Skip to main content
Log in

Trends in defect passivation technologies for perovskite-based photosensor

  • Review
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Perovskites are semiconductor materials with the ABX3 structure, and they possess several attractive features, such as a tunable bandgap, high photoluminescence quantum yield (PLQY), charge mobility, and carrier lifetime. Hence, they are widely used in various applications, such as light-emitting devices, solar cells, and photosensors. However, the perovskite defects, including grain boundaries, vacancies, ion migration, and structural deformation, interfere with the effective performance of the perovskite-based devices. The intrinsic instability and trap states caused by the perovskite defects decrease the stability and performance of perovskite-based devices. Two methods of defect passivation are carried out to enhance the effectiveness of perovskite-based devices: (1) polymers and (2) chemical additives. Defect passivation protects the surface to increase stability and reduce trap states, thereby enhancing the performance of perovskite-based devices. This article reviews the technologies for defect passivation in perovskite-based devices. The effect of defect passivation has been analyzed using various methodologies: (1) surface analysis using atomic force microscopy (AFM) and scanning electron microscopy (SEM), (2) bandgap and charge carrier lifetime analysis using photoluminescence (PL) and time-resolved photoluminescence (TRPL) spectra, (3) the trap-state density calculations based on the I–V curve under dark conditions, and (4) comparison of the critical parameters of the perovskite-based devices. This review provides an overview of the defect passivation technologies available to enhance the stability and applicability of perovskite-based photosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Data will be made available on request.

Abbreviations

AFM:

Atomic force microscopy

SEM:

Scanning electron microscopy

PL:

Photoluminescence

TRPL:

Time-resolved photoluminescence

GBs:

Grain boundaries

C-AFM:

Conductive atomic force microscopy

XRD:

X-ray diffraction

TRPL:

Time-resolved PL

PMMA:

Polymethyl methacrylate

ITO:

Indium tin oxide

UPS:

UV photoelectron spectroscopy

VBM:

Valence band maximum

UV–vis:

Ultraviolet–visible

PTAA:

Poly(trial amine)

PSC:

Perovskite solar cell

tBBAI:

4-Tert-butyl-benzylammonium iodide

HTL:

Hole transfer layer

MHyI:

Methylhydrazine iodide

CPD:

Contact potential distribution

KPFM:

Kelvin probe force microscopy

References

  1. Y. Zuo, J. Tian, Y. Tian, G. Miao, P. Fu, Structure and electrical properties of Pr6O11-doped CaCu3Ti4O12 NTC ceramics. J. Korean Ceram. Soc. 60(3), 496–510 (2023)

    Article  CAS  Google Scholar 

  2. A. Tripathy, S. Bhuyan, S.N. Das, R.N.P. Choudhary, Temperature and frequency depended structural, morphological, and electrical topographies of Bi2MnFeO6 double perovskite. J. Korean Ceram. Soc. 60(2), 373–380 (2022)

    Article  Google Scholar 

  3. S. Priyadarshinee, J. Pati, R. Mahapatra, P. Mohanty, D.K. Mishra, J. Mohapatra, Studies of structural, microstructural, optical and dielectric properties of GdMnO3. J. Korean Ceram. Soc. 60(1), 203–214 (2022)

    Article  Google Scholar 

  4. C.J. Yu, Advances in modelling and simulation of halide perovskites for solar cell applications. J. Phys. Energy 1(2), 022001 (2019)

    Article  CAS  Google Scholar 

  5. A.A.B. Baloch, F.H. Alharbi, G. Grancini, M.I. Hossain, M.K. Nazeeruddin, N. Tabet, Analysis of photocarrier dynamics at interfaces in perovskite solar cells by time-resolved photoluminescence. J. Phys. Chem. C 122(47), 26805–26815 (2018)

    Article  CAS  Google Scholar 

  6. E.A. Alharbi, A.Y. Alyamani, D.J. Kubicki, A.R. Uhl, B.J. Walder, A.Q. Alanazi, J. Luo, A. Burgos-Caminal, A. Albadri, H. Albrithen, M.H. Alotaibi, J.E. Moser, S.M. Zakeeruddin, F. Giordano, L. Emsley, M. Gratzel, Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells. Nat. Commun. 10(1), 3008 (2019)

    Article  Google Scholar 

  7. M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9(6), 1989–1997 (2016)

    Article  CAS  Google Scholar 

  8. L. Zheng, Y.-H. Chung, Y. Ma, L. Zhang, L. Xiao, Z. Chen, S. Wang, B. Qu, Q. Gong, A hydrophobic hole transporting oligothiophene for planar perovskite solar cells with improved stability. Chem. Commun. 50(76), 11196–11199 (2014)

    Article  CAS  Google Scholar 

  9. D.K. Kim, D. Choi, M. Park, K.S. Jeong, J.H. Choi, cesium lead bromide quantum dot light-emitting field-effect transistors. ACS Appl. Mater. Interfaces 12(19), 21944–21951 (2020)

    Article  CAS  Google Scholar 

  10. X.F. Li, L.Q. Yang, Q.Q. Yang, S.M. Wang, J.Q. Ding, L.X. Wang, Heterogeneous post-passivation of inorganic cesium lead halide perovskite quantum dots for efficient electroluminescent devices. J. Mater. Chem. C 9(11), 3978–3986 (2021)

