Skip to main content
Log in

Manufacturing and properties evaluation of Al2O3/ZrO2 granules derived from sodium alginate gelation

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Spherical millimeter-sized ceramics with porous and dense microstructure are materials of interest in approaches related to catalytic supports and milling media. The reliability of these operations depends on key characteristics of these materials, including high sphericity to ensure efficient process designing, ease of handling, facile separation and/or recyclability, abrasion resistance, and uniform packing. This is accompanied by the structural stability and microstructure tailoring to secure its functionality. The Al2O3/ZrO2 system has been applied in powdered form for catalytic support applications, and in both porous and dense ceramics for structural applications, highlighting the performance and functionality of the Al2O3/ZrO2 system in these approaches. Based on this analysis, the present study explores the optimized preparation of spherical millimeter-sized Al2O3/ZrO2 granules along with the assessment of their microstructural, mechanical, and pore-related outcomes as a function of the heat treatment conditions. Optimized Al2O3/ZrO2 granules with high sphericity, processed through sodium alginate gelation at 900 °C and 1100 °C displayed a hierarchical macro/mesoporosity which can provide potential functionality for catalytic supports-related applications. In comparison Al2O3/ZrO2 granules similarly processed at a sintering temperature of 1600 °C exhibited a tailored mechanical strength and high relative density ensured by a refined microstructure, as well as a high sphericity which are features preferred for milling media applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. M. Abdollahi, H. Atashi, F. Farshchi Tabrizi, Adv. Powder Technol. 28, 1356–1371 (2017). https://doi.org/10.1016/j.apt.2017.03.004

    Article  CAS  Google Scholar 

  2. A. Islam, Y.H. Taufiq-Yap, C.M. Chu, E.S. Chan, P. Ravindra, J. Porous Mater. 19, 807–817 (2012). https://doi.org/10.1007/s10934-011-9535-0

    Article  CAS  Google Scholar 

  3. J. Choi, J.Y. Ban, S.J. Choung, J. Kim, H. Abimanyu, K.S. Yoo, J. Sol-Gel Sci. Technol. 44, 21–28 (2007). https://doi.org/10.1007/s10971-007-1592-0

    Article  CAS  Google Scholar 

  4. D. Huang, W. Xie, Z. Tu, F. Zhang, S. Quan, L. Liu, J. Nanosci. Nanotechnol. 13, 260–269 (2013). https://doi.org/10.1166/jnn.2013.6846

    Article  CAS  PubMed  Google Scholar 

  5. J. Choi, J. Kim, K.S. Yoo, T.G. Lee, Powder Technol. 181, 83–88 (2008). https://doi.org/10.1016/j.powtec.2007.06.022

    Article  CAS  Google Scholar 

  6. Z. Yang, Y.S. Lin, Ind. Eng. Chem. Res. 39, 4944–4948 (2000). https://doi.org/10.1021/ie000562r

    Article  CAS  Google Scholar 

  7. V.S. Bergamaschi, F.M.S. Carvalho, C. Rodrigues, D.B. Fernandes, Chem. Eng. J. 112, 153–158 (2005). https://doi.org/10.1016/j.cej.2005.04.016

    Article  CAS  Google Scholar 

  8. E. Martín, A. Alarcón, E. Xuriguera, J. Guilera, Appl. Eng. Mater. 1, 1106–1115 (2023). https://doi.org/10.1021/acsaenm.2c00214

    Article  CAS  Google Scholar 

  9. A. Islam, Y.H. Taufiq-Yap, P. Ravindra, S.H. Teo, S. Sivasangar, E.S. Chan, Energy 89, 965–973 (2015). https://doi.org/10.1016/j.energy.2015.06.036

