Skip to main content
Log in

Synthesis optimization, structural evolution and optical properties of hierarchical nanoporous alumina microspheres prepared by continuous soft chemistry method

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In the present work, nanoporous alumina microspheres have been synthesized by sol–gel technique. Acid deficient aluminum nitrate and a mixture of equimolar HMTA-Urea were used as starting materials. The prepared sol then injected as droplets into hot oil column to give spherical shape. After calcinations the samples were characterized by scanning electron microscope, fourier transform infra-red spectroscopy, thermogravimetry–differential thermal analysis, X-ray diffraction and N2 adsorption–desorption isotherms. With respect to the results achieved from the above analyses, it was found that nanoporous alumina microspheres with controllable size and morphology can successfully be produced through sol–gel method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N.Z. Logar, V. Kaučič, Acta Chim. Slov. 53, 117 (2006)

    CAS  Google Scholar 

  2. J.S. Beck, C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, J. Am. Chem. Soc. 114, 10834 (1992)

    Article  CAS  Google Scholar 

  3. K. Na, M. Choi, R. Ryoo, Micropor. Mesopor. Mat. (2012). doi:10.1016/j.micromeso.2012.03.054

    Google Scholar 

  4. H.Y. Zho, G.G. Lu, Langmuir 17, 588 (2001)

    Article  Google Scholar 

  5. S. Pavasupree, Y. Suzuki, S. Pivsa-Art, S. Yoshikawa, Sci. Technol. Adv. Mater. 6, 224 (2005)

    Article  CAS  Google Scholar 

  6. E.S. Kikkinides, K.A. Stoitsas, V.T. Zaspalis, J. Colloid Interf, Sci. 259, 322 (2003)

    CAS  Google Scholar 

  7. R. Dawson, A.I. Cooper, D.J. Adams, Prog. Polym. Sci. 37, 530 (2012)

    Article  CAS  Google Scholar 

  8. S. Blankenburg, M. Bieri, R. Fasel, K. Müllen, C.A. Pignedoli, D. Passerone, Small 6, 2266 (2010)

    Article  CAS  Google Scholar 

  9. C.W. Huang, H.C. Wu, Y.Y. Li, Sep. Purif. Technol. 58, 219 (2007)

    Article  CAS  Google Scholar 

  10. P. Jevnikar, K. Krnel, A. Kocjan, N. Funduk, T. Kosmač, Dent. Mater. 26, 688 (2010)

    Article  CAS  Google Scholar 

  11. A.F.M. Leenaars, A.J. Burggraaf, J. Membrane Sci. 24, 245 (1985)

    Article  CAS  Google Scholar 

  12. C. Boss, E. Meurville, J.M. Sallese, P. Ryser, J. Membrane Sci. 401, 217 (2012)

    Article  Google Scholar 

  13. M. Haji-Sheikh, A. Bose, L. Wardzala, US Patent 8132,457, March 13, 2012

  14. M. Trueba, S.P. Trasatti, Eur. J. Inorg. Chem. 2005, 3393 (2005)

    Article  Google Scholar 

  15. S. Moriguchi, K. Naito, S. Takei, J. Chromatogr. A 131, 19 (1977)

    Article  CAS  Google Scholar 

  16. D.J. Burgess, A.J. Hickey, Microsphere Technology and applications, in Encyclopedia of pharmaceutical technology, vol. 10, ed. by J. Swarbrick, J. Boylan (Marcel Dekker, New York, 1994), pp. 1–29

    Google Scholar 

  17. P. Luo, T.G. Nieh, Biomaterials 17, 1959 (1996)

    Article  CAS  Google Scholar 

  18. Y. Li, K.A. Khor, J. Mater. Process. Technol. 89–90, 532 (1999)

    Article  Google Scholar 

  19. Y.C. Kang, H.S. Roh, S.B. Park, J. Amer. Ceram. Soc. 84, 447 (2001)

    Article  CAS  Google Scholar 

  20. S.S. Jada, J. Mater. Sci. 9, 565 (1990)

    CAS  Google Scholar 

  21. J.M. Coulson, J.F. Richardson, Chemical Engineering Vol. 2, Fifth ed. (Butterworth-Heinemann, Oxford, 2002)

  22. G. Buelna, Y.S. Lin, Micropor. Mesopor. Mat. 30, 359 (1999)

    Article  CAS  Google Scholar 

  23. D. Shi (Ed.), Functional Thin Films and Functional Materials: New Concepts and Technologies, (Tsinghua University Press and Springer-Verlag Berlin Heidelberg, 2003)

  24. P. Innocenzi, Y. L. Zub, V. G. Kessler (Eds), Sol-Gel Methods for Materials Processing: Focusing on Materials for Pollution Control, Water Purification, and Soil Remediation, NATO Science for Peace and Security Series C: Environmental Security, (Springer, 2008)