    Article  CAS  Google Scholar 

  11. C.H. Tien, T.L. Hsieh, L.C. Chen, Pure natural aloe vera plant mixed ligands modified cesium lead bromide quantum dots for improved light-emitting performance and stability. J. Mater. Res. Technol. 15, 151–162 (2021)

    Article  CAS  Google Scholar 

  12. T.T. Pham, H. Lee, J. Lee, W.J. Chung, Perovskite nanocrystal-embedded glasses for photonic applications. J. Korean Ceram. Soc. 59(6), 749–762 (2022)

    Article  CAS  Google Scholar 

  13. S.M. Han, Y.J. Lee, M.H. Lee, C.W. Park, S.M. Lee, J.O. Soh, J.H. Lee, M13 bacteriophage-based bio-nano systems for bioapplication. Biochip J. 16(3), 227–245 (2022)

    Article  CAS  Google Scholar 

  14. N. Alfryyan, A. Irshad, S. Altaf, B. Basha, M.S. Al-Buriahi, Z.A. Alrowaili, H. Sabeeh, M.I. Din, Study on the synthesis and activity of Ag/LaFeO3/CNTs for photodegradation of harmful pollutants under visible light irradiation. J. Korean Ceram. Soc. 2023, 1–11 (2023)

    Google Scholar 

  15. H.-R. Kim, J.-H. Bong, J.-H. Park, Z. Song, M.-J. Kang, D.H. Son, J.-C. Pyun, Cesium lead bromide (CsPbBr3) perovskite quantum dot-based photosensor for chemiluminescence immunoassays. ACS Appl. Mater. Interfaces 13(25), 29392–29405 (2021)

    Article  CAS  Google Scholar 

  16. Y. Che, X. Cao, Y. Zhang, J. Yao, High-performance photodetector using CsPbBr3 perovskite nanocrystals and graphene hybrid channel. J. Mater. Res. Sci. 56(3), 2341–2346 (2020)

    Article  Google Scholar 

  17. P. Shukla, S. Yadav, M.S. Patel, P. Kumar, N. Kumar, L. Kumar, The effects of cesium lead bromide quantum dots on the performance of copper phthalocyanine-based organic field-effect transistors. Nanotechnology 32(19), 195208 (2021)

    Article  CAS  Google Scholar 

  18. J.R. Gonzalez-Moya, C.Y. Chang, D.R. Radu, C.Y. Lai, Photocatalytic deposition of nanostructured CsPbBr(3) perovskite quantum dot films on mesoporous TiO(2) and their enhanced visible-light photodegradation properties. ACS Omega 7(30), 26738–26748 (2022)

    Article  CAS  Google Scholar 

  19. F.G. Wang, H.T. Zhang, X.X. Song, H.W. Li, Z. Xu, D.D. Wei, J.J. Zhang, Z.J. Dai, Y.P. Ren, Y.X. Ye, X.D. Ren, J.Q. Yao, High-responsivity Vis–NIR photodetector based on a Ag2S/CsPbBr3 heterojunction. ACS Appl. Electron. Mater. 4(8), 3922–3929 (2022)

    Article  CAS  Google Scholar 

  20. J. Zhang, J. Liu, In situ construction of a Te/CsPbBr(3) heterojunction for self-powered photodetector. RSC Adv. 12(5), 2729–2735 (2022)

    Article  CAS  Google Scholar 

  21. S.Y. Cheng, X. Zheng, Z.L. Hou, R.Y. Hu, S.L. Jiang, S. Xi, G.J. Wen, X.Y. Liu, Passivating the vacancy defects of CsPbCl3 polycrystalline films by a Cl-containing ionic liquid for self-powered, charge-transport-layer-free UV photodetectors. J. Mater. Chem. C 10(14), 5693–5706 (2022)

    Article  CAS  Google Scholar 

  22. A. Kipkorir, J. DuBose, J. Cho, P.V. Kamat, CsPbBr(3)-CdS heterostructure: stabilizing perovskite nanocrystals for photocatalysis. Chem. Sci. 12(44), 14815–14825 (2021)

    Article  CAS  Google Scholar 

  23. S. Supriya, Bi4Ti3O12 electroceramics: effect of doping, crystal structure mechanisms and piezoelectric response. J. Korean Ceram. Soc. 60(3), 451–461 (2023)

    Article  CAS  Google Scholar 

  24. C. Hu, Z. Zhang, J. Chen, P. Gao, Surface passivation of organic-inorganic hybrid perovskites with methylhydrazine iodide for enhanced photovoltaic device performance. Inorganics 11(4), 168 (2023)

    Article  CAS  Google Scholar 

  25. X. Li, M. Kepenekian, L. Li, H. Dong, C.C. Stoumpos, R. Seshadri, C. Katan, P. Guo, J. Even, M.G. Kanatzidis, Tolerance factor for stabilizing 3D hybrid halide perovskitoids using linear diammonium cations. J. Am. Chem. Soc. 144(9), 3902–3912 (2022)

    Article  CAS  Google Scholar 

  26. Y. Zhao, C. Li, J. Jiang, B. Wang, L. Shen, Sensitive and stable tin-lead hybrid perovskite photodetectors enabled by double-sided surface passivation for infrared upconversion detection. Small 16(26), e2001534 (2020)

