Skip to main content
Log in

Enhanced polarization retention and softening in [001]-oriented Pb(Mg1/3Nb2/3)-PbTiO3 single crystals through corona poling

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

This study investigates the electrical properties of Pb(Mg1/3Nb2/3)-PbTiO3 (PMN-PT) single crystals subjected to corona poling (CorP) compared to direct current poling (DCP) and alternating current poling (ACP) methods. The results revealed the superiority of CorP in terms of polarization retention and softening. The corona-poled sample demonstrated a higher depolarization temperature (Td ~ 100 ℃) than DCP or ACP methods (Td ~ 90 ℃), indicating improved polarization stability at elevated temperatures. Furthermore, lowering of the coercive field (EC) in CorP samples suggests CorP makes the materials electrically softer. These advantages stem from the noncontact nature of the CorP method, which minimizes the risk of localized dielectric breakdown, and ensures a uniform electric field distribution. This work sheds a light on the potential of CorP as a promising technique for enhancing the electrical performance of materials in piezoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M.C. Sekhar, E. Veena, N.S. Kumar, K.C.B. Naidu, A. Mallikarjuna, D.B. Basha, Cryst. Res. Technol. 58, 2200130 (2023). https://doi.org/10.1002/crat.202200130

    Article  CAS  Google Scholar 

  2. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, J. Rödel, J. Electroceram. 29, 71–93 (2012). https://doi.org/10.1007/s10832-012-9742-3

    Article  CAS  Google Scholar 

  3. S.-E. Park, T.R. Shrout, J. Appl. Phys. 82, 1804–1811 (1997). https://doi.org/10.1063/1.365983

    Article  CAS  Google Scholar 

  4. S. Zhang, F. Li, X. Jiang, J. Kim, J. Luo, X. Geng, Prog. Mater. Sci. 68, 1–66 (2015). https://doi.org/10.1016/j.pmatsci.2014.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. S. Zhang, F. Li, F. Yu, X. Jiang, H.-Y. Kee, H. Luo, T.R. Shrout, J. Korean Ceram. Soc. 55, 419–439 (2018). https://doi.org/10.4191/kcers.2018.55.5.12

    Article  CAS  Google Scholar 

  6. D.R. Patil, S.H. Park, G.-T. Hwang, J. Ryu, J. Korean Ceram. Soc. 59, 322–328 (2022). https://doi.org/10.1007/s43207-021-00172-y

    Article  CAS  Google Scholar 

  7. S.-H. Go, K.S. Kim, J.S. Kim, C.I. Cheon, J. Korean Ceram. Soc. 60, 669–678 (2023). https://doi.org/10.1007/s43207-023-00291-8

    Article  CAS  Google Scholar 

  8. T.T. Zate, N.R. Ko, H.L. Yu, W.J. Choi, J.W. Sun, J.H. Jeon, W. Jo, J. Korean Inst. Electr. Electron. Mater. Eng. 36(3), 214–225 (2023). https://doi.org/10.4313/JKEM.2023.36.3.2

    Article  Google Scholar 

  9. T.T. Zate, J.W. Sun, N.R. Ko, B.K. Koo, H.L. Yu, M.S. Kim, W.J. Choi, S.J. Jeong, J.H. Jeon, W. Jo, J. Korean Inst. Electr. Electron. Mater 36(4), 362–368 (2023)

    Google Scholar 

  10. H. Fu, R.E. Cohen, Nature 403, 281–283 (2000). https://doi.org/10.1038/35002022

    Article  CAS  PubMed  Google Scholar 

  11. Y. Sun, T. Karaki, Y. Yamashita, Jpn. J. Appl. Phys. 61, SB0802 (2022). https://doi.org/10.35848/1347-4065/ac3a90

    Article  CAS  Google Scholar 

  12. H.-P. Kim, H. Wan, C. Luo, Y. Sun, Y. Yamashita, T. Karaki, H.-Y. Lee, X. Jiang, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 69, 3037–3047 (2022). https://doi.org/10.1109/TUFFC.2022.3181236

    Article  PubMed  Google Scholar 

  13. Y. Sun, T. Karaki, T. Fujii, Y. Yamashita, Jpn. J. Appl. Phys. 58, SLLC06 (2019). https://doi.org/10.7567/1347-4065/ab389c