    Article  CAS  Google Scholar 

  10. S.H. Teo, D.K.Y. Yap, N. Mansir, A. Islam, Y.H. Taufiq-Yap, Sci. Rep. 9, 16358 (2019). https://doi.org/10.1038/s41598-019-52857-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. F.C. Patcas, G.I. Garrido, B. Kraushaar-Czarnetzki, Chem. Eng. Sci. 62, 3984–3990 (2007). https://doi.org/10.1016/j.ces.2007.04.039

    Article  CAS  Google Scholar 

  12. A. Islam, Y.H. Taufiq-Yap, P. Ravindra, M. Moniruzzaman, E.S. Chan, Adv. Powder Technol. 24, 1119–1125 (2013). https://doi.org/10.1016/j.apt.2013.03.021

    Article  CAS  Google Scholar 

  13. D. Beiknejad, J. Porous Mater. 20, 1075–1086 (2013). https://doi.org/10.1007/s10934-013-9689-z

    Article  CAS  Google Scholar 

  14. P. Müller, A. Russell, J. Bergstedt, J. Tomas, Granul. Matter 18, 4 (2016). https://doi.org/10.1007/s10035-016-0610-8

    Article  CAS  Google Scholar 

  15. R.C.R. Santos, A.N. Pinheiro, E.R. Leite, V.N. Freire, E. Longhinotti, A. Valentini, Mater. Chem. Phys. 160, 119–130 (2015). https://doi.org/10.1016/j.matchemphys.2015.04.014

    Article  CAS  Google Scholar 

  16. T.H. Zhu, M. Zhang, S.N. Li, F. Li, H. Song, Pet. Sci. 20, 2545–2553 (2023). https://doi.org/10.1016/j.petsci.2023.02.027

    Article  CAS  Google Scholar 

  17. M. Zhong, J. Zhai, Y. Xu, L. Jin, Y. Ye, H. Hu, F. Ma, X. Fan, Fuel 263, 116763 (2020). https://doi.org/10.1016/j.fuel.2019.116763

    Article  CAS  Google Scholar 

  18. P. Colombo, C. Vakifahmetoglu, S. Costacurta, J. Mater. Sci. 45, 5425–5455 (2010). https://doi.org/10.1007/s10853-010-4708-9

    Article  CAS  Google Scholar 

  19. G. Chavez-Esquivel, J.C. García-Martínez, J.A. de los Reyes, V.A. Suárez-Toriello, M.A. Vera-Ramírez, L. Huerta, Mater. Res. Express. 6, 105201 (2019)

    Article  CAS  Google Scholar 

  20. G. Li, W. Li, M. Zhang, K. Tao, Catal. Today 93–95, 595–601 (2004). https://doi.org/10.1016/j.cattod.2004.06.010

    Article  CAS  Google Scholar 

  21. D. Enache, M. Roy-Auberger, K. Esterle, R. Revel, Colloids Surf A Physicochem Eng Asp 220, 223–233 (2003). https://doi.org/10.1016/S0927-7757(03)00067-0

    Article  CAS  Google Scholar 

  22. X. He, Z. Zhang, S. Wang, F. Su, J. Aust. Ceram. Soc. 59, 905–914 (2023). https://doi.org/10.1007/s41779-023-00883-x

    Article  CAS  Google Scholar 

  23. S.A. Dhar, S. Sarker, H.T. Mumu, A.K.M.B. Rashid, J. Korean Ceram. Soc. 60, 399–412 (2023). https://doi.org/10.1007/s43207-022-00274-1

    Article  CAS  Google Scholar 

  24. C. Exare, J.M. Kiat, N. Guiblin, F. Porcher, V. Petricek, J. Eur. Ceram. Soc. 35, 1273–1283 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.10.031

    Article  CAS  Google Scholar 

  25. A. Nevarez-Rascon, A. Aguilar-Elguezabal, E. Orrantia, M.H. Bocanegra-Bernal, Int. J. Refract. Met. Hard Mater. 27, 962–970 (2009). https://doi.org/10.1016/j.ijrmhm.2009.06.001