    Article  Google Scholar 

  27. C.M. Sutter-Fella, Y. Li, M. Amani, J.W. Ager 3rd., F.M. Toma, E. Yablonovitch, I.D. Sharp, A. Javey, High photoluminescence quantum yield in band gap tunable bromide containing mixed halide perovskites. Nano Lett. 16(1), 800–806 (2016)

    Article  CAS  Google Scholar 

  28. K.T. Butler, J.M. Frost, A. Walsh, Band alignment of the hybrid halide perovskites CH3NH3PbCl3, CH3NH3PbBr 3and CH3NH3PbI3. Mater. Horiz. 2(2), 228–231 (2015)

    Article  CAS  Google Scholar 

  29. A. Filippetti, A. Mattoni, Hybrid perovskites for photovoltaics: Insights from first principles. Phys. Rev. B 89(12), 125203 (2014)

    Article  Google Scholar 

  30. G.I. Choi, H.W. Choi, A study on mixed cation perovskite-based UVC photodetector with improved performance. J. Korean Ceram. Soc. 60(1), 90–98 (2022)

    Article  Google Scholar 

  31. S. Khurana, M.S. Hassan, P. Yadav, T.D. Chonamada, M.R. Das, P.K. Santra, D. Ghosh, S. Sapra, Defect passivation results in the stability of cesium lead halide perovskite nanocrystals. J. Phys. Chem. C 127(6), 3355–3366 (2023)

    Article  CAS  Google Scholar 

  32. J. Zhou, X.Y. Tian, R. Chen, W.T. Chen, X. Meng, X.Y. Guan, J.A. Wang, S.W. Liu, F.M. Ren, S.S. Zhang, Y.Q. Zhang, Z.H. Liu, W. Chen, An ultra-thin chemical vapor deposited polymer interlayer to achieve highly improved stability of perovskite solar cell. Chem. Eng. J. 461, 141914 (2023)

    Article  CAS  Google Scholar 

  33. R. Lin, J. Xu, M. Wei, Y. Wang, Z. Qin, Z. Liu, J. Wu, K. Xiao, B. Chen, S.M. Park, G. Chen, H.R. Atapattu, K.R. Graham, J. Xu, J. Zhu, L. Li, C. Zhang, E.H. Sargent, H. Tan, All-perovskite tandem solar cells with improved grain surface passivation. Nature 603(7899), 73–78 (2022)

    Article  CAS  Google Scholar 

  34. T. Kim, S. Jeong, K.H. Kim, H. Shim, D. Kim, H.J. Kim, Engineered surface halide defects by two-dimensional perovskite passivation for deformable intelligent photodetectors. ACS Appl. Mater. Interfaces 14(22), 26004–26013 (2022)

    Article  CAS  Google Scholar 

  35. T. Wu, X. Li, Y. Qi, Y. Zhang, L. Han, Defect passivation for perovskite solar cells: from molecule design to device performance. Chemsuschem 14(20), 4354–4376 (2021)

    Article  CAS  Google Scholar 

  36. B.B. Liu, H. Bi, D.M. He, L. Bai, W.Q. Wang, H.K. Yuan, Q.L. Song, P.Y. Su, Z.G. Zang, T.W. Zhou, J.Z. Chen, Interfacial defect passivation and stress release via multi-active-site ligand anchoring enables efficient and stable methylammonium-free perovskite solar cells. ACS Energy Lett. 6(7), 2526–2538 (2021)

    Article  CAS  Google Scholar 

  37. Y. Zhou, B. Fang, S. Zhang, X. Lu, J. Ding, Enhancing densification and electrical properties of KNN-based lead-free ceramics via two-step sintering. J. Korean Ceram. Soc. 59(5), 551–564 (2022)

    Article  CAS  Google Scholar 

  38. X.H. Tan, X.Y. Liu, Z.Y. Liu, B. Sun, J.J. Li, S. Xi, T.L. Shi, Z.R. Tang, G.L. Liao, Enhancing the optical, morphological and electronic properties of the solution-processed CsPbIBr 2 films by Li doping for efficient carbon-based perovskite solar cells. Appl. Surf. Sci. 499, 143990 (2020)

    Article  CAS  Google Scholar 

  39. T.H. Han, J.W. Lee, C. Choi, S. Tan, C. Lee, Y. Zhao, Z. Dai, N. De Marco, S.J. Lee, S.H. Bae, Y. Yuan, H.M. Lee, Y. Huang, Y. Yang, Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat. Commun. 10(1), 520 (2019)

    Article  CAS  Google Scholar 

  40. D.-D. Zhang, H.-X. Wei, L.-Q. Zhu, Suppressing dark current for high-detectivity perovskite photodetectors via defect passivation. Org. Electron. 114, 106726 (2023)

    Article  CAS  Google Scholar 

  41. Q. Niu, L. Zhang, Y. Xu, C. Yuan, W. Qi, S. Fu, Y. Ma, W. Zeng, R. Xia, Y. Min, Defect passivation using trichloromelamine for highly efficient and stable perovskite solar cells. Polymers (Basel) 14(3), 398 (2022)

    Article  CAS  Google Scholar 

  42. S.B. Xiong, Z.Y. Hou, S.J. Zou, X.S. Lu, J.M. Yang, T.Y. Hao, Z.H. Zhou, J.H. Xu, Y.H. Zeng, W. Xiao, W. Dong, D.Q. Li, X. Wang, Z.G. Hu, L. Sun, Y.N. Wu, X.J. Liu, L.M. Ding, Z.R. Sun, M. Fahlman, Q.Y. Bao, Direct observation on p- to n-type transformation of perovskite surface region during defect passivation driving high photovoltaic efficiency. Joule 5(2), 467–480 (2021)

