Skip to main content
Log in

Study of magnetoelectric coupling in magnetoelectric laminates fabricated using 15-mode PMN-PZT single crystals

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Piezoelectric coefficients dij and gij, the key parameters of the piezoelectric constituent of magnetoelectric (ME) composites, strongly influence their ME coupling. Considering this fact, we adopted three different types of piezoelectric materials with different crystallographic orientations, namely, 31-, 32-, and 15-mode PMN-PZT single crystals, to fabricate ME laminates. ME laminates can be easily fabricated using 31- and 32-mode PMN-PZT crystals, but it is difficult to fabricate them using 15-mode PMN-PZT because of the challenges in generating the 15-shear mode. In this study, 15-shear mode ME laminates were fabricated by sandwiching 15-mode PMN-PZT single crystals between Metglas and Ni, both of which exerted opposing magnetostrictive stresses on the 15-mode PMN-PZT to generate two-sided shear vibrations in it. Prior to the fabrication, the number of Metglas layers was optimized, owing to its differing thickness from that of Ni, to generate equal magnetostriction at the same applied DC magnetic field. ME laminates fabricated using two-layer (2L) and three-layer (3L) Metglas exhibited a maximum ME voltage coefficient (αME) of 0.04 V/cm Oe. In contrast, the αME values of ME laminates fabricated using 31- and 32-mode PMN-PZT single crystals were 0.46 V/cm Oe and 1.45 V/cm Oe, respectively, much higher than that of the 15-mode ME laminate. The small ME coupling in the 15-mode ME composite can be attributed to the unideal shear mode generated in the ME laminate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Ryu, J.E. Kang, Y. Zhou, S.Y. Choi, W.H. Yoon, D.S. Park, J.J. Choi, B.D. Hahn, C.W. Ahn, J.W. Kim, Y. Do Kim, S. Priya, S.Y. Lee, S. Jeong, D.Y. Jeong, Ubiquitous magneto-mechano-electric generator. Energy. Environ. Sci. (2015). https://doi.org/10.1039/C5EE00414D

    Article  Google Scholar 

  2. V. Annapureddy, H. Palneedi, W.H. Yoon, D.S. Park, J.J. Choi, B.D. Hahn, C.W. Ahn, J.W. Kim, D.Y. Jeong, J. Ryu, A pT/√Hz sensitivity ac magnetic field sensor based on magnetoelectric composites using low-loss piezoelectric single crystals. Sensors Actuators, A Phys. 260, 206 (2017). https://doi.org/10.1016/j.sna.2017.04.017

    Article  CAS  Google Scholar 

  3. Z. Chu, M. Pourhosseiniasl, S. Dong, Review of multi-layered magnetoelectric composite materials and devices applications. J. Phys. D. Appl. Phys. (2018). https://doi.org/10.1088/1361-6463/aac29b

    Article  Google Scholar 

  4. H. Palneedi, V. Annapureddy, S. Priya, S.-J.L. Kang, J. Ryu, Status and perspectives of multiferroic magnetoelectric composite materials and applications. Actuators 5(1), 9 (2016)

    Article  Google Scholar 

  5. R.L. Gao, Q. Zhang, Z. Xu, Z. Wang, G. Chen, X. Deng, C. Fu, W. Cai, A comparative study on the structural, dielectric and multiferroic properties of Co0.6Cu0.3Zn0.1Fe2O4/Ba0.9Sr0.1Zr0.1Ti0.9O3 composite ceramics. Compos. Part B. Engineer. 166, 204 (2019). https://doi.org/10.1016/j.compositesb.2018.12.010

    Article  CAS  Google Scholar 

  6. R.L. Gao, Z.H. Wang, G. Chen, X.L. Deng, W. Cai, C.L. Fu, Influence of core size on the multiferroic properties of CoFe2O4@BaTiO3 core shell structured composites. Ceram. Int. 44, S84 (2018)

    Article  CAS  Google Scholar 

  7. R. Xu, Z. Wang, R. Gao, S. Zhang, Q. Zhang, Z. Li, C. Li, G. Chen, X. Deng, W. Cai, C. Fu, Effect of molar ratio on the microstructure, dielectric and multiferroic properties of Ni0.5Zn0.5Fe2O4-Pb0.8Zr0.2TiO3 nanocomposite. J Mater Sci. Mater Electron. 29, 16226 (2018). https://doi.org/10.1007/s10854-018-9712-x