    Article  CAS  Google Scholar 

  26. A.S.A. Chinelatto, A.L. Chinelatto, C.L. Ojaimi, J.A. Ferreira, E.M.D.J.A. Pallone, Ceram. Int. 40, 14669–14676 (2014). https://doi.org/10.1016/j.ceramint.2014.06.055

    Article  CAS  Google Scholar 

  27. M. Al-Amin, H.T. Mumu, S. Sarker, M.Z. Alam, M.A. Gafur, J. Korean Ceram. Soc. 60, 141–154 (2023). https://doi.org/10.1007/s43207-022-00194-0

    Article  CAS  Google Scholar 

  28. J. Fan, T. Lin, F. Hu, Y. Yu, M. Ibrahim, R. Zheng, S. Huang, J. Ma, Ceram. Int. 43, 3647–3653 (2017). https://doi.org/10.1016/j.ceramint.2016.11.204

    Article  CAS  Google Scholar 

  29. X.W. Huang, S.W. Wang, X.X. Huang, Ceram. Int. 29, 765–769 (2003). https://doi.org/10.1016/S0272-8842(02)00228-6

    Article  CAS  Google Scholar 

  30. F.A.T. Guimarães, K.L. Silva, V. Trombini, J.J. Pierri, J.A. Rodrigues, R. Tomasi, E.M.J.A. Pallone, Ceram. Int. 35, 741–745 (2009). https://doi.org/10.1016/j.ceramint.2008.02.002

    Article  CAS  Google Scholar 

  31. J. Chen, W.Q. Xue, C.M. Xu, P.F. Luo, J.G. Cheng, Y.W. Lu, J. Am. Ceram. Soc. 104, 3855–3861 (2021). https://doi.org/10.1111/jace.17788

    Article  CAS  Google Scholar 

  32. J. Chandradass, M. Balasubramanian, Mater. Manuf. Process. 21, 804–809 (2006). https://doi.org/10.1080/10426910600837772

    Article  CAS  Google Scholar 

  33. Y. Gao, J. Ma, X. Zhao, S. Hao, C. Deng, B. Liu, J. Am. Ceram. Soc. 98, 2732–2737 (2015). https://doi.org/10.1111/jace.13672

    Article  CAS  Google Scholar 

  34. Z.R. Ismagilov, R.A. Shkrabina, N.A. Koryabkina, Catal. Today 47, 51–71 (1999). https://doi.org/10.1016/S0920-5861(98)00283-1

    Article  CAS  Google Scholar 

  35. P. Liu, J. Feng, X. Zhang, Y. Lin, D.G. Evans, D. Li, J. Phys. Chem. Solids 69, 799–804 (2008). https://doi.org/10.1016/j.jpcs.2007.09.005

    Article  CAS  Google Scholar 

  36. G. Wang, J. Ma, Y. Gao, X. Zhao, S. Hao, C. Deng, B. Liu, J. Sol-Gel Sci. Technol. 78, 673–681 (2016). https://doi.org/10.1007/s10971-016-3981-8

    Article  CAS  Google Scholar 

  37. G. Wang, J. Ma, Y. Gao, X. Zhao, S. Hao, C. Deng, B. Liu, J. Sol-Gel Sci. Technol. 78, 514–522 (2016). https://doi.org/10.1007/s10971-016-3997-0

    Article  CAS  Google Scholar 

  38. Y. Yu, M. Zhu, J. Fang, RSC Adv. 7, 1540–1545 (2017). https://doi.org/10.1039/c6ra26601k

    Article  CAS  Google Scholar 

  39. Z.M. Wang, Y.S. Lin, J. Catal. 174, 43–51 (1998). https://doi.org/10.1006/jcat.1997.1913

    Article  CAS  Google Scholar 

  40. W. Guogao, M. Jingtao, G. Yong, Z. Xingyu, H. Shaochang, D. Changsheng, Int. J. Appl. Ceram. Technol. 13, 831–837 (2016). https://doi.org/10.1111/ijac.12560

