Skip to main content
Log in

Synthesis, characterization, and dielectric properties of Y-doped strontium bismuth niobate (SrBi2−xYxNb2O9) ceramics: a lead-free ferroelectric alternative with enhanced performance

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

The scientific research findings emphasize the need to replace lead-based ferroelectric ceramics with environmentally friendly alternatives, driving heightened research interest in materials rivaling the performance of lead zirconate titanate (PZT). Among potential substitutes, bismuth layered structure ferroelectrics (BLSF), or Aurivillius compounds, have gained prominence. Our focus is on synthesizing Y-doped strontium bismuth niobate (SrBi2−xYxNb2O9), a BLSF material. Employing the solid-state treatment method, the structural, electrical, and dielectric properties of undoped and doped ceramics were scrutinized. Characterization involved X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Dielectric properties were systematically evaluated across frequencies and temperatures. XRD revealed the formation of the pure phase structure SrBi2Nb2O9 at 1100 °C, with no secondary phases. FTIR exhibited characteristic bands at approximately 619 cm−1 and 810 cm−1. SEM displayed thin plate-like grains and crystallites (sizes < 1 nm and 24 nm, respectively). The SrBi2−xYxNb2O9 ceramic demonstrated low dielectric loss values. Yttrium substitution for bismuth notably shifted the ferroelectric–paraelectric transition temperature from 460 to 435 °C, influencing dielectric constant behavior at higher frequencies. Structural and property changes were attributed to physicochemical phenomena, elucidated by considering density and lattice parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The manuscript has no associated data.

References

  1. G. Yueqiu, C. Hongyi, X. Shuhong, L. Xujun, J. Electron. Mater. (2018). https://doi.org/10.1007/s11664-017-5947-1

    Article  Google Scholar 

  2. B.R. Kumar, N.V. Prasad, G. Prasad, G.S. Kumar, Trans. Indian Ceram. Soc. (2019). https://doi.org/10.1080/0371750X.2019.1610068

    Article  Google Scholar 

  3. R.F. Abreu, S.O. Saturno, J.P.C. do Nascimento, E.O. Sancho, J.E.V. de Morais, J.C. Sales, D.X. Gouveia, H.D. de Andrade, I.S. Queiroz Jr., A.S.B. Sombra, J. Electromagn. Waves Appl. (2020). https://doi.org/10.1080/09205071.2020.1787231

    Article  Google Scholar 

  4. M. Uehara, R. Mizutani, S. Yasuoka, T. Shimizu, H. Yamada, M. Akiyama, H. Funakubo, Appl. Phys. Express (2022). https://doi.org/10.35848/1882-0786/ac8048

    Article  Google Scholar 

  5. M. Afqir, A. Tachafine, D. Fasquelle, M. Elaatmani, J.C. Carru, A. Zegzouti, M. Daoud, A. Oufakir, Appl. Ceram. (2019). https://doi.org/10.2298/PAC1903281A

    Article  Google Scholar 

  6. Y. Shi, Y. Pu, J. Li, R. Shi, W. Wang, Q. Zhang, L. Guo, Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.01.129

    Article  Google Scholar 

  7. Z. Hu, V. Koval, H. Zhang, K. Chen, Y. Yue, D. Zhang, H. Yan, J. Adv. Ceram. (2023). https://doi.org/10.26599/JAC.2023.9220754

    Article  Google Scholar 

  8. V.A. Isupov, Inorg. Mater. (2007). https://doi.org/10.1134/S0020168507090129

    Article  Google Scholar 

  9. R.F. Abreu, S.O. Saturno, E.O. Sancho, X.D. Gouveia, A.S.B. Sombra, J. Electron. Mater. (2019). https://doi.org/10.1007/s11664-018-06859-z

    Article  Google Scholar 

  10. S.W. Hwang, T.H. Noh, I.S. Cho, Catalysts (2019). https://doi.org/10.3390/catal9050393

    Article  Google Scholar 

  11. R. Verma, A. Chauhan, K.M. Batoo, R. Kumar, M. Hadhi, E.H. Raslan, Effect of calcination temperature on structural and morphological properties of bismuth ferrite nanoparticles. Ceram. Int. 47(3), 3680–3691 (2021)