    Article  CAS  Google Scholar 

  8. R. Gao, X. Qin, Q. Zhang, Z. Xu, Z. Wang, C. Fu, G. Chen, X. Deng, W. Cai, Enhancement of Magnetoelectric properties of (1–x)Mn0.5Zn0.5Fe2O4-xBa0.85Sr0.15Ti0.9Hf0.1O3 Composite Ceramics. J. Alloy. Compound. 795, 501 (2019). https://doi.org/10.1016/j.jallcom.2019.05.013

    Article  CAS  Google Scholar 

  9. J. Ma, J. Hu, Z. Li, C.W. Nan, Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. (2011). https://doi.org/10.1002/adma.201003636

    Article  Google Scholar 

  10. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 103, 31101 (2008). https://doi.org/10.1063/1.2836410

    Article  CAS  Google Scholar 

  11. J. Ryu, A. Vázquez Carazo, K. Uchino, H.-E. Kim, “Magnetoelectric properties in piezoelectric and magnetostrictive laminar composites. Jpn. J. Appl. Phys. (2001). https://doi.org/10.1143/JJAP.40.4948

    Article  Google Scholar 

  12. J. Ryu, S. Priya, K. Uchino, H.-E. Kim, Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. J. Electroceramics. 8(2), 107 (2002)

    Article  CAS  Google Scholar 

  13. X. Liang, C. Dong, H. Chen, J. Wang, Y. Wei, M. Zaeimbashi, Y. He, A. Matyushov, C. Sun, N. Sun, A review of thin-film magnetoelastic materials for magnetoelectric applications. Sensors (Switzerland) (2020). https://doi.org/10.3390/s20051532

    Article  Google Scholar 

  14. H.-Y. Kim, H.-K. Park, Y.-W. Ju, Fabrication of the novel Fe2+αO3+α–CoFe2O4 composite fibers and their magnetic properties. J. Korean. Ceram. Soc. (2020). https://doi.org/10.1007/s43207-020-00040-1

    Article  Google Scholar 

  15. J.M. Cha, J.W. Lee, B.H. Bae, Y.J. Jeong, C.-B. Yoon, Synthesis and characterization of MnO2 added (Na0.475K0.475Li0.05) (Nb0.9Ta0.05Sb0.05)O3 lead-free piezoelectric ceramics. J. Korean. Ceram. Soc. (2020). https://doi.org/10.1007/s43207-020-00042-z

    Article  Google Scholar 

  16. M. Peddigari, H. Palneedi, G.-T. Hwang, J. Ryu, Linear and Nonlinear Dielectric Ceramics for High-Power Energy Storage Capacitor Applications. J. Korean Ceram. Soc. 56(1), 1 (2019)

    Article  CAS  Google Scholar 

  17. A. Kumar, J.Y. Yoon, A. Thakre, M. Peddigari, D.-Y. Jeong, Y.-M. Kong, J. Ryu, Dielectric, Ferroelectric, Energy Storage, and Pyroelectric Properties of Mn-Doped (Pb0.93La0.07)(Zr0.82Ti0.18)O3 Anti-Ferroelectric Ceramics.. J. Korean Ceram. Soc. 56 [4], 412 (2019). https://doi.org/10.4191/kcers.2019.56.4.10

    Article  CAS  Google Scholar 

  18. J.M. Jang, G.-T. Hwang, Y.H. Min, J.-W. Kim, C.-W. Ahn, J.-J. Choi, B.-D. Hahn, J.-H. Choi, D.-S. Park, Y.S. Jung, W.-H. Yoon, Fatigue study and durability improvement of piezoelectric single crystal macro-fiber composite energy harvester. J. Korean Ceram. Soc. 57, 645 (2020). https://doi.org/10.1007/s43207-020-00062-9

    Article  CAS  Google Scholar 

  19. S. Zhang, F. Li, F. Yu, X. Jiang, H.-Y. Lee, J. Luo, T.R. Shrout, Recent developments in piezoelectric crystals. J. Korean. Ceram. Soc. 55(5), 419 (2018)

    Article  CAS  Google Scholar 

  20. Y. Wang, P. Finkel, J. Li, D. Viehland, Piezoelectric single crystal and magnetostrictive Metglas composites: Linear and nonlinear magnetoelectric coupling. Appl. Phys. Lett. 104, (2014). https://doi.org/10.1063/1.4871101

