Skip to main content
Log in

Solid solutions of bismuth-based Aurivillius oxides: structural and dielectric characterization

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Bismuth layered perovskite structures show interesting physical properties varying as a function of external parameters (temperature, frequency, electric and magnetic fields). When a magnetic ion is incorporated in some of these materials, some of the structures show simultaneous ferroelectricity and ferro/antiferromagnetism. Thus, they exhibit magnetoelectric properties under the influence of an external magnetic field. This paper compares the structural (XRD and SEM) and electrical properties of two eight-layered Aurivillius oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Pookmaneea, P. Boonphayak, S. Phanichphant, Ceram. Int. 30, 1917 (2004)

    Article  Google Scholar 

  2. C. Moure, L. Lascano, J. Tartaj, P. Duran, Ceram. Int. 29, 91 (2003)

    Article  Google Scholar 

  3. I.H. Ismailzade, R.G. Yakupov, T.A. Melik-Shanazarova, Phys. Status Solidi A 6, K85 (1971)

    Article  Google Scholar 

  4. S. Ezhilvalavan, J.M. Xue, J. Wang, Mater. Chem. Phys. 75(1–3), 50 (2002)

    Article  Google Scholar 

  5. R.L. Withers, J.G. Thompson, A.D. Rae, J. Solid State Chem. 94, 404 (1991)

    Article  ADS  Google Scholar 

  6. A. Srinivas, M. Mahesh Kumar, S.V. Suryanarayana, T. Bhimasankaram, Mater. Res. Bull. 34(6), 989 (1999)

    Article  Google Scholar 

  7. A. Srinivas, S.V. Suryanarayana, G.S. Kumar, M. Mahesh Kumar, J. Phys.: Condens. Matter 11, 3335 (1999)

    Article  ADS  Google Scholar 

  8. A. Srinivas, S.V. Suryanarayana, Electron. Mater. Ceram. 106, 277 (2000)

    Google Scholar 

  9. I.H. Ismailzade, J. Phys. (Suppl.) 33, C2–237 (1972)

    Google Scholar 

  10. A. Srinivas, F. Boey, T. Sritharan, D.W. Kim, K.S. Hong, Ceram. Int. 30, 1427 (2004)

    Article  Google Scholar 

  11. T. Takenaka, K. Sakata, J. Appl. Phys. 55(4), 1092 (1984)

    Article  ADS  Google Scholar 

  12. POWDMULT: an interactive powder diffraction data interpretations and indexing program, version 1. E. Wu School of Physical Sciences, Flinders University of South Australia, Bradford Park, SA 5042, Australia

  13. E. Venkata Ramana, S.V. Suryanarayana, T. Bhima Sankaram, Mater. Res. Bull. 41, 1077 (2006)

    Article  Google Scholar 

  14. X.F. Du, I.W. Chen, J. Am. Ceram. Soc. 81, 3253 (1998)

    Article  Google Scholar 

  15. S.K. Patri, R.N.P. Choudhary, B.K. Samantaray, J. Alloys Compd. 459, 333 (2008)

    Article  Google Scholar 

  16. C.M. Wanga, J.F. Wang, Appl. Phys. Lett. 89, 202905 (2006)

    Article  ADS  Google Scholar 

  17. N.V. Prasad, G. Prasad, T. Bhimasankaram, S.V. Suryanarayana, G.S. Kumar, Bull. Mater. Sci. 24(5), 487 (2001)

    Article  Google Scholar 

  18. H.P. Klug, L.B. Alexander, X-ray Diffraction Procedures (Wiley, New York, 1974)

    Google Scholar 

  19. B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, Philippines, 1978)

    Google Scholar 

  20. S.K. Patri, R.N.P. Choudhary, B.K. Samantaray, J. Electroceram. 20, 119 (2008)

    Article  Google Scholar 

  21. S.K. Patri, R.N.P. Choudhary, Cent. Eur. J. Phys. (2008). doi:10.2478/S11534-008-0064-7

  22. S. Allen, E. Thomas, The Structure of Materials (Wiley, New York, 1999)

    Google Scholar 

  23. G. Catalan, B. Noheda, J. McAneney, I.J. Sinnamon, J.M. Gregg, Phys. Rev. B 72, 020102 (2005)

    Article  ADS  Google Scholar 

  24. G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953)

    Article  Google Scholar 

  25. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1965)

    Google Scholar 

  26. S. Seraji, Y. Wu, M. Forbess, S.J. Limmer, T. Chou, G. Cao, Adv. Mater. 12, 1695 (2000)

    Article  Google Scholar 

  27. H. Zhao, J. Zhoul, Y. Bai, Z. Gui, L. Li, J. Magn. Magn. Mater. 280, 208 (2004)

    Article  ADS  Google Scholar 

  28. I. Bunget, M. Popescu, Physics of Solid Dielectrics (Elsevier, Amsterdam, 1984)

    Google Scholar 

  29. http://en.wikipedia.org/wiki/Kr%C3%B6ger-Vink_Notation

  30. http://www.positron.physik.uni-halle.de/talks/CERAMIC2

  31. O. Raymond, R. Font, N. Suarez-Almodovar, J. Portelles, J. Appl. Phys. 97, 084107 (2005)

    Article  ADS  Google Scholar 

  32. J.S. Kim, I.W. Kim, C.W. Ahn, T.K. Song, S.S. Kim, S.X. Chi, J.S. Bae, J.H. Jeong, Jpn. J. Appl. Phys. 41, 6785 (2002)

    Article  ADS  Google Scholar 

  33. R.N.P. Choudhary, D.K. Pradhan, G.E. Bonilla, R.S. Katiyar, J. Alloys Compd. 437, 220 (2007)

    Article  Google Scholar 

  34. A.K. Jonscher, Thin Solid Films 100, 329 (1983)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. P. Choudhary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patri, S.K., Choudhary, R.N.P. Solid solutions of bismuth-based Aurivillius oxides: structural and dielectric characterization. Appl. Phys. A 94, 321–327 (2009). https://doi.org/10.1007/s00339-008-4796-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4796-4

PACS

Navigation