Skip to main content
Log in

Understanding thermal depolarization via thermally stimulated depolarization current measurement

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Thermal depolarization in poling-induced piezoelectric materials is defined as the disappearance of remanent polarization at a so-called depolarization temperature. A thermally stimulated depolarization current (TSDC) measurement is most widely used for examining depolarization as a function of temperature. TSDC results in the literature commonly show a gradual reduction of polarization even below depolarization temperature (Td). However, no degradation happens when thermal heat treatments are conducted below Td, meaning that the apparent reduction in polarization measured by TSDC is sure to be an artifact. Here, we demonstrate that such artifact is unavoidable during TSDC measurements and propose a method to circumvent it. This strategy was manifested on TSDC data collected from a relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) single crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. G.H. Haertling, J. Am. Ceram. Soc. 82(4), 797–818 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01840.x

    Article  CAS  Google Scholar 

  2. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, J. Rödel, J. Electroceram.Electroceram. 29(1), 71–93 (2012). https://doi.org/10.1007/s10832-012-9742-3

    Article  CAS  Google Scholar 

  3. H.-S. Han, T.A. Duong, C.W. Ahn, B.W. Kim, J.-S. Lee, J. Korean Inst. Electr. Electron. Mate. Eng. 36(5), 433–441 (2023). https://doi.org/10.4313/JKEM.2023.36.5.2

    Article  Google Scholar 

  4. H. Jaffe, J. Am. Ceram. Soc. 41(11), 494–498 (1958). https://doi.org/10.1111/j.1151-2916.1958.tb12903.x

    Article  CAS  Google Scholar 

  5. S.-H. Go, K.S. Kim, J.S. Kim, C.I. Cheon, J. Korean Ceram. Soc. 60, 669–678 (2023). https://doi.org/10.1007/s43207-023-00291-8

    Article  CAS  Google Scholar 

  6. W. Liu, X. Ren, Phys. Rev. Lett. 103(25), 257602 (2009). https://doi.org/10.1103/PhysRevLett.103.257602

    Article  CAS  PubMed  Google Scholar 

  7. J. Rödel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92(6), 1153–1177 (2009). https://doi.org/10.1111/j.1551-2916.2009.03061.x

    Article  CAS  Google Scholar 

  8. C. Groh, D.J. Franzbach, W. Jo, K.G. Webber, J. Kling, L.A. Schmitt, H.-J. Kleebe, S.-J. Jeong, J.-S. Lee, J. Rödel, Adv. Funct. Mater.Funct. Mater. 24(3), 356–362 (2014). https://doi.org/10.1002/adfm.201302102

    Article  CAS  Google Scholar 

  9. J. Zhang, Z. Pan, F.-F. Guo, W.-C. Liu, H. Ning, Y.B. Chen, M.-H. Lu, B. Yang, J. Chen, S.-T. Zhang, X. Xing, J. Rödel, W. Cao, Y.-F. Chen, Nat. Commun.Commun. 6(1), 6615 (2015). https://doi.org/10.1038/ncomms7615

    Article  CAS  Google Scholar 

  10. C.-W. Tao, X.-Y. Geng, J. Zhang, R.-X. Wang, Z.-B. Gu, S.-T. Zhang, J. Eur. Ceram. Soc. 38(15), 4946–4952 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.07.006

    Article  CAS  Google Scholar 

  11. T.T. Zate, J.-W. Sun, N.-R. Ko, B.-K. Koo, H.-L. Yu, M.-S. Kim, W.-J. Choi, S.-J. Jeong, J.-H. Jeon, W. Jo, J. Korean Inst. Electr. Electron. Mater. Eng. 36(4), 362–368 (2023). https://doi.org/10.4313/JKEM.2023.36.4.6

    Article  Google Scholar 

  12. T.T. Zate, N.-R. Ko, H.-L. Yu, W.-J. Choi, J.-W. Sun, J.-H. Jeon, W. Jo, J. Korean Inst. Electr. Electron. Mater. Eng. 36(3), 214–225 (2023). https://doi.org/10.4313/JKEM.2023.36.3.2

    Article  Google Scholar 

  13. A.J. Moulson, J.M. Herbert, Electroceramics: materials, properties, applications (John Wiley & Sons, New York, 2003)

    Book  Google Scholar 

  14. T.R. Shrout, S.J. Zhang, J. Electroceram.Electroceram. 19(1), 113–126 (2007). https://doi.org/10.1007/s10832-007-9047-0

    Article  CAS  Google Scholar 

  15. F. Li, D. Lin, Z. Chen, Z. Cheng, J. Wang, C. Li, Z. Xu, Q. Huang, X. Liao, L.Q. Chen, T.R. Shrout, S. Zhang, Nat. Mater. 17(4), 349–354 (2018). https://doi.org/10.1038/s41563-018-0034-4

