Skip to main content
Log in

Thermally induced transitions and depolarization of Fe2O3 doped PMnS-PZN-PZT piezoelectric ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Thermally induced transitions and depolarization of Fe2O3 doped PMnS-PZN-PZT ceramics are investigated. The ceramics have a highly diffused dielectric peak, but the temperature for the maximum dielectric permittivity Tm is frequency independent, which rules out the ceramics to be classified as typical relaxors. Meanwhile, the depolarization temperature Td determined by the thermally stimulated depolarization current is found to be notably lower than Tm, which is distinct from the behaviors of normal ferroelectrics as well. An extraordinary phenomenon noted is that the Td coincides quite well with a characteristic temperature where the dielectric permittivity shows the fastest increase. This characteristic temperature, denoted as TF-R, is faint in the temperature-dependent dielectric permittivity but can be well resolved by taking the first derivative of dielectric permittivity with respect to temperature. In addition, it is found a number of features of the anomaly around TF-R that are quite similar to the ferroelectric-to-relaxor transition in typical relaxors, and therefore, the TF-R is assigned to a transition from ferroelectric state to a “relaxor-like” state, in which the correlation of ferroelectric order could be weakened. Complex impedance analysis reveals the presence of small polarizable entities at high temperature, providing further support for the high-temperature relaxor-like state. It is suggested that the depolarization of Fe2O3 doped PMnS-PZN-PZT is related to the disruption of long-range ferroelectric order into polar regions with small sizes, rather than the ferroelectric-to-paraelectric transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E.-M. Anton, W. Jo, D. Damjanovic, J. Rödel, J. Appl. Phys. 110, 094108 (2011)

    Article  ADS  Google Scholar 

  2. C. Huang, K. Cai, Y. Wang, Y. Bai, D. Guo, J. Mater. Chem. C 6, 1433 (2018)

    Article  ADS  Google Scholar 

  3. H. Zhao, Y. Hou, M. Zheng, X. Yu, X. Yan, L. Li, M. Zhu, Mater. Lett. 236, 633 (2019)

    Article  Google Scholar 

  4. J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, J. Eur. Ceram. Soc. 35, 1659 (2015)

    Article  Google Scholar 

  5. S. Zhang, F. Yu, J. Am. Ceram. Soc. 94, 3153 (2011)

    Article  Google Scholar 

  6. J. Fialka, P. Benes, L. Michlovska, S. Klusacek, S. Pikula, P. Dohnal, Z. Havranek, J. Eur. Ceram. Soc. 36, 2727 (2016)

    Article  Google Scholar 

  7. R.E. Eitel, C.A. Randall, T.R. Shrout, P.W. Rehrig, W. Hackenberger, S.-E. Park, Jpn. J. Appl. Phys. 40, 5999 (2001)

    Article  ADS  Google Scholar 

  8. J. Zhang, Z. Pan, F.-F. Guo, W.-C. Liu, H. Ning, Y.B. Chen, M.-H. Lu, B. Yang, J. Chen, S.-T. Zhang, X. Xing, J. Rödel, W. Cao, Y.-F. Chen, Nat. Commun. 6, 6615 (2015)

    Article  ADS  Google Scholar 

  9. J. Ou-Yang, B. Zhu, Y. Zhang, S. Chen, X. Yang, W. Wei, Appl. Phys. A 118, 1177 (2015)

    Article  ADS  Google Scholar 

  10. T. Shinjiro, I. Masahiko, I. Hideji, Jpn. J. Appl. Phys. 36, 3004 (1997)

    Article  Google Scholar 

  11. S. Zhang, R. Xia, L. Lebrun, D. Anderson, T.R. Shrout, Mater. Lett. 59, 3471 (2005)

    Article  Google Scholar 

  12. K. Uchino, J.H. Zheng, Y.H. Chen, X.H. Du, J. Ryu, Y. Gao, S. Ural, S. Priya, S. Hirose, J. Mater. Sci. 41, 217 (2006)

    Article  ADS  Google Scholar 

  13. M. Hejazi, E. Taghaddos, E. Gurdal, K. Uchino, A. Safari, J. Am. Ceram. Soc. 97, 3192 (2014)

    Article  Google Scholar 

  14. J. Chen, Z. Hu, H. Shi, M. Li, S. Dong, J. Phys. D: Appl. Phys. 45, 465303 (2012)

    Article  ADS  Google Scholar 

  15. Z. Yao, H. Liu, H. Hao, M. Cao, J. Appl. Phys. 109, 014105 (2011)

    Article  ADS  Google Scholar 

  16. H. Law, P. Rossiter, G. Simon, J. Unsworth, J. Mater. Sci. 30, 4901 (1995)

    Article  ADS  Google Scholar 

  17. A. Bokov, Z.-G. Ye, J. Mater. Sci. 41, 31 (2006)

    Article  ADS  Google Scholar 

  18. V.V. Shvartsman, D.C. Lupascu, J. Am. Ceram. Soc. 95, 1 (2012)

    Article  Google Scholar 

  19. Y. Xi, C. Zhili, L.E. Cross, J. Appl. Phys. 54, 3399 (1983)

    Article  ADS  Google Scholar 

  20. D. Lin, K.W. Kwok, Appl. Phys. A 97, 229 (2009)

    Article  ADS  Google Scholar 

  21. W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H.J. Kleebe, A.J. Bell, J. Rödel, J. Appl. Phys. 110, 074106 (2011)