  25. P. Liu, J. Feng, X. Zhang, Y. Lin, D.G. Evans, D. Li, J. Phys. Chem. Solids 69, 799 (2008)

    Article  CAS  Google Scholar 

  26. J. Ray, M. Chaterjee, D. Ganguli, J. Mater. Sci. Lett. 12, 1755 (1993)

    Article  CAS  Google Scholar 

  27. N. Dilsiz, G. Akovali, Mater. Sci. Eng., A 332, 91 (2002)

    Article  Google Scholar 

  28. G. Krishna Priya, P. Padmaja, K.G.K. Warrier, A.D. Damodaran, G. Aruldhas, J. Mater. Sci. Lett. 16, 1584 (1997)

    Article  Google Scholar 

  29. S. Kúdela jr, L. Smrčok, Proceedings of Metal 2012: 21st International Conference on Metallurgy and Materials, May 2012, Brno, Czech Republic

  30. D. Santhiya, S. Subramanian, K.A. Natarajan, S.G. Malghan, Colloids Surf. A Physicochem. Eng. Asp. 164, 143 (2000)

    Article  CAS  Google Scholar 

  31. M.C. Kung, R.J. Davis, H. Kung, J. Phys. Chem. C 111, 11767 (2007)

    Article  CAS  Google Scholar 

  32. H. Abdolmohammad-Zadeh, S. Kohansal, J. Braz. Chem. Soc. 23, 473 (2012)

    Article  CAS  Google Scholar 

  33. M. Avram, G.D. Mateescu, Infrared spectroscopy applications in organic chemistry (J. Wiley & Sons, New York, 1972)

    Google Scholar 

  34. H. M. Heise, Infrared and Raman Spectroscopy, ed. by B. Schrader (VCH, Weinheim 1995)

  35. J.L. Collins, M.H. Lloyd, R.L. Fellows, Radiochim. Acta 42, 121 (1987)

    CAS  Google Scholar 

  36. C. Karr Jr, P.A. Estep, J.J. Kovach, Amer. Chem. Soc. Div. Fuel Chem. Preprints 12, 1 (1968)

    CAS  Google Scholar 

  37. B.C. Lippens, J.J. Steggerda, Physical and chemical aspects of adsorbents and catalysts (Academic Press, London, 1970)

    Google Scholar 

  38. F. Laoutid, L. Bonnaud, M. Alexandre, J.-M. Lopez-Cuesta, Mater. Sci. Eng., R 63, 100 (2009)

    Article  Google Scholar 

  39. R. Kaminskas, I. Barauskas, Ceram-Silikaty 55, 261 (2011)

    CAS  Google Scholar 

  40. M. Chatterjee, D. Enkhtuvshin, B. Siladitya, D. Ganguli, J. Mater. Sci. 33, 4937 (1998)

    Article  CAS  Google Scholar 

  41. V.R. Palkar, Eur. Phys. J. D 16, 253 (2001)

    Article  CAS  Google Scholar 

  42. Y. Li, J.T. Feng, D.Q. Li, Sci. China: Chem. 54, 1032 (2011)

    Article  CAS  Google Scholar 

  43. D.E. Newbury, Scanning 31, 1 (2009)

    Article  Google Scholar 

  44. R.T. Yang, Adsorbents: fundamentals and applications (John Wiley & Sons, New Jersey, 2003)

    Book  Google Scholar 

  45. J.B. Condon, Surface area and porosity determinations by physisorption: measurements and theory (Elsevier, Amsterdam, 2006)

    Google Scholar 

  46. Y. Chen, D.D. Dionysiou, Appl. Catal. B 80, 147 (2008)

    Article  CAS  Google Scholar 

  47. P. Padmaja, P.K. Pillai, K.G.K. Warrier, M. Padmanabhan, J. Porous Mat. 11, 147 (2004)

    Article  CAS  Google Scholar 

  48. V.R. Palkar, Nanostruct. Mater. 11, 369 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Islamic Azad University, Gorgan Branch is acknowledged for financial support. The author would like to thank Mr. Ali Hamrang for XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davoud Beiknejad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Flowchart for the synthesis of the alumina microspheres (PPT 88 kb)

10934_2013_9689_MOESM2_ESM.pdf

The XRD analysis for ADAN-25 samples with Al/(HMTA-Urea) mole ratios of 1.2 and 1.4 illustrates that the diffraction patterns are essentially identical to each other, indicating that the different Al/(HMTA-Urea) mole ratios employed during the preparation of the precursor do not affect the crystal structure of the final spherical alumina (PDF 178 kb)

10934_2013_9689_MOESM3_ESM.ppt

Energy dispersive spectrum of alumina microspheres (ADAN-25 and Al/(HMTA-Urea) mole ratio of 1.4), calcined at 500 °C, 700 °C, 1100 °C and 1200 °C. EDS analysis indicates that the alumina microspheres are composed of Al and O. The theoretical weight fraction of aluminum in Al2O3 is 52.92 %, which is in good agreement with that obtained from the EDS analysis of the microspheres calcined at 500 °C, 700 °C, 1100 °C and 1200 °C (50.52 %, 52.64 %,49.31 % and 53.07 %, respectively) (PPT 267 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beiknejad, D. Synthesis optimization, structural evolution and optical properties of hierarchical nanoporous alumina microspheres prepared by continuous soft chemistry method. J Porous Mater 20, 1075–1086 (2013). https://doi.org/10.1007/s10934-013-9689-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-013-9689-z

Keywords

Navigation