    Article  CAS  Google Scholar 

  21. D.R. Patil, Y. Chai, R.C. Kambale, B.G. Jeon, K. Yoo, J. Ryu, W.H. Yoon, D.S. Park, D.Y. Jeong, S.G. Lee, J. Lee, J.H. Nam, J.H. Cho, B.I. Kim, K. Hoon Kim, Enhancement of resonant and non-resonant magnetoelectric coupling in multiferroic laminates with anisotropic piezoelectric properties. Appl. Phys. Lett. 102, (2013). https://doi.org/10.1063/1.4792590

    Article  CAS  Google Scholar 

  22. D. Rajaram Patil, R.C. Kambale, Y. Chai, W.H. Yoon, D.Y. Jeong, D.S. Park, J.W. Kim, J.J. Choi, C.W. Ahn, B.D. Hahn, S. Zhang, K. Hoon Kim, J. Ryu, Multiple broadband magnetoelectric response in thickness-controlled Ni/[011] Pb(Mg1/3Nb2/3)O3-Pb(Zr, Ti)O 3 single crystal/Ni laminates. Appl. Phys. Lett. 103, (2013). https://doi.org/10.1063/1.4817383

    Article  CAS  Google Scholar 

  23. D.R. Patil, Y. Chai, B.G. Jeon, R.C. Kambale, J. Ryu, S.G. Lee, J. Lee, K.H. Kim, Theoretical prediction of resonant and off-resonant magnetoelectric coupling in layered composites with anisotropic piezoelectric properties. Compos. Struct. 159, 498 (2017)

    Article  Google Scholar 

  24. S. Park, M. Peddigari, G.T. Hwang, W.H. Yoon, A. Kumar, J. Ryu, Face-shear 36-mode magnetoelectric composites with piezoelectric single crystal and Metglas laminate. Appl. Phys. Lett. 115, (2019). https://doi.org/10.1063/1.5120092

    Article  CAS  Google Scholar 

  25. Y. Wang, S.W. Or, H.L.W. Chan, X. Zhao, H. Luo, Magnetoelectric effect from mechanically mediated torsional magnetic force effect in NdFeB magnets and shear piezoelectric effect in 0.7Pb (Mg 1/3Nb2/3)O3–0.3PbTiO3 single crystal. Appl. Phys. Lett. 92, (2008). https://doi.org/10.1063/1.2901162

    Article  CAS  Google Scholar 

  26. C. Xin, J. Ma, J. Ma, C. Nan, Stretch-shear mode laminated metglas/Pb(Zr, Ti)O3/metglas composite with an enhanced magnetoelectric effect. Sci Bull 62(6), 388 (2017)

    Article  CAS  Google Scholar 

  27. H.T. Oh, J.Y. Lee, H.Y. Lee, Mn-modified PMN-PZT [Pb(Mg1/3Nb2/3)O3-Pb(Zr, Ti)O3] single crystals for high power piezoelectric transducers. J. Korean. Ceram. Soc. 54(2), 150 (2017)

    Article  CAS  Google Scholar 

  28. H. Palneedi, D. Maurya, L.D. Gen, H.-C. Song, G.-T. Hwang, M. Peddigari, V. Annapureddy, K. Song, Y.S. Oh, S.-C. Yang, Y. Wang, S. Priya, J. Ryu, Enhanced self-biased magnetoelectric coupling in laser annealed Pb(Zr, Ti)O3 thick film deposited on Ni foil. ACS. Appl. Mater. Interface. 10, 11018 (2018)

    Article  CAS  Google Scholar 

  29. H. Palneedi, S.-M. Na, G.-T. Hwang, M. Peddigari, K.W. Shin, K.H. Kim, J. Ryu, Highly tunable magnetoelectric response in dimensional gradient laminate composites of Fe-Ga alloy and Pb(Mg1/3Nb2/3)O3-Pb(Zr, Ti)O3 single crystal. J. Alloy. Comp. 765, 764 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF-2019R1A2B5B01070100) and a National Research Council of Science and Technology (NST) grant by the Korean Government (MSIP) (No. CAP-17-04-KRISS).This study was also primarily supported by the Global Frontier R&D Program at the Center for Hybrid Interface Materials (HIM) funded by the Ministry of Science, ICT, and Future Planning Korea (Grant No. NRF-2016M3A6B1925390) and the National Research Council of Science and Technology (NST) grant by the Korean Government (MSIP) (No. CAP-17-04-KRISS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungho Ryu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, D.R., Park, S.H., Hwang, GT. et al. Study of magnetoelectric coupling in magnetoelectric laminates fabricated using 15-mode PMN-PZT single crystals. J. Korean Ceram. Soc. 59, 322–328 (2022). https://doi.org/10.1007/s43207-021-00172-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-021-00172-y

Keywords

Navigation