Skip to main content
Log in

Structural, dielectric and magnetoelectric coupling analysis in SrBi2Nb2O9–CoFe2O4 composites

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Ferroelectric–magnetic composites of SrBi2Nb2O9–CoFe2O4 (SBN–CFO) were synthesized via conventional solid state reaction route. The powder X-ray diffraction, Raman spectroscopy and scanning electron microscopy measurements confirm the existence of two chemically separated phases and phase purity in the SBN–CFO composites. Magnetization measurements confirm the enhanced values of the magnetic parameters. The change in the area of the ferroelectric P vs. E loops with frequency confirms the enhanced ferroelectric nature of the SBN–CFO composites. The quantified maximum values of magnetoelectric coefficient (α) are observed from the P vs. E loop measurements in the influence of applied magnetic field and found to be 4.475 mV cm−1 Oe−1 at 688 Oe for SBN–0.1CFO and 3.389 mV cm−1 Oe−1 at 1000 Oe for SBN–0.2CFO composites, respectively. The shifting in the peaks of temperature-dependent dielectric maxima towards the higher temperature side confirms the relaxor behaviour in the SBN–CFO composite samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Wu J, Fan Z, Xiao D, Zhu J and Wang J 2016 Prog. Mater. Sci. 84 1

    CAS  Google Scholar 

  2. Cheong S W and Mostovoy M 2007 Nat. Mater. 6 13

    CAS  Google Scholar 

  3. Zhang S, Luo W, Wang D and Ma Y 2009 Mater. Lett. 63 1820

    CAS  Google Scholar 

  4. Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759

    CAS  Google Scholar 

  5. Spaldin N A and Fiebig M 2005 Mater. Sci. 309 391

    CAS  Google Scholar 

  6. Fiebig M, Lottermoser Th, Frohlich D, Goltsev A V and Pisarev R V 2002 Nature 419 818

    CAS  Google Scholar 

  7. Wang K F, Liu J M and Ren Z F 2009 Adv. Phys. 58 321

    CAS  Google Scholar 

  8. Fiebig M 2005 J. Phys. D: Appl. Phys. 38 R123

    CAS  Google Scholar 

  9. Scott J F and De Araujo C A P 1989 Science 246 1400

    CAS  Google Scholar 

  10. Evans J T and Womack R 1988 IEEE J. Solid-State Circuits 23 1171

    Google Scholar 

  11. Haertling G H 1991 J. Vac. Sci. Technol. A9 414

    Google Scholar 

  12. Lee J J, Thio C L and Desu S B 1995 J. Appl. Phys. 78 5073

    CAS  Google Scholar 

  13. Sridarane R, Subramanian S, Janani N and Murugan R 2010 J. Alloys Compd. 492 642

    CAS  Google Scholar 

  14. Watanabe H, Mihara T, Yoshimori H and De Araujo C A P 1995 J. Appl. Phys. 34 5240

    CAS  Google Scholar 

  15. Dubey S, Subohi O and Kurchania R 2017 Physica B 521 73

    CAS  Google Scholar 

  16. Wu Y, Forbess M J, Seraji S, Limmer S J, Chou T P, Nguyen C et al 2001 J. Appl. Phys. 90 5296

    CAS  Google Scholar 

  17. Kalaiselvi B J, Sridarane R and Murugan R 2006 Mater. Sci. Eng. B 127 224

    CAS  Google Scholar 

  18. Shanmugan V, Sridarane R, Deviannapoorani C, Kashyap R and Murugan R 2014 Curr. Appl. Phys. 14 407

    Google Scholar 

  19. Das R R, Bhattacharya P, Perez W and Katiyar R S 2004 Ceram. Int. 30 1175

    CAS  Google Scholar 

  20. Goel P and Yadav K L 2006 Physica B 382 245

    CAS  Google Scholar 

  21. Wu Y and Cao G 1999 Appl. Phys. Lett. 17 2650

    Google Scholar 

  22. Venkataraman B H and Varma K B R 2005 J. Mater. Sci. Mater. Electron. 16 335

    CAS  Google Scholar 

  23. Fang P, Fan H, Li J, Jia X and Liang F 2009 Solid State Commun. 149 2074

    CAS  Google Scholar 

  24. Gu H, Xue J and Wang J 2001 Appl. Phys. Lett. 79 2061

    CAS  Google Scholar 

  25. Gu H, Zhang T, Cao W, Xue J and Wang J 2003 Mater. Sci. Eng. B 99 116

    Google Scholar 

  26. Gu H, Xue J M, Gao X and Wang X J 2002 Mater. Chem. Phys. 75 105

    CAS  Google Scholar 