    Article  CAS  Google Scholar 

  43. Z. Liu, F. Cao, M. Wang, M. Wang, L. Li, Observing defect passivation of the grain boundary with 2-aminoterephthalic acid for efficient and stable perovskite solar cells. Angew. Chem. Int. Ed. 59(10), 4161–4167 (2020)

    Article  CAS  Google Scholar 

  44. L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R.X. Yang, A. Walsh, M.V. Kovalenko, Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15(6), 3692–3696 (2015)

    Article  CAS  Google Scholar 

  45. B.A. Koscher, J.K. Swabeck, N.D. Bronstein, A.P. Alivisatos, Essentially trap-free CsPbBr 3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment. J. Am. Chem. Soc. 139(19), 6566–6569 (2017)

    Article  CAS  Google Scholar 

  46. F. Liu, Y. Zhang, C. Ding, S. Kobayashi, T. Izuishi, N. Nakazawa, T. Toyoda, T. Ohta, S. Hayase, T. Minemoto, Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. ACS Nano 11(10), 10373–10383 (2017)

    Article  CAS  Google Scholar 

  47. G.R. Yettapu, D. Talukdar, S. Sarkar, A. Swarnkar, A. Nag, P. Ghosh, P. Mandal, Terahertz conductivity within colloidal CsPbBr 3 perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths. Nano Lett. 16(8), 4838–4848 (2016)

    Article  CAS  Google Scholar 

  48. S. Dhieb, A. Krichene, N. Chniba Boudjada, W. Boujelben, Magnetic phase coexistence in nanosized La0.5–xHoxCa0.5MnO3 manganites. J. Korean Ceram. Soc. 59(3), 312–321 (2021)

    Article  Google Scholar 

  49. X. Zhang, Y. Zhou, Y.Z. Li, J.W. Sun, X.B. Lu, X.S. Gao, J.W. Gao, L.L. Shui, S.J. Wu, J.M. Liu, Efficient and carbon-based hole transport layer-free CsPbI2Br planar perovskite solar cells using PMMA modification. J. Mater. Chem. C 7(13), 3852–3861 (2019)

    Article  CAS  Google Scholar 

  50. B.-B. Zhang, F. Wang, H. Zhang, B. Xiao, Q. Sun, J. Guo, A.B. Hafsia, A. Shao, Y. Xu, J. Zhou, Defect proliferation in CsPbBr3 crystal induced by ion migration. Appl. Phys. Lett. 116(6), 063505 (2020)

    Article  CAS  Google Scholar 

  51. D. Wei, H. Huang, P. Cui, J. Ji, S. Dou, E. Jia, S. Sajid, M. Cui, L. Chu, Y. Li, Moisture-tolerant supermolecule for the stability enhancement of organic–inorganic perovskite solar cells in ambient air. Nanoscale 11(3), 1228–1235 (2019)

    Article  CAS  Google Scholar 

  52. B. Li, C. Fei, K. Zheng, X. Qu, T. Pullerits, G. Cao, J. Tian, Constructing water-resistant CH3NH3PbI3 perovskite films via coordination interaction. J. Mater. Chem. A 4(43), 17018–17024 (2016)

    Article  CAS  Google Scholar 

  53. X. Zhang, Y. Zhou, Y. Li, J. Sun, X. Lu, X. Gao, J. Gao, L. Shui, S. Wu, J.-M. Liu, Efficient and carbon-based hole transport layer-free CsPbI 2 Br planar perovskite solar cells using PMMA modification. J. Mater. Chem. C 7(13), 3852–3861 (2019)

    Article  CAS  Google Scholar 

  54. Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13(7), 460–466 (2019)

    Article  CAS  Google Scholar 

  55. G.S. Chen, Y.C. Qiu, H.F. Gao, Y.J. Zhao, J.G. Feng, L. Jiang, Y.C. Wu, Air-stable highly crystalline formamidinium perovskite 1D structures for ultrasensitive photodetectors. Adv. Funct. Mater. 30(14), 1908894 (2020)

    Article  CAS  Google Scholar 

  56. J. Liu, M. Hu, Z. Dai, W. Que, N.P. Padture, Y. Zhou, Correlations between electrochemical ion migration and anomalous device behaviors in perovskite solar cells. ACS Energy Lett. 6(3), 1003–1014 (2021)

    Article  CAS  Google Scholar 

  57. Y. Zhao, I. Yavuz, M. Wang, M.H. Weber, M. Xu, J.H. Lee, S. Tan, T. Huang, D. Meng, R. Wang, J. Xue, S.J. Lee, S.H. Bae, A. Zhang, S.G. Choi, Y. Yin, J. Liu, T.H. Han, Y. Shi, H. Ma, W. Yang, Q. Xing, Y. Zhou, P. Shi, S. Wang, E. Zhang, J. Bian, X. Pan, N.G. Park, J.W. Lee, Y. Yang, Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations. Nat. Mater. 21(12), 1396–1402 (2022)

    Article  CAS  Google Scholar 

  58. P. Calado, A.M. Telford, D. Bryant, X. Li, J. Nelson, B.C. O’Regan, P.R. Barnes, Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis. Nat. Commun. 7, 13831 (2016)

