-99341-6.

  • Ingersoll, R. V., Bullard, T. F., Ford, R. L., Grimm, J. P., Pickle, J. D., & Sares, S. W. (1984). The effect of grain size on detrital modes: A test of the Gazzi–Dickinson point-counting method. Journal of Sedimentary Petrology, 54, 103–116.

    Google Scholar 

  • Ingersoll, R. V., & Suczek, C. A. (1979). Petrology and provenance of Neogene sand from Nicobar and Bengal fans, DSDP sites 211 and 218. Journal of Sedimentary Petrology, 49, 1217–1228.

    Google Scholar 

  • Jafarzadeh, M., & Hosseini-Barzi, M. (2008). Petrography and geochemistry of Ahwaz Sandstone Member of Asmari Formation, Zagros, Iran: Implications on provenance and tectonic setting. Revista Mexicana De Ciencias Geológicas, 25(2), 247–260.

    Google Scholar 

  • Jayaram, S., Venkatasubramaniam, V.S. & Radhakrishna, B.P. (1983). Geochronology and trace element distribution in some tonalitic and granitic gneisses of the Dharwar craton. In: Naqvi, S.M. and Rogers, J.J.W. (eds.), Proceedings of the Indo-US workshop, Hyderabad. Precambrian of south India, Memoir of Geological Society of India, 8, 377–389.

  • Jinliang, Z., & Xin, Z. (2008). Composition and provenance of sandstones and siltstones in Paleogene, Huimin Depression, Bohai Bay Basin, Eastern China. Journal of China University of Geosciences, 19, 252–270. https://doi.org/10.1016/S1002-0705(08)60044-8

    Article  Google Scholar 

  • Johnson, S. Y., & Alam, A. M. N. (1991). Sedimentation and tectonics of the Sylhet trough, Bangladesh. Geological Society of American Bulletin, 103, 1513–1527.

    Article  Google Scholar 

  • Jokhan, R. (1984). Tectonic framework &andHydrocarbon prospects of Mizoram. Petroleum Asian Journal, 7(1), 60–85.

    Google Scholar 

  • Khanehbad, M., Moussavi-Harami, R., Mahboubi, A., & Nadjafi, M. (2012). Geochemistry of carboniferous shales of the Sardar Formation, East Central Iran: Implication for provenance, Paleoclimate and Paleooxygenation conditions at a passive continental margin. Geokhim, 50(9), 867–880.

    Google Scholar 

  • Khar, B.M., & Ganju. J.C. (1984). Tectonics of Tripura fold belt—probable mechanics of folding and faulting. Petroleum Asian Journal, 7, 142–151

  • Kroonenberg, S. B. (1992). Effects of provenance, sorting and weathering on the geochemistry of fluvial sands from different tectonic and climatic environments. In: Proceedings 29th International Geological Congress, pp. 69–81.

  • McLennan, S. M. (1989). Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin, B.R., Mckay, G.A. (Eds.), Geochemistry and mineralogy of rare earth elements. Reviews in Mineralogy, vol. 21, 169–200.

  • McLennan, S. M., Hemming, S., McDaniel, D. K., & Hanson, G. N. (1993). Geochemical approaches to sedimentation, provenance, and tectonics. Geological Society of America Special Paper, 284, 21–40.

    Article  Google Scholar 

  • McLennan, S. M., Taylor, S. R., & Eriksson, K. A. (1983). Geochemistry of Archaean shales from the Pilbara Supergroup, Western Australia. Geochimica Et Cosmochimica Acta, 47(7), 1211–1222.

    Article  Google Scholar 

  • McLennan, S. M., Hemming, S., McDaniel, D. K., & Hanson, G.N. (1993). Geochemical approaches to sedimentation, provenance, and tectonics. Geol. Soc. Am. Spec. Pap. 284, 21–40.

  • Mongelli, G., Critelli, S., Perri, F., Sonnino, M., & Perrone, V. (2006). Sedimentary recycling, provenance and paleoweathering from chemistry and mineralogy of Mesozoic continental redbed mudrocks, Peloritani mountains, southern Italy. Geochemical Journal, 40, 197–209. https://doi.org/10.2343/geochemj.40.197

    Article  Google Scholar 

  • Najman, Y., Mark, C., Barfod, D. N., Carter, A., Parrish, R., Chew, D., & Gemignani, L. (2019). Spatial and temporal trends in exhumation of the Eastern Himalaya and syntaxis as determined from a multitechnique detrital thermo chronological study of the Bengal Fan. Geological Society of America Bulletin, 131, 1607–1622. https://doi.org/10.1130/B35031.1

    Article  Google Scholar 

  • Nandy, D. R., Dasgupta, S., Sarkar, K., & Ganguly, A. (1983). Tectonic evolution of Tripura–Mizoram Fold Belt, Surma Basin, Northeast India. Quarterly Journal of the Geological, Mining, and Metallurgical Society of India, 55, 186–194.