    Article  CAS  PubMed  Google Scholar 

  16. S.-E. Park, T.R. Shrout, J. Appl. Phys. 82(4), 1804–1811 (1997). https://doi.org/10.1063/1.365983

    Article  CAS  Google Scholar 

  17. S. Zhang, F. Li, J. Appl. Phys. 111, 031301 (2012). https://doi.org/10.1063/1.3679521

    Article  CAS  Google Scholar 

  18. E. Sun, W. Cao, Prog. Mater. Sci. 65, 124–210 (2014). https://doi.org/10.1016/j.pmatsci.2014.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. D.R. Patil, S.H. Park, G.-T. Hwang, J. Ryu, J. Korean Ceram. Soc. 59, 322–328 (2022). https://doi.org/10.1007/s43207-021-00172-y

    Article  CAS  Google Scholar 

  20. A. Von Hippel, Rev. Mod. Phys. 22(3), 221–237 (1950). https://doi.org/10.1103/RevModPhys.22.221

    Article  Google Scholar 

  21. D. Damjanovic, Rep. Prog. Phys. 61, 1267–1324 (1998). https://doi.org/10.1088/0034-4885/61/9/002

    Article  CAS  Google Scholar 

  22. M.J. Haun, E. Furman, S.J. Jang, H.A. McKinstry, L.E. Cross, J. Appl. Phys. 62(8), 3331–3338 (1987). https://doi.org/10.1063/1.339293

    Article  CAS  Google Scholar 

  23. M.E. Lines, A.M. Glass, Principles and applications of ferroelectrics and related materials (Oxford University Press, Oxford, 2001)

    Book  Google Scholar 

  24. M. Zhu, H. Hu, N. Lei, Y. Hou, H. Yan, Appl. Phys. Lett. 94, 182901 (2009). https://doi.org/10.1063/1.3130736

    Article  CAS  Google Scholar 

  25. Y.A. Genenko, J. Glaum, M.J. Hoffmann, K. Albe, Mater. Sci. Eng. B 192, 52–82 (2015). https://doi.org/10.1016/j.mseb.2014.10.003

    Article  CAS  Google Scholar 

  26. B. Kowalski, A. Sehirlioglu, J. Appl. Phys. 121, 064106 (2017). https://doi.org/10.1063/1.4975785

    Article  CAS  Google Scholar 

  27. W. Jo, J. Daniels, D. Damjanovic, W. Kleemann, J. Rödel, Appl. Phys. Lett. 102, 192903 (2013). https://doi.org/10.1063/1.4805360

    Article  CAS  Google Scholar 

  28. E. Sapper, N. Novak, W. Jo, T. Granzow, J. Rödel, J. Appl. Phys. 115, 194104 (2014). https://doi.org/10.1063/1.4876746

    Article  CAS  Google Scholar 

  29. L.M. Riemer, K.V. Lalitha, X. Jiang, N. Liu, C. Dietz, R.W. Stark, P.B. Groszewicz, G. Buntkowsky, J. Chen, S.-T. Zhang, Acta Mater. 136, 217–280 (2017). https://doi.org/10.1016/j.actamat.2017.07.008

    Article  CAS  Google Scholar 

  30. H.-P. Kim, C.W. Ahn, Y. Hwang, H.-Y. Lee, W. Jo, J. Korean Ceram. Soc. 54(2), 86–95 (2017). https://doi.org/10.4191/kcers.2017.54.2.12

    Article  CAS  Google Scholar 

  31. H. Zhao, Y. Hou, M. Zheng, X. Yu, X. Yan, L. Li, M. Zhu, Mater. Lett. 236, 633–636 (2019). https://doi.org/10.1016/j.matlet.2018.11.032

    Article  CAS  Google Scholar 

  32. S. Yang, J. Li, Y. Liu, M. Wang, L. Qiao, X. Gao, Y. Chang, H. Du, Z. Xu, S. Zhang, F. Li, Nat. Commun.Commun. 12(1), 1414 (2021). https://doi.org/10.1038/s41467-021-21673-8

    Article  CAS  Google Scholar 

  33. J. Chen, C. Zhou, H. Liu, Q. Li, C. Yuan, J. Xu, J. Wang, J. Zhao, G. Rao, A.C.S. Appl, Mater. Interfaces 15(8), 10820–10829 (2023). https://doi.org/10.1021/acsami.2c21631