    Article  CAS  Google Scholar 

  59. P.V. Kamat, M. Kuno, Halide ion migration in perovskite nanocrystals and nanostructures. Acc. Chem. Res. 54(3), 520–531 (2021)

    Article  CAS  Google Scholar 

  60. S. Mishra, R.N.P. Choudhary, S.K. Parida, Microstructure, dielectric relaxation, optical, and ferroelectric studies of a lead-free double perovskite: BaLiFeMoO6. J. Korean Ceram. Soc. 60(2), 310–330 (2022)

    Article  Google Scholar 

  61. C. Otero-Martinez, N. Fiuza-Maneiro, L. Polavarapu, Enhancing the intrinsic and extrinsic stability of halide perovskite nanocrystals for efficient and durable optoelectronics. ACS Appl. Mater. Interfaces 14(30), 34291–34302 (2022)

    Article  CAS  Google Scholar 

  62. M.L. Meena, K.K. Gupta, S. Dutta, R. Kumar, R.K. Singh, C.-H. Lu, S.D. Lin, S. Som, Short review on the instability and potential solutions for perovskite quantum dots. Curr. Res. Green Sustain. Chem. 5, 100321 (2022)

    Article  CAS  Google Scholar 

  63. J.S. Yun, J. Kim, T. Young, R.J. Patterson, D. Kim, J. Seidel, S. Lim, M.A. Green, S. Huang, A. Ho-Baillie, Humidity-induced degradation via grain boundaries of HC(NH2)2PbI3 planar perovskite solar cells. Adv. Funct. Mater. (2018). https://doi.org/10.1002/adfm.201705363

    Article  Google Scholar 

  64. H. Bae, Y. Shin, L. Mathur, D. Lee, S.-J. Song, Defect chemistry of p-type perovskite oxide La0.2Sr0.8FeO3-δ: a combined experimental and computational study. J. Korean Ceram. Soc. 59(6), 876–888 (2022)

    Article  CAS  Google Scholar 

  65. C. Eames, J.M. Frost, P.R. Barnes, B.C. O’regan, A. Walsh, M.S. Islam, Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6(1), 1–8 (2015)

    Article  Google Scholar 

  66. D.A. Egger, L. Kronik, A.M. Rappe, Theory of hydrogen migration in organic–inorganic halide perovskites. Angew. Chem. Int. Ed. 54(42), 12437–12441 (2015)

    Article  CAS  Google Scholar 

  67. A. Oranskaia, J. Yin, O.M. Bakr, J.-L. Brédas, O.F. Mohammed, Halogen migration in hybrid perovskites: the organic cation matters. J. Phys. Chem. Lett. 9(18), 5474–5480 (2018)

    Article  CAS  Google Scholar 

  68. Y. Yuan, J. Huang, Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 49(2), 286–293 (2016)

    Article  CAS  Google Scholar 

  69. T.Y. Yang, G. Gregori, N. Pellet, M. Grätzel, J. Maier, The significance of ion conduction in a hybrid organic–inorganic lead-iodide-based perovskite photosensitizer. Angew. Chem. 127(27), 8016–8021 (2015)

    Article  Google Scholar 

  70. C. Chen, Q. Fu, P. Guo, H. Chen, M. Wang, W. Luo, Z. Zheng, Ionic transport characteristics of large-size CsPbBr 3 single crystals. Mater. Res. Express 6(11), 115808 (2019)

    Article  Google Scholar 

  71. J. Mizusaki, K. Arai, K. Fueki, Ionic conduction of the perovskite-type halides. Solid State Ion. 11(3), 203–211 (1983)

    Article  CAS  Google Scholar 

  72. J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, H. Zhu, Y. Hu, C. Xiao, X. Yi, All-inorganic perovskite solar cells. J. Am. Chem. Soc. 138(49), 15829–15832 (2016)

    Article  CAS  Google Scholar 

  73. G. Niu, W. Li, F. Meng, L. Wang, H. Dong, Y. Qiu, Study on the stability of CH 3 NH 3 PbI 3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A. 2(3), 705–710 (2014)

    Article  CAS  Google Scholar 

  74. C. Wang, B.R. Ecker, H. Wei, J. Huang, Y. Gao, Environmental surface stability of the MAPbBr 3 single crystal. J. Phys. Chem. C 122(6), 3513–3522 (2018)

    Article  CAS  Google Scholar 

  75. Y. Zhao, C. Li, J. Jiang, B. Wang, L. Shen, Sensitive and stable tin-lead hybrid perovskite photodetectors enabled by double-sided surface passivation for infrared upconversion detection. Small 16(26), 2001534 (2020)

    Article  CAS  Google Scholar 

  76. X. Xiao, J. Dai, Y. Fang, J. Zhao, X. Zheng, S. Tang, P.N. Rudd, X.C. Zeng, J. Huang, Suppressed ion migration along the in-plane direction in layered perovskites. ACS Energy Lett. 3(3), 684–688 (2018)

    Article  CAS  Google Scholar 

  77. X. Liu, Z. Liu, J. Li, X. Tan, B. Sun, H. Fang, S. Xi, T. Shi, Z. Tang, G. Liao, Ultrafast, self-powered and charge-transport-layer-free photodetectors based on high-quality evaporated CsPbBr 3 perovskites for applications in optical communication. J. Mater. Chem. C 8(10), 3337–3350 (2020)