    Article  ADS  Google Scholar 

  22. E. Aksel, J.S. Forrester, B. Kowalski, M. Deluca, D. Damjanovic, J.L. Jones, Phys. Rev. B 85, 024121 (2012)

    Article  ADS  Google Scholar 

  23. Y. Liu, Z. Ling, Z. Zhuo, J. Appl. Phys. 124, 164102 (2018)

    Article  ADS  Google Scholar 

  24. J. Mao, J. Zhou, H. Zheng, H. Sun, W. Chen, J. Synth. Cryst. 39, 72 (2010)

    Google Scholar 

  25. H. Zhang, J. Shen, J. Tian, J. Zhou, W. Chen, Ferroelectrics 491, 15 (2016)

    Article  Google Scholar 

  26. H. Zhang, J. Zhou, J. Shen, W. Jin, J. Zhou, W. Chen, Ferroelectrics 560, 110 (2020)

    Article  Google Scholar 

  27. J. Zhou, H. Sun, W. Chen, J. Chin. Ceram. Soc. 34, 289 (2006)

    Google Scholar 

  28. J. Zhou, W. Peng, J. Guo, W. Chen, J. Chin. Ceram. Soc. 35, 174 (2007)

    Google Scholar 

  29. J. Zhou, H. Sun, W. Chen, Piezoelect. Acoustoopt. 29, 308 (2007)

    Google Scholar 

  30. L. Lutterotti, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 334 (2010)

  31. G. Burns, F.H. Dacol, Solid State Commun. 48, 853 (1983)

    Article  ADS  Google Scholar 

  32. K. Uchino, S. Nomura, Ferroelectrics 44, 55 (1982)

    Article  Google Scholar 

  33. X. Dai, Z. Xu, D. Viehland, J. Appl. Phys. 79, 1021 (1996)

    Article  ADS  Google Scholar 

  34. X. Dai, Z. Xu, J.-F. Li, D. Viehland, J. Mater. Res. 11, 618 (2011)

    Article  ADS  Google Scholar 

  35. G. Du, R. Liang, J. Wang, L. Wang, W. Zhang, G. Wang, X. Dong, Ceram. Int. 39, 9299 (2013)

    Article  Google Scholar 

  36. R. Jiménez, B. Jiménez, J. Carreaud, J.M. Kiat, B. Dkhil, J. Holc, M. Kosec, M. Algueró, Phys. Rev. B 74, 184106 (2006)

    Article  ADS  Google Scholar 

  37. H. Zhang, J. Zhou, W. Chen, X. Yang, J. Shen, C. Wu, J. Electron. Mater. 46, 6167 (2017)

    Article  ADS  Google Scholar 

  38. S. Huband, P.A. Thomas, J. Appl. Phys. 121, 184105 (2017)

    Article  ADS  Google Scholar 

  39. M. Hagiwara, Y. Ehara, N. Novak, N.H. Khansur, A. Ayrikyan, K.G. Webber, S. Fujihara, Phys. Rev. B 96, 014103 (2017)

    Article  ADS  Google Scholar 

  40. N. Kumar, X. Shi, M. Hoffman, J. Eur. Ceram. Soc. 40, 2323 (2020)

    Article  Google Scholar 

  41. X. Dai, Z. Xu, D. Viehland, Philos. Mag. 70, 33 (1994)

    Article  ADS  Google Scholar 

  42. R. Gerhardt, J. Phys. Chem. Solids 55, 1491 (1994)

    Article  ADS  Google Scholar 

  43. J. Zang, M. Li, D.C. Sinclair, W. Jo, J. Rödel, J. Am. Ceram. Soc. 97, 1523 (2014)

    Article  Google Scholar 

  44. J.T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 132 (1990)

    Article  Google Scholar 

  45. A.A. Bokov, Z.-G. Ye, J. Adv. Dielectr. 02, 1241010 (2012)

    Article  Google Scholar 

  46. X. Wei, Y. Feng, X. Yao, Appl. Phys. Lett. 83, 2031 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (No. 51572205, 51802093), the Post-Doctoral Innovation Research Project of Hubei Province (20201jb003), the Equipment Pre-Research Joint Fund of EDD and MOE (No. 6141A02033209) and the Fundamental Research Funds for the Central Universities (WUT: 2018III019, 2019IVA108, 2020III021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhou, J., Shen, J. et al. Thermally induced transitions and depolarization of Fe2O3 doped PMnS-PZN-PZT piezoelectric ceramics. Appl. Phys. A 127, 313 (2021). https://doi.org/10.1007/s00339-021-04453-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04453-5

Keywords

Navigation