    Article  CAS  Google Scholar 

  34. H. Song, J.P. Goud, J. Ye, W. Jung, J. Ji, J. Ryu, J. Korean Ceram. Soc. 60, 747–759 (2023). https://doi.org/10.1007/s43207-023-00305-5

    Article  CAS  Google Scholar 

  35. C. Bucci, R. Fieschi, Phys. Rev. Lett. 12(1), 16 (1964). https://doi.org/10.1103/PhysRevLett.12.16

    Article  Google Scholar 

  36. E.-M. Anton, W. Jo, D. Damjanovic, J. Rödel, J. Appl. Phys. 10(1063/1), 3660253 (2011)

    Google Scholar 

  37. W. Bai, D. Chen, P. Zheng, B. Shen, J. Zhai, Z. Ji, Dalton Trans. 45(20), 8573–8586 (2016). https://doi.org/10.1039/C6DT00906A

    Article  CAS  PubMed  Google Scholar 

  38. G.-J. Lee, H.-P. Kim, S.-G. Lee, H.-Y. Lee, W. Jo, J. Sensor Sci. Technol. 29(1), 59–62 (2020). https://doi.org/10.5369/JSST.2019.29.1.59

    Article  Google Scholar 

  39. H. Zhang, J. Zhou, J. Shen, Z. Wu, D. He, W. Chen, Appl. Phys. A 127, 1–9 (2021). https://doi.org/10.1007/s00339-021-04453-5

    Article  CAS  Google Scholar 

  40. M. Stewart, M. G. Cain and D. Hall, Ferroelectric hysteresis measurement and analysis, (National Physical Laboratory, Teddington 1999).

  41. Y. Hosono, K. Harada, T. Kobayashi, K. Itsumi, M. Izumi, Y. Yamashita, N. Ichinose, Jpn. J. Appl. Phys. J Appl Phys. 41(6), 3808 (2002). https://doi.org/10.1143/JJAP.41.3808

    Article  CAS  Google Scholar 

  42. J. Xu, H. Deng, Z. Zeng, Z. Zhang, K. Zhao, J. Chen, N. Nakamori, F. Wang, J. Ma, X. Li, H. Luo, Appl. Phys. Lett. 112(18), 182901 (2018). https://doi.org/10.1063/1.5027591

    Article  CAS  Google Scholar 

  43. C. Qiu, B. Wang, N. Zhang, S. Zhang, J. Liu, D. Walker, Y. Wang, H. Tian, T.R. Shrout, Z. Xu, L.-Q. Chen, F. Li, Nature 577(7790), 350–354 (2020). https://doi.org/10.1038/s41586-019-1891-y

    Article  CAS  PubMed  Google Scholar 

  44. J.E. Daniels, W. Jo, J. Rödel, V. Honkimäki, J.L. Jones, Acta Mater. 58(6), 2103–2111 (2010). https://doi.org/10.1016/j.actamat.2009.11.052

    Article  CAS  Google Scholar 

  45. C.-H. Hong, H. Guo, X. Tan, J.E. Daniels, W. Jo, J. Materiomics 5(4), 634–640 (2019). https://doi.org/10.1016/j.jmat.2019.06.004

    Article  Google Scholar 

  46. F. Li, S. Zhang, T. Yang, Z. Xu, N. Zhang, G. Liu, J. Wang, J. Wang, Z. Cheng, Z.-G. Ye, J. Luo, T.R. Shrout, L.-Q. Chen, Nat. Commun.Commun. 7(1), 13807 (2016). https://doi.org/10.1038/ncomms13807

    Article  CAS  Google Scholar 

  47. M.E. Manley, D.L. Abernathy, R. Sahul, D.E. Parshall, J.W. Lynn, A.D. Christianson, P.J. Stonaha, E.D. Specht, J.D. Budai, Sci. Adv. 2(9), e1501814 (2016). https://doi.org/10.1126/sciadv.1501814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. G. Liu, L. Kong, Q. Hu, S. Zhang, Appl. Phys. Rev. 10(1063/5), 0004324 (2020)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Material Technology Development Program (No. 1415182019) through the Korea Evaluation Institute of Industrial Technology (KEIT). A part of Sun’s work was supported by the US National Science Foundation under Grant No. 2309184. Ryu was supported by the US National Science Foundation under Grant No. 2309184.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wook Jo.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest. Wook Jo is an Associate Editor of Journal of the Korean Ceramic Society. Associate Editor status has no bearing on editorial consideration.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, JW., Zate, T.T., Choi, WJ. et al. Understanding thermal depolarization via thermally stimulated depolarization current measurement. J. Korean Ceram. Soc. (2024). https://doi.org/10.1007/s43207-024-00392-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43207-024-00392-y

Keywords

Navigation