    Article  CAS  Google Scholar 

  78. C. Li, C. Han, Y. Zhang, Z. Zang, M. Wang, X. Tang, J. Du, Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr 3 films. Sol. Energy Mater. Sol. Cells 172, 341–346 (2017)

    Article  CAS  Google Scholar 

  79. F. Lang, O. Shargaieva, V.V. Brus, H.C. Neitzert, J. Rappich, N.H. Nickel, Influence of radiation on the properties and the stability of hybrid perovskites. Adv. Mater. (2018). https://doi.org/10.1002/adma.201702905

    Article  Google Scholar 

  80. V. Rinnerbauer, A. Lenert, D.M. Bierman, Y.X. Yeng, W.R. Chan, R.D. Geil, J.J. Senkevich, J.D. Joannopoulos, E.N. Wang, M. Soljačić, Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics. Adv. Energy Mater. 4(12), 1400334 (2014)

    Article  Google Scholar 

  81. J. Yang, X. Liu, Y. Zhang, X. Zheng, X. He, H. Wang, F. Yue, S. Braun, J. Chen, J. Xu, Comprehensive understanding of heat-induced degradation of triple-cation mixed halide perovskite for a robust solar cell. Nano Energy 54, 218–226 (2018)

    Article  CAS  Google Scholar 

  82. B. Brunetti, C. Cavallo, A. Ciccioli, G. Gigli, A. Latini, On the thermal and thermodynamic (in) stability of methylammonium lead halide perovskites. Sci. Rep. 6(1), 1–10 (2016)

    Article  Google Scholar 

  83. Y.-J. Lee, J.-H. Park, J.-H. Cho, U. Rau, K. Ding, W. Jo, Preparation of multiferroic lead iron niobate thin film with low crystallization temperature via sol–gel method using monoethanolamine. J. Korean Ceram. Soc. 60(5), 840–844 (2023)

    Article  CAS  Google Scholar 

  84. M. Lee, B. Yoo, J. Im, T. Hyeon, I. Chung, Electronic band engineering via MI3 (M= Sb, Bi) doping remarkably enhances the air stability of perovskite CsSnI3. ACS Appl. Energy Mater. 3(11), 10477–10484 (2020)

    Article  CAS  Google Scholar 

  85. F. Cao, W. Tian, M. Wang, M. Wang, L. Li, Stability enhancement of lead-free CsSnI3 perovskite photodetector with reductive ascorbic acid additive. InfoMat 2(3), 577–584 (2020)

    Article  CAS  Google Scholar 

  86. B.K. Jung, W. Kim, S.J. Oh, Stable colloidal quantum dot-based infrared photodiode: multiple passivation strategy. J. Korean Ceram. Soc. 58(5), 521–529 (2021)

    Article  CAS  Google Scholar 

  87. J. Jiang, Q. Wang, Z. Jin, X. Zhang, J. Lei, H. Bin, Z.G. Zhang, Y. Li, S. Liu, Polymer doping for high-efficiency perovskite solar cells with improved moisture stability. Adv. Energy Mater. 8(3), 1701757 (2018)

    Article  Google Scholar 

  88. F. Wang, A. Shimazaki, F. Yang, K. Kanahashi, K. Matsuki, Y. Miyauchi, T. Takenobu, A. Wakamiya, Y. Murata, K. Matsuda, Highly efficient and stable perovskite solar cells by interfacial engineering using solution-processed polymer layer. J. Phys. Chem. C 121(3), 1562–1568 (2017)

    Article  CAS  Google Scholar 

  89. S.-H. Turren-Cruz, A. Hagfeldt, M. Saliba, Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science 362(6413), 449–453 (2018)

    Article  CAS  Google Scholar 

  90. L.T.N. Huyen, S.J. Hong, T.Q. Trung, M. Meeseepong, A.R. Kim, N.-E. Lee, Flexible capillary microfluidic devices based on surface-energy modified polydimethylsiloxane and polymethylmethacrylate with room-temperature chemical bonding. Biochip J. 17(1), 120–132 (2023)

    Article  CAS  Google Scholar 

  91. T.-H. Han, J.-W. Lee, C. Choi, S. Tan, C. Lee, Y. Zhao, Z. Dai, N. De Marco, S.-J. Lee, S.-H. Bae, Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat. Commun. 10(1), 1–10 (2019)

    Article  Google Scholar 

  92. L. Zuo, H. Guo, D.W. deQuilettes, S. Jariwala, N. De Marco, S. Dong, R. DeBlock, D.S. Ginger, B. Dunn, M. Wang, Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci. Adv. 3(8), e1700106 (2017)

    Article  Google Scholar 

  93. C.-Y. Chang, C.-Y. Chu, Y.-C. Huang, C.-W. Huang, S.-Y. Chang, C.-A. Chen, C.-Y. Chao, W.-F. Su, Tuning perovskite morphology by polymer additive for high efficiency solar cell. ACS Appl. Mater. Interfaces 7(8), 4955–4961 (2015)

    Article  CAS  Google Scholar 

  94. M. Kim, S.G. Motti, R. Sorrentino, A. Petrozza, Enhanced solar cell stability by hygroscopic polymer passivation of metal halide perovskite thin film. Energy Environ. Sci. 11(9), 2609–2619 (2018)