    Article  CAS  Google Scholar 

  41. E. Prouzet, Z. Khani, M. Bertrand, M. Tokumoto, V. Guyot-Ferreol, J.F. Tranchant, Microporous Mesoporous Mater. 96, 369–375 (2006). https://doi.org/10.1016/j.micromeso.2006.07.011

    Article  CAS  Google Scholar 

  42. R. Backov, Soft Matter 2, 452–464 (2006). https://doi.org/10.1039/b602579j

    Article  CAS  PubMed  Google Scholar 

  43. A.E. Danks, S.R. Hall, Z. Schnepp, Mater. Horizons. 3, 91–112 (2016). https://doi.org/10.1039/c5mh00260e

    Article  CAS  Google Scholar 

  44. F. Davarcı, D. Turan, B. Ozcelik, D. Poncelet, Food Hydrocolloid. 62, 119–127 (2017). https://doi.org/10.1016/j.foodhyd.2016.06.029

    Article  CAS  Google Scholar 

  45. E.S. Chan, B.B. Lee, P. Ravindra, D. Poncelet, J. Colloid Interface Sci. 338, 63–72 (2009). https://doi.org/10.1016/j.jcis.2009.05.027

    Article  CAS  PubMed  Google Scholar 

  46. L. Cao, W. Lu, A. Mata, K. Nishinari, Y. Fang, Carbohydr. Polym. 242, 116389 (2020). https://doi.org/10.1016/j.carbpol.2020.116389

    Article  CAS  PubMed  Google Scholar 

  47. L. Li, Y. Fang, R. Vreeker, I. Appelqvist, E. Mendes, Biomacromol 8, 464–468 (2007). https://doi.org/10.1021/bm060550a

    Article  CAS  Google Scholar 

  48. C.Y. Lee, S. Lee, J.H. Ha, J. Lee, I.H. Song, K.S. Moon, Appl. Sci. 11, 9326 (2021). https://doi.org/10.3390/app11199326

    Article  CAS  Google Scholar 

  49. C.Y. Lee, S. Lee, J.H. Ha, J. Lee, I.H. Song, K.S. Moon, Appl. Sci. 12, 2316 (2022). https://doi.org/10.3390/app12052316

    Article  CAS  Google Scholar 

  50. C. Chen, J. Gu, Z. Peng, X. Dai, Q. Liu, G.Q. Zhu, Sci. Rep. 12, 5490 (2022). https://doi.org/10.1038/s41598-022-09543-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. M.D. Sosa Lucio, E. Oh, J. Ha, J. Lee, H. Lee, I. Song, Appl. Sci. 13, 9474 (2023). https://doi.org/10.3390/app13169474

    Article  CAS  Google Scholar 

  52. S. Chen, C.S. Wang, W. Zheng, J.M. Wu, C.Z. Yan, Y.S. Shi, Ceram. Int. 48, 6069–6077 (2022). https://doi.org/10.1016/j.ceramint.2021.11.145

    Article  CAS  Google Scholar 

  53. C. Qian, K. Hu, H. Wang, L. Nie, Q. Feng, Z. Lu, P. Li, K. Lu, Ceram. Int. 48, 21600–21609 (2022). https://doi.org/10.1016/j.ceramint.2022.04.133

    Article  CAS  Google Scholar 

  54. A.K. Nath, C. Jiten, K.C. Singh, Phys. B Condens. Matter. 405, 430–434 (2010). https://doi.org/10.1016/j.physb.2009.08.299

    Article  CAS  Google Scholar 

  55. P.F. Luckham, M.A. Ukeje, J. Colloid Interface Sci. 220, 347–356 (1999). https://doi.org/10.1006/jcis.1999.6515

    Article  CAS  PubMed  Google Scholar 

  56. N. Shaari, S.K. Kamarudin, Polym. Test. 81, 106183 (2020). https://doi.org/10.1016/j.polymertesting.2019.106183

    Article  CAS  Google Scholar 

  57. M.J. Limo, A. Sola-Rabada, E. Boix, V. Thota, Z.C. Westcott, V. Puddu, C.C. Perry, Chem. Rev. 118, 11118–11193 (2018). https://doi.org/10.1021/acs.chemrev.7b00660