    Google Scholar 

  • Nesbitt, H. W., & Young, G. M. (1982). Early proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717. https://doi.org/10.1038/299715a0

    Article  Google Scholar 

  • Osman, M. (1996). Recent to quaternary river nile sediments: A sedimentological characterization on samples from Aswan to Naga-Hammadi, Egypt. Unpublished Ph.D. thesis, University of Vienna, Vienna.

  • Pearson, K. (1895). Notes on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London, 58, 240–242. https://doi.org/10.1098/rspl.1895.0041

    Article  Google Scholar 

  • Pettijohn, F. J., Potter, P. E., & Siever, R. (1972). Sand and sandstone. Springer.

    Google Scholar 

  • Rollinson, H. R. (1993). Using geochemical data: Evaluation, presentation and interpretation. Longman.

    Google Scholar 

  • Roser, B. P., & Korsch, R. J. (1986). Determination of tectonic setting of sandstone mudstone suites using SiO2-content and K2O/Na2O ratio. The Journal of Geology, 94, 635–650. https://doi.org/10.2307/30078330

    Article  Google Scholar 

  • Roy, M. K. R., Akter, M. S., Roy, P. J., Akther, S., Haque, M. N., Malik, A. R. M., & Mahmud, S. (2007). Facies analysis of Boka Bil Formation as exposed along the Barogang-Hari River section, Northeastern Sylhet, Bangladesh. The Icfai Journal of Earth Sciences, 1(1), 22–46.

    Google Scholar 

  • Schoenborn, W. A., & Fedo, C. M. (2011). Provenance and paleoweathering reconstruction of the Neoproterozoic Johnnie Formation, southeastern California. Chemical Geology, 285, 231–255. https://doi.org/10.1016/j.chemgeo.2011.04.014

    Article  Google Scholar 

  • Shamsuddin, A. H., & Abdullah, S. K. M. (1997). Geologic evolution of the Bengal Basin and its implication in hydrocarbon exploration in Bangladesh. Indian Journal of Geology, 69(2), 93–121.

    Google Scholar 

  • Sifeta, K., Roser, B. P., & Kimura, J. I. (2005). Geochemistry, provenance, and tectonic setting of Neoproterozoic metavolcanic and metasedimentary units, Werri area, Northern Ethiopia. Journal of African Earth Sciences, 41, 212–234.

    Article  Google Scholar 

  • Sun, L., Gui, H., & Chen, S. (2012). Geochemistry of sandstones from the Neoproterozoic Shijia Formation, northern Anhui Province, China: Implications for provenance, weathering and tectonic setting, Chemie Erde. Geochemistry, 72(3), 253–260.

    Article  Google Scholar 

  • Suttner, L. J., & Basu, A. (1981). Climate and the origin of quartz arenites. Journal of Sedimentary Petrology, 51, 1235–1246.

    Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust; its composition and evolution. Blackwell.

    Google Scholar 

  • Turekian, K. K., & Michael, H. C. (1960). The geochemistries of chromium, cobalt and nickel. International Geological Congress, 1, 14–27.

    Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Geological Society of America Bulletin, 72, 175–192.

    Article  Google Scholar 

  • Weltje, G. J. (1994). Provenance and dispersal of sand-sized sediments: Reconstruction of dispersal patterns and sources of sand-sized sediments by means of inverse modelling techniques. Geologica Ultraiectina, No.121,

  • Zaid, S. M. (2012). Provenance, diagenesis, tectonic setting and geochemistry of Rudies sandstone (Lower Miocene), Warda Field, Gulf of Suez, Egypt. Journal of African Earth Sciences, 66–67, 56–71.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the authorities of the Applied Geology Department, Dibrugarh University for providing laboratory facilities. We would like to thank Director, Wadia Institute of Himalayan Geology (WIHG), Dehradun for providing facilities in geochemical analysis. We are also thankful to the Editor-in-chief, Prof. Maria Virginia Alves Martins and the two anonymous reviewers for their very constructive comments and suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashyap Borgohain.

Additional information

Communicated by M. V. Alves Martins

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borgohain, K., Sarmah, R.K. Petrography and whole-rock geochemistry of the Miocene Bhuban Formation of Tripura Fold Belt, North District, Tripura, India: implications for provenance, tectonic setting and weathering intensity. J. Sediment. Environ. 7, 211–235 (2022). https://doi.org/10.1007/s43217-022-00092-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-022-00092-9

Keywords

Navigation