    Article  CAS  Google Scholar 

  95. Y.J. Ahn, S.G. Ji, J.Y. Kim, Monolithic all-perovskite tandem solar cells: recent progress and challenges. J. Korean Ceram. Soc. 58(4), 399–413 (2021)

    Article  CAS  Google Scholar 

  96. D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P.A. Dowben, O.F. Mohammed, E.H. Sargent, O.M. Bakr, Solar cells. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347(6221), 519–522 (2015)

    Article  CAS  Google Scholar 

  97. J. Chen, D.J. Morrow, Y. Fu, W. Zheng, Y. Zhao, L. Dang, M.J. Stolt, D.D. Kohler, X. Wang, K.J. Czech, M.P. Hautzinger, S. Shen, L. Guo, A. Pan, J.C. Wright, S. Jin, Single-crystal thin films of cesium lead bromide perovskite epitaxially grown on metal oxide perovskite (SrTiO(3)). J. Am. Chem. Soc. 139(38), 13525–13532 (2017)

    Article  CAS  Google Scholar 

  98. M.S. Nazir, D. Shen, C. Luo, R. Zheng, Q. Li, Y. Chen, H.A. Aziz, Improvement of photoluminescence intensity and film morphology of perovskite by Ionic liquids additive. E3S Web Conf 257, 03066 (2021)

    Article  Google Scholar 

  99. W.F. Lu, Y. Iwasa, Y.Y. Ou, D. Jinno, S. Kamiyama, P.M. Petersen, H.Y. Ou, Effective optimization of surface passivation on porous silicon carbide using atomic layer deposited Al2O3. RSC Adv. 7(14), 8090–8097 (2017)

    Article  CAS  Google Scholar 

  100. Z. Gao, H. Zhou, K. Dong, C. Wang, J. Wei, Z. Li, J. Li, Y. Liu, J. Zhao, G. Fang, Defect passivation on lead-free CsSnI(3) perovskite nanowires enables high-performance photodetectors with ultra-high stability. Nano-micro Lett. 14(1), 215 (2022)

    Article  CAS  Google Scholar 

  101. H. Lee, Y.K. Kwon, J. Heo, Light-triggered shell formation on CdSe quantum dots in glasses. J. Korean Ceram. Soc. 59(1), 70–75 (2021)

    Article  Google Scholar 

  102. B. Yuan, C. Li, W. Yi, F. Juan, H. Yu, F. Xu, C. Li, B. Cao, PMMA passivated CsPbI2Br perovskite film for highly efficient and stable solar cells. J. Phy. Chem. Solids 153, 110000 (2021)

    Article  CAS  Google Scholar 

  103. H.R. Kim, B.G. An, Y.W. Chang, M.J. Kang, J.G. Park, J.C. Pyun, Highly sensitive in situ-synthesized cadmium sulfide (CdS) nanowire photosensor for chemiluminescent immunoassays. Enzyme Microb. Technol. 133, 109457 (2020)

    Article  CAS  Google Scholar 

  104. H.R. Kim, J.H. Bong, J. Jung, J.S. Sung, M.J. Kang, J.G. Park, J.C. Pyun, An on-chip chemiluminescent immunoassay for bacterial detection using in situ-synthesized cadmium sulfide nanowires with passivation layers. Biochip J. 14(3), 268–278 (2020)

    Article  CAS  Google Scholar 

  105. Y. Du, C. Xin, W. Huang, B. Shi, Y. Ding, C. Wei, Y. Zhao, Y. Li, X. Zhang, Polymeric surface modification of NiOx-based inverted planar perovskite solar cells with enhanced performance. ACS Sustain. Chem. Eng. 6(12), 16806–16812 (2018)

    Article  CAS  Google Scholar 

  106. H.R. Kim, J.H. Im, B.G. An, Y.W. Chang, M.J. Kang, J.G. Park, J.C. Pyun, Reproducibility control in photosensitivity of in-situ synthesised cadmium sulphide nanowire photosensors. Int. J. Nanotechnol. 15(6–7), 505–517 (2018)

    Article  CAS  Google Scholar 

  107. J.-K. Lee, Y. Gu, M. Park, J. Jose, J.-C. Pyun, Electrochemical ELISA based on E. coli with autodisplayed Z-domains. Procedia Eng. 25, 944–947 (2011)

    Article  CAS  Google Scholar 

  108. J.H. Park, G.Y. Lee, Z. Song, J.H. Bong, Y.W. Chang, S. Cho, M.J. Kang, J.C. Pyun, Capacitive biosensor based on vertically paired electrodes for the detection of SARS-CoV-2. Biosens. Bioelectron. 202, 113975 (2022)

    Article  CAS  Google Scholar 

  109. J.H. Park, G.Y. Lee, Z. Song, J.H. Bong, H.R. Kim, M.J. Kang, J.C. Pyun, A vertically paired electrode for redox cycling and its application to immunoassays. Analyst 148(6), 1349–1361 (2023)

    Article  CAS  Google Scholar 

  110. B.J. Jung, H. Jang, G.Y. Lee, J. Kim, Z. Song, J.C. Pyun, W. Lee, Surface functionalization and bonding of chemically inert parylene microfluidics using parylene-A adhesive layer. Biochip J. 16(2), 168–174 (2022)