    Article  CAS  PubMed  Google Scholar 

  58. L. Zhang, J. Tong, Y. Li, C. Xu, S. Wan, H. Xiao, J. Korean Ceram. Soc. 60, 679–686 (2023). https://doi.org/10.1007/s43207-023-00295-4

    Article  CAS  Google Scholar 

  59. P. Sinaga, S.H. Bae, J. Korean Ceram. Soc. 59, 506–513 (2022). https://doi.org/10.1007/s43207-021-00179-5

    Article  CAS  Google Scholar 

  60. Y.Y. Bacherikov, P.M. Lytvyn, S.V. Mamykin, O.B. Okhrimenko, V.V. Ponomarenko, S.V. Malyuta, A.S. Doroshkevich, I.A. Danilenko, O.A. Gorban, A. Gilchuk, Y. Baiova, A. Lyubchyk, J. Mater. Sci. Mater. Electron. 33, 2753–2764 (2022). https://doi.org/10.1007/s10854-021-07481-2

    Article  CAS  Google Scholar 

  61. Z. Zhu, Z. Yu, F.F. Yun, D. Pan, Y. Tian, L. Jiang, X. Wang, Natl. Sci. Rev. (2021). https://doi.org/10.1093/nsr/nwaa166

    Article  PubMed  PubMed Central  Google Scholar 

  62. S. Novak, M. Kalin, Tribol. Lett. 17, 727–732 (2004). https://doi.org/10.1007/s11249-004-8080-2

    Article  CAS  Google Scholar 

  63. W.C.J. Wei, S.C. Wang, F.Y. Ho, J. Am. Ceram. Soc. 82, 3385–3392 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02255.x

    Article  CAS  Google Scholar 

  64. J.K. Beattie, A. Djerdjev, J. Am. Ceram. Soc. 83, 2360–2364 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01561.x

    Article  CAS  Google Scholar 

  65. H. Sarraf, Z. Qian, L. Škarpová, B. Wang, R. Herbig, M. Maryška, L. Bartovska, J. Havrda, B. Anvari, Nanoscale Res. Lett. 10, 456 (2015). https://doi.org/10.1186/s11671-015-1157-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. H. Sarraf, J. Havrda, R. Herbig, Annu. Trans. Nord. Rheol. Soc. 13, 219–225 (2005)

    Google Scholar 

  67. C.Y. Lee, S. Lee, J.H. Ha, J. Lee, I.H. Song, K.S. Moon, Appl. Sci. 11, 5672 (2021). https://doi.org/10.3390/app11125672

    Article  CAS  Google Scholar 

  68. M. Biswas, A.M. Raichur, J. Dispers. Sci. Technol. 31, 1173–1177 (2010). https://doi.org/10.1080/01932690903223773

    Article  CAS  Google Scholar 

  69. S.P. Rao, S.S. Tripathy, A.M. Raichur, Colloids Surf A Physicochem Eng Asp 302, 553–558 (2007). https://doi.org/10.1016/j.colsurfa.2007.03.034

    Article  CAS  Google Scholar 

  70. H. Sarraf, R. Herbig, M. Maryška, Scr. Mater. 59, 155–158 (2008). https://doi.org/10.1016/j.scriptamat.2008.02.050

    Article  CAS  Google Scholar 

  71. C.Y. Lee, S. Lee, J.H. Ha, J. Lee, I.H. Song, K.S. Moon, Appl. Sci. 11, 4517 (2021). https://doi.org/10.1007/s43207-021-00128-2