    Article  CAS  Google Scholar 

  12. J. Hou, Z. Dai, C. Liu, S. Yasui, Y. Cong, S. Gu, Enhanced photoelectric properties for BiZn0. 5Zr0. 5O3 modified KNN-based lead-free ceramics. J. Alloys Compd. 960, 170639 (2023)

    Article  CAS  Google Scholar 

  13. Y.I. Yurasov, M.I. Tolstunov, A.V. Nazarenko, A.A. Pavelko, A.V. Yudin, I.A. Verbenko, L.A. Reznitchenko, Dielectric and piezoelectric properties of modified lead-free NaNbO3–KNbO3/PVDF composite ceramics. J. Adv. Dielectr. 11(05), 2160015 (2021)

    Article  CAS  Google Scholar 

  14. H. Zhang, T. Wei, Q. Zhang, W. Ma, P. Fan, D. Salamon, S.T. Zhang, B. Nan, H. Tan, Z, G, Ye. J. Mater. Chem. C (2020). https://doi.org/10.1039/D0TC04381H

    Article  Google Scholar 

  15. A. Imane, Z. Abdelouahad, N. Elbinna, E. Mohamed, D. Mohamed, J. Ceram. Process. Res. 24(2), 222–229 (2023)

    Google Scholar 

  16. B.R. Kannan, B.H. Venkataraman, J. Mater. Sci. Mater. Electron. (2014). https://doi.org/10.1007/s10854-014-2255-x

    Article  Google Scholar 

  17. T. Wei, B. Jia, L. Shen, C. Zhao, L. Wu, B. Zhang, X. Tao, S. Wu, Y. Liang, J. Eur. Ceram. (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.04.014

    Article  Google Scholar 

  18. V. Shrivastava, A.K. Jha, R.G. Mendiratta, Solid State Commun. (2005). https://doi.org/10.1016/j.ssc.2004.10.006

    Article  Google Scholar 

  19. J.N. Kiran, M. Sreenivasulu, K.S. Rao, K.S. Rao, S. Nagamani, T. Nagamalleswari, Today: Proc. (2019). https://doi.org/10.1016/j.matpr.2019.10.119

    Article  Google Scholar 

  20. Z.Ž Lazarević, Č Jovalekić, M. Gilić, V. Ivanovski, A. Umićević, D. Sekulić, N.Ž Romčević, Sci. Sinter. (2017). https://doi.org/10.2298/SOS1703277L

    Article  Google Scholar 

  21. R. Sahebi, M.R. Roknabadi, M. Behdani, Optik (2020). https://doi.org/10.1016/j.ijleo.2020.164204

    Article  Google Scholar 

  22. R. Sahebi, M.R. Roknabadi, M. Behdani, Mater. Res. Express. (2020). https://doi.org/10.1088/2053-1591/ab6c17

    Article  Google Scholar 

  23. K. Yadav, Mater. Today: Proc. (2020). https://doi.org/10.1016/j.matpr.2020.01.467

    Article  PubMed  Google Scholar 

  24. R. Ramaraghavulu, S. Buddhudu, Ferroelectr (2014). https://doi.org/10.1080/00150193.2014.874924

    Article  Google Scholar 

  25. S.K. Patri, R.N.P. Choudhary, Appl. Phys. A (2009). https://doi.org/10.1007/s00339-008-4796-4

    Article  Google Scholar 

  26. C. Keeney, S. Groh, S. Kulkarni, M.E. Roy, R.W. Pemble, R.W. Whatmore, J. Appl. Phys. (2012). https://doi.org/10.1063/1.4734983

    Article  Google Scholar 

  27. S. Supriya, Micron (2022). https://doi.org/10.1016/j.micron.2022.103344

    Article  PubMed  Google Scholar 

  28. J.N. Kiran, J.A. Kiran, S. Nagamani, Mater. Today: Proc. (2023). https://doi.org/10.1016/j.matpr.2023.05.230

    Article  Google Scholar 

  29. P. Pandey, S.K. Makineni, A. Samanta, A. Sharma, S.M.B. DasNithin, C. Srivastava, A.K. Singh, D. Raabe, B. Gault, K. Chattopadhyay, Acta Mater. (2019). https://doi.org/10.1016/j.actamat.2018.09.049