    Article  CAS  Google Scholar 

  111. S. Roh, Y. Jang, J. Yoo, H. Seong, Surface modification strategies for biomedical applications: enhancing cell-biomaterial interfaces and biochip performances. Biochip J. 17(2), 174–191 (2023)

    Article  CAS  Google Scholar 

  112. H. Zhu, Y. Liu, F.T. Eickemeyer, L. Pan, D. Ren, M.A. Ruiz-Preciado, B. Carlsen, B. Yang, X. Dong, Z. Wang, H. Liu, S. Wang, S.M. Zakeeruddin, A. Hagfeldt, M.I. Dar, X. Li, M. Gratzel, Tailored amphiphilic molecular mitigators for stable perovskite solar cells with 23.5% efficiency. Adv. Mater. 32(12), e1907757 (2020)

    Article  Google Scholar 

  113. H. Yu, J. Kim, J. Yu, K.-A. Hyun, J.-Y. Lim, Y.-J. Yoon, S. Park, H.-I. Jung, Continuous isolation of stem-cell-derived extracellular vesicles (SC-EVs) by recycled magnetic beads in microfluidic channels. Biochip J. 2023, 1–10 (2023)

    Google Scholar 

  114. A.M. Alenad, S. Aman, N. Ahmad, A.R. Rashid, A.G. Abid, S. Manzoor, M.U. Nisa, M. Messali, H.A. Alzahrani, T.A.M. Taha, Facile synthesis of SmSe2 over multiwalled carbon nanotubes for efficient water-splitting applications. J. Korean Ceram. Soc. 2023, 1–11 (2023)

    Google Scholar 

  115. M.H. Son, S.W. Park, H.Y. Sagong, Y.K. Jung, Recent advances in electrochemical and optical biosensors for cancer biomarker detection. Biochip J. 17(1), 44–67 (2022)

    Article  Google Scholar 

  116. I. Kashif, A. Ratep, Luminescence in Er3+ co-doped bismuth germinate glass–ceramics for blue and green emitting applications. J. Korean Ceram. Soc. 60(3), 511–526 (2023)

    Article  CAS  Google Scholar 

  117. X. Liu, L. Shi, J. Huang, Z. Liu, P. Zhang, J.S. Yun, A.M. Soufiani, J. Seidel, K. Sun, Z. Hameiri, J.A. Stride, Y. Zhang, M.A. Green, H. Lin, X. Hao, Improvement of Cs-(FAPbI3)0.85(MAPbBr3)0.15 quality via DMSO-molecule-control to increase the efficiency and boost the long-term stability of 1 cm2 sized planar perovskite solar cells. Solar RRL 3, 4 (2019). https://doi.org/10.1002/solr.201800338

    Article  CAS  Google Scholar 

  118. Y. Ahn, J.Y. Son, Flexoelectric effect via piezoresponse force microscopy of domain switching in epitaxial PbTiO3 thin films. J. Korean Ceram. Soc. 2023, 1–8 (2023)

    Google Scholar 

  119. Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014)

    Article  CAS  Google Scholar 

  120. R. Ranjan, B. Usmani, S. Pali, S. Ranjan, A. Singh, A. Garg, R.K. Gupta, Role of PC60BM in defect passivation and improving degradation behaviour in planar perovskite solar cells. Sol. Energy Mater. Sol. Cells 207, 110335 (2020)

    Article  CAS  Google Scholar 

  121. R. Basumatary, B. Basumatary, D. Konwar, A. Ramchiary, Tailored highly efficient Co-doped TiO2/CoTiO3 heterojunction photocatalyst for methylene blue degradation under visible light. J. Korean Ceram. Soc. 60(3), 547–559 (2023)

    Article  CAS  Google Scholar 

  122. K. Wang, J. Liu, J. Yin, E. Aydin, G.T. Harrison, W. Liu, S. Chen, O.F. Mohammed, S. De Wolf, Defect passivation in perovskite solar cells by cyano-based π-conjugated molecules for improved performance and stability. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202002861

    Article  Google Scholar 

  123. I. Vladimirov, M. Kuhn, T. Gessner, F. May, R.T. Weitz, Energy barriers at grain boundaries dominate charge carrier transport in an electron-conductive organic semiconductor. Sci. Rep. 8(1), 14868 (2018)

    Article  CAS  Google Scholar 

  124. S.I. Rahman, B.S. Lamsal, A. Gurung, A.H. Chowdhury, K.M. Reza, N. Ghimire, B. Bahrami, W. Luo, R.S. Bobba, J. Pokharel, A. Baniya, A.R. Laskar, K. Emshadi, M.T. Rahman, Q. Qiao, Grain boundary defect passivation of triple cation mixed halide perovskite with hydrazine-based aromatic iodide for efficiency improvement. ACS Appl. Mater. Interfaces 12(37), 41312–41322 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Korea Health Industry Development Institute (KHIDI) of Korea [HI19C1344] and the National Research Foundation (NRF) of Korea [RS-2023-00209053, NRF-2020R1A5A101913111].

Author information

Authors and Affiliations

Authors

Contributions

J-HP and H-RK contributed equally to this work.

Corresponding author

Correspondence to Jae-Chul Pyun.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JH., Kim, HR., Kang, MJ. et al. Trends in defect passivation technologies for perovskite-based photosensor. J. Korean Ceram. Soc. 61, 15–33 (2024). https://doi.org/10.1007/s43207-023-00347-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00347-9

Keywords

Navigation