    Article  CAS  Google Scholar 

  72. U.A. Shinde, M.S. Nagarsenker, Indian J. Pharm. Sci. 71, 313–317 (2009). https://doi.org/10.4103/0250-474X.56033

    Article  PubMed  PubMed Central  Google Scholar 

  73. H.H. Paradies, D. Wagner, W.R. Fischer, Ber. Bunsenges. Phys. Chem. 100, 1299–1307 (1996). https://doi.org/10.1002/bbpc.19961000806

    Article  CAS  Google Scholar 

  74. S. Palakurthy, P.A. Azeem, K.V. Reddy, J. Korean Ceram. Soc. 59, 76–85 (2022). https://doi.org/10.1007/s43207-021-00163-z

    Article  CAS  Google Scholar 

  75. A.K. Yadav, S. Bhattacharyya, Microporous Mesoporous Mater. 293, 109795 (2020). https://doi.org/10.1016/j.micromeso.2019.109795

    Article  CAS  Google Scholar 

  76. G. Witz, V. Shklover, W. Steurer, S. Bachegowda, H.P. Bossmann, J. Am. Ceram. Soc. 90, 2935–2940 (2007). https://doi.org/10.1111/j.1551-2916.2007.01785.x

    Article  CAS  Google Scholar 

  77. K. Matsui, H. Yoshida, Y. Ikuhara, Sci. Rep. 4, 4758 (2014). https://doi.org/10.1038/srep04758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. J. Kondoh, J. Alloys Compd. 375, 270–282 (2004). https://doi.org/10.1016/j.jallcom.2003.11.129

    Article  CAS  Google Scholar 

  79. J. Grambow, S. Wille, M. Kern, J. Mech. Behav. Biomed. Mater. 120, 104586 (2021). https://doi.org/10.1016/j.jmbbm.2021.104586

    Article  CAS  PubMed  Google Scholar 

  80. S. Shabani, S.M. Mirkazemi, H. Rezaie, Y. Vahidshad, S. Trasatti, Ceram. Int. 48, 6638–6648 (2022). https://doi.org/10.1016/j.ceramint.2021.11.213

    Article  CAS  Google Scholar 

  81. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87, 1051–1069 (2015). https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  82. Y. Zhang, Y. Lv, Y. Mo, H. Li, P. Tang, D. Li, Y. Feng, Catalysts 12, 1416 (2022). https://doi.org/10.3390/catal12111416

    Article  CAS  Google Scholar 

  83. Y. Gao, J. Ma, X. Zhao, S. Hao, C. Deng, B. Liu, J. Am. Ceram. Soc. 99, 1184–1191 (2016). https://doi.org/10.1111/jace.14066

    Article  CAS  Google Scholar 

  84. Y. Gao, J. Ma, X. Zhao, S. Hao, C. Deng, B. Liu, Ceram. Int. 42, 4715–4722 (2016). https://doi.org/10.1016/j.ceramint.2015.11.138

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Fundamental Research Program of the Korean Institute of Materials Science (KIMS), through Grant No. PNK8810, and by the Technology Innovation Program (20003782) of the Ministry of Trade, Industry and Energy. And the authors are sincerely grateful to Seung Hwa Jung and Jun Young Shin (R&D Center, Cenotec Co., LTD., 1256- 40, Hamma-Dearo, Gaya-Eup, Haman-Gun, Gyeongsangnam-do, 52035, Republic of Korea) for their contribution with reagents, materials, and analysis tools.

Funding

This research was funded by the Fundamental Research Program of the Korean Institute of Materials Science (KIMS), through Grant No. PNKA110, and this work was supported by the Technology development Program (S3148158) funded by the Ministry of SMEs and Startups (MSS, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jang-Hoon Ha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest related to this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucio, M.D.S., Oh, EJ., Ha, JH. et al. Manufacturing and properties evaluation of Al2O3/ZrO2 granules derived from sodium alginate gelation. J. Korean Ceram. Soc. (2024). https://doi.org/10.1007/s43207-024-00396-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43207-024-00396-8

Keywords

Navigation