  27. Namsar O, Pojprapai S, Watcharapasorn A and Jiansirisomboon S 2015 Electron. Mater. Lett. 5 881

    Google Scholar 

  28. Abbas S S, Hussain Gul I, Ameer S and Anees M 2015 Electron. Mater. Lett. 11 100

    CAS  Google Scholar 

  29. Bammanavar B K, Nair L R and Chougule B K 2008 J. Appl. Phys. 104 064123

    Google Scholar 

  30. Chinnasamy C N, Jeyadevan B, Shinoda K, Tohji K, Djayaprawira D J, Takahashi M et al 2003 Appl. Phys. Lett. 83 2862

    CAS  Google Scholar 

  31. Shanmugavani A, Kalai Selvan R, Layek S, Vasylechko L and Sanjeeviraja C 2015 Mater. Res. Bull. 71 122

    CAS  Google Scholar 

  32. Shankar S, Kumar M, Brijmohan P, Kumar S, Thakur O P and Ghosh A K 2016 J. Mater. Sci. Mater. Electron. 27 13259

    CAS  Google Scholar 

  33. Valenzuela R 1984 Magnetic ceramics (Cambridge: Cambridge University Press) p 191

    Google Scholar 

  34. Petitt G A and Forester D W 1971 Phys. Rev. B 4 3912

    Google Scholar 

  35. Chopdekar R V and Suzuki Y 2006 Appl. Phys. Lett. 89 182506

    Google Scholar 

  36. Subbarao E C 1962 J. Phys. Chem. Solids 23 665

    CAS  Google Scholar 

  37. Asayama G, Lettieri J, Zurbuchen M A, Jia Y, Trolier-Mckinstry S, Schlom D G et al 2002 Appl. Phys. Lett. 80 2371

    CAS  Google Scholar 

  38. Zhang J, Chao M, Liang E and Li M 2012 J. Alloys Compd. 521 150

    CAS  Google Scholar 

  39. Yao Z, Chu R, Xu Z, Hao J, Wei D, Cheng R et al 2016 J. Alloys Compd. 666 10

    CAS  Google Scholar 

  40. Yao Z, Li H, Ma M, Chu R, Xu Z, Hao J et al 2016 Ceram. Int. 42 5391

    CAS  Google Scholar 

  41. Dobal P S and Katiyar R S 2002 J. Raman Spectrosc. 33 405

    CAS  Google Scholar 

  42. Mcconnell A A, Anderson J S and Rao C N R 1976 Spectrochim. Acta 32A 1067

    CAS  Google Scholar 

  43. Liu G Z, Wang C, Gu H S and Lu H B 2007 J. Phys. D: Appl. Phys. 40 7817

    CAS  Google Scholar 

  44. Qiu J, Liu G Z, He M, Gu H S and Zhou T 2007 Physica B 400 134

    CAS  Google Scholar 

  45. Rocha M J S, Filho M C C, Theophilo K R B, Denardin J C, Vasconcelos I F, Araujo E B et al 2012 Mater. Scie Appl. 3 6

    Google Scholar 

  46. Nikitenko V I, Gornakov V S, Dedukh L M, Kabanov Y P, Khapikov A F, Shapiro A J et al 1998 Phys. Rev. B 57 R8111

    CAS  Google Scholar 

  47. Souza da Rocha M J, Campos Filho M C, Burlamaqui Theophilo K R, Denardin J C, Frotade Vasconcelos I, Borges de Araujo E et al 2012 Mater. Sci. Appl. 3 6

    CAS  Google Scholar 

  48. Kumar M, Shankar S, Kotnala R K and Parkash O 2013 J. Alloys Compd. 577 222

    CAS  Google Scholar 

  49. Dwivedi G D, Tseng K F, Chan C L, Shahi P, Lourembam J, Chatterjee B et al 2010 Phys. Rev. B 82 134428

    Google Scholar 

  50. Harihara Venkataraman B and Varma K B R 2004 Solid State Ion. 167 197

    Google Scholar 

  51. Dwivedi G D, Kumar M, Shahi P, Barman A, Chatterjee S and Ghosh A K 2015 RSC Adv. 5 30748

    CAS  Google Scholar 

  52. Wei T, Wang X D, Zhao C Z, Zhang T B, Yang F M, Wang W B et al 2015 Ceram. Int. 41 12364

    CAS  Google Scholar 

  53. Cross L E 1987 Ferroelectrics 76 241

    CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to University Science Instrumentation Centre (USIC), University of Delhi, New Delhi, India for providing the characterization facilities. We are also thankful to Dr R K Kotnala, NPL, New Delhi, India for dielectric measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O P Thakur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, P., Dabas, S., Kumar, M. et al. Structural, dielectric and magnetoelectric coupling analysis in SrBi2Nb2O9–CoFe2O4 composites. Bull Mater Sci 43, 247 (2020). https://doi.org/10.1007/s12034-020-02216-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02216-1

Keywords

Navigation