    Article  Google Scholar 

  30. B.H. Venkataraman, K.B.R. Varma, Solid State Ion. (2004). https://doi.org/10.1016/j.ssi.2003.12.020

    Article  Google Scholar 

  31. A. Dwivedi, K.N. Singh, M. Hait, P.K. Bajpai, J. Eng. Sci. (2022). https://doi.org/10.30919/es8d760

    Article  Google Scholar 

  32. A. Grünebohm, M. Marathe, R. Khachaturyan, R. Schiedung, D.C. Lupascu, V.V. Shvartsman, J. Phys. Condens. Matter 34(7), 073002 (2021)

    Article  Google Scholar 

  33. A.V. Pavlenko, D.V. Stryukov, M.V. Vladimirov, A.E. Ganzha, S.A. Udovenko, A. Joseph, N.V. Ter-Oganessian (2021). arXiv:2112.04579

  34. P. Chaudhary, S. Dabas, M. Kumar, A. Kumar, O.P. Thakur, Bull. Mater. Sci. (2020). https://doi.org/10.1007/s12034-020-02216-1

    Article  Google Scholar 

  35. A. Khokhar, P.K. Goyal, O.P. Thakur, A.K. Shukla, K. Sreenivas, Mater. Chem. Phys. (2015). https://doi.org/10.1016/j.matchemphys.2014.11.074

    Article  Google Scholar 

  36. M. Afqir, A. Tachafine, D. Fasquelle, M. Elaatmani, J.C. Carru, A. Zegzouti, M. Daoud, Dielectric properties of SrBi1. 8RE0. 2Nb2O9 (RE= Yb, Tm, Tb, Gd, Er, Sm and Ce) ceramics. Solid State Sci. 73, 51–56 (2017)

    Article  CAS  Google Scholar 

  37. R.F. Abreu, S.O. Saturno, J.P.C. do Nascimento, E.O. Sancho, J.E.V. De Morais, J.C. Sales, A.S.B. Sombra, Dielectric characterisation and numerical investigation of SrBi2Nb2O9–Bi2O3 composites for applications in microwave range. J. Electromagn. Waves Appl. 34(12), 1705–1718 (2020)

    Article  Google Scholar 

  38. T.P. Wendari, S. Arief, N. Mufti, V. Suendo, A. Prasetyo, J. Baas, G.R. Blake, Ceram. Int. (2019). https://doi.org/10.1016/j.matchemphys.2014.11.074

    Article  Google Scholar 

  39. L. Zhang, Y. Nie, C. Hu, J. Qu, Appl. Catal. B Environ. (2012). https://doi.org/10.1016/j.apcatb.2012.06.015

    Article  Google Scholar 

  40. E. Shi, Y. Gao, B.P. Finkenauer, A.H. Coffey, L. Dou, Chem. Soc. Rev. (2018). https://doi.org/10.1039/C7CS00886D

    Article  PubMed  Google Scholar 

  41. Y. Yan, L. Jin, L. Feng, G. Cao, Mater. Sci. Eng. B (2006). https://doi.org/10.1016/j.mseb.2006.02.060

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: IA, MD, and AZ; Methodology: IA, MA, MD, and AZ; Data curation and writing of the original draft: IA; Validation and writing, reviewing, and editing of the manuscript: IA, MD, AZ, MA.

Corresponding author

Correspondence to Imane Anasser.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anasser, I., Daoud, M., Zegzouti, A. et al. Synthesis, characterization, and dielectric properties of Y-doped strontium bismuth niobate (SrBi2−xYxNb2O9) ceramics: a lead-free ferroelectric alternative with enhanced performance. J. Korean Ceram. Soc. (2024). https://doi.org/10.1007/s43207-024-00389-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43207-024-00389-7

Keywords

Navigation