    Article  CAS  Google Scholar 

  14. D. Waller, A. Safari, Ferroelectrics 87, 189–195 (1988). https://doi.org/10.1080/00150198808201381

    Article  Google Scholar 

  15. H. Wang, J. Liu, S. Sadeghzade, R. Hou, H. Yuan, Ceram. Int. 49, 11334–11343 (2023). https://doi.org/10.1016/j.ceramint.2022.11.333

    Article  CAS  Google Scholar 

  16. G. Lüttgens, S. Lüttgens, W. Schubert, Static electricity: understanding, controlling, applying (John Wiley & Sons, 2017)

    Book  Google Scholar 

  17. J. Marshall, Q. Zhang, R. Whatmore, Thin Solid Films 516, 4679–4684 (2008). https://doi.org/10.1016/j.tsf.2007.08.039

    Article  CAS  Google Scholar 

  18. M. Rotan, M. Zhuk, J. Glaum, J. Eur. Ceram. Soc. 40, 5402–5409 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.06.058

    Article  CAS  Google Scholar 

  19. C. Qiu, J. Liu, F. Li, Z. Xu, J. Appl. Phys. 125, 014102 (2019). https://doi.org/10.1063/1.5063682

    Article  CAS  Google Scholar 

  20. M.E. Lines, A.M. Glass, Principles and applications of ferroelectrics and related materials (Oxford University Press, 2001)

    Book  Google Scholar 

  21. J. Liu, C. Qiu, L. Qiao, K. Song, H. Guo, Z. Xu, F. Li, J. Appl. Phys. 128, 094104 (2020). https://doi.org/10.1063/5.0020109

    Article  CAS  Google Scholar 

  22. C. Hong, Z. Wang, B. Su, L. Guo, X. Yang, X. Long, C. He, J. Appl. Phys. 129, 124101 (2021). https://doi.org/10.1063/5.0041400

    Article  CAS  Google Scholar 

  23. A.B. Kounga, T. Granzow, E. Aulbach, M. Hinterstein, J. Rödel, J. Appl. Phys. 104, 024116 (2008). https://doi.org/10.1063/1.2959830

    Article  CAS  Google Scholar 

  24. Y. Zhang, Z. Chen, W. Cao, Z. Zhang, Appl. Phys. Lett. 111, 172902 (2017). https://doi.org/10.1063/1.4998187

    Article  CAS  Google Scholar 

  25. I. Stolichnov, A. Tagantsev, E. Colla, N. Setter, J. Cross, J. Appl. Phys. 98, 084106 (2005). https://doi.org/10.1063/1.2112174

    Article  CAS  Google Scholar 

  26. R. Aoyagi, A. Takeda, M. Iwata, M. Maeda, T. Nishida, T. Shiosaki, Jpn. J. Appl. Phys. 47, 7689–7692 (2008). https://doi.org/10.1143/JJAP.47.7689

    Article  CAS  Google Scholar 

  27. A.K. Jonscher, J. Phys. D Appl. Phys. 24, 1633–1636 (1991). https://doi.org/10.1088/0022-3727/24/9/017

    Article  Google Scholar 

  28. H. Smaoui, M. Arous, H. Guermazi, S. Agnel, A. Toureille, J. Alloys Compd. 489, 429–436 (2010). https://doi.org/10.1016/j.jallcom.2009.09.116

    Article  CAS  Google Scholar 

  29. D. Damjanovic, Rep. Prog. Phys. 61, 1267–1324 (1998). https://doi.org/10.1088/0034-4885/61/9/002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Material Technology Development Program (No. 1415182019) through the Korea Evaluation Institute of Industrial Technology (KEIT). A part of Sun’s work was supported by the US National Science Foundation under Grant No. 2309184. Ryu was supported by the US National Science Foundation under Grant No. 2309184.

Funding

This work was funded by Korea Evaluation Institute of Industrial Technology, 1415182019, Wook Jo.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Temesgen Tadeyos Zate or Wook Jo.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest. Wook Jo is an Associate Editor of the Journal of the Korean Ceramic Society. Associate Editor status has no bearing on editorial consideration.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 711 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, JW., Choi, WJ., Yu, HL. et al. Enhanced polarization retention and softening in [001]-oriented Pb(Mg1/3Nb2/3)-PbTiO3 single crystals through corona poling. J. Korean Ceram. Soc. (2024). https://doi.org/10.1007/s43207-024-00390-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43207-024-00390-0

Keywords

Navigation