Skip to main content

Advertisement

Log in

Recent progress in electrolyte-supported solid oxide fuel cells: a review

  • Review
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Electrolyte supported fuel cells (ESCs) have emerged rapidly as energy conversion technology due to its easy to scale up capacity and low cost of production. The major issues confronting by ESC were its higher ohmic losses compared to other electrode supported fuel cells. These ohmic losses were mostly associated to the thickness of electrolyte (> 200 µm) used in it. Due to the limitations of the mechanical load-bearing capacity, it is very difficult to minimize these ohmic losses conventionally. In this direction, a number of attempt has been made in last few decades, such as use of higher oxide ion conducting electrolyte and minimizing the thickness of electrolyte with mechanical integrity. In case of alteration of electrolyte, doped lanthanum gallate, stabilized zirconia, and doped ceria have been discussed in the prospective of ESC. Moreover, to make a thin electrolyte with mechanical reliability, some engineering applied on the ESC architecture itself, in the last decade, has been discussed. This review covers all the progresses that has been done for the upliftment of ESCs in last 4 decades, and summarize their fundamental aspects.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  1. N.Q. Minh, Solid oxide fuel cells for power generation and hydrogen production. J. Korean Ceram. Soc. 47, 1–7 (2010). https://doi.org/10.4191/KCERS.2010.47.1.001

    Article  CAS  Google Scholar 

  2. A. Nazir, H.T.T. Le, C.W. Min, A. Kasbe, J. Kim, C.S. Jin, C.J. Park, Coupling of a conductive Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 metal-organic framework with silicon nanoparticles for use in high-capacity lithium-ion batteries. Nanoscale 12, 1629–1642 (2020). https://doi.org/10.1039/c9nr08038d

    Article  CAS  Google Scholar 

  3. R.M. Ormerod, Solid oxide fuel cells. Chem. Soc. Rev. 32, 17–28 (2003). https://doi.org/10.1039/b105764m

    Article  CAS  Google Scholar 

  4. A. Adams, A. Chowdhary, V. Subbaiah, Cost analysis comparison of bloom energy fuel cells with solar energy technology and traditional electric companies, 2011.

  5. X. Ren, H.S. Jung, Recent progress in flexible perovskite solar cell development. J. Korean Ceram. Soc. 55, 325–336 (2018). https://doi.org/10.4191/kcers.2018.55.4.09

    Article  CAS  Google Scholar 

  6. A. Kumar, I.-H. Kim, L. Mathur, H. Kim, S.-J. Song, Design of tin polyphosphate for hydrogen evolution reaction and supercapacitor applications. J. Korean Ceram. Soc. 58, 688–699 (2021). https://doi.org/10.1007/s43207-021-00143-3

    Article  CAS  Google Scholar 

  7. A. Nazir, H.T.T. Le, A. Kasbe, C.J. Park, Si nanoparticles confined within a conductive 2D porous Cu-based metal–organic framework (Cu3(HITP)2) as potential anodes for high-capacity Li-ion batteries. Chem. Eng. J. 405, 126963 (2021). https://doi.org/10.1016/j.cej.2020.126963

    Article  CAS  Google Scholar 

  8. A. Nazir, H.T.T. Le, A.G. Nguyen, J. Kim, C.J. Park, Conductive metal organic framework mediated Sb nanoparticles as high-capacity anodes for rechargeable potassium-ion batteries. Chem. Eng. J. 450, 138408 (2022). https://doi.org/10.1016/j.cej.2022.138408

    Article  CAS  Google Scholar 

  9. Y. Yun, A. Kumar, J. Hong, S.-J. Song, Impact of CeO2 nanoparticle morphology: radical scavenging within the polymer electrolyte membrane fuel cell. J. Electrochem. Soc. 168, 114521 (2021). https://doi.org/10.1149/1945-7111/ac3ab4

    Article  CAS  Google Scholar 

  10. B. Barik, Y. Yun, A. Kumar, H. Bae, Y. Namgung, J.Y. Park, S.J. Song, Highly enhanced proton conductivity of single-step-functionalized graphene oxide/nafion electrolyte membrane towards improved hydrogen fuel cell performance. Int. J. Hydrogen Energy. (2023). https://doi.org/10.1016/j.ijhydene.2022.12.137

    Article  Google Scholar 

  11. L. Mathur, I.H. Kim, A. Bhardwaj, B. Singh, J.Y. Park, S.J. Song, Structural and electrical properties of novel phosphate based composite electrolyte for low-temperature fuel cells. Compos. Part B Eng. 202, 108405 (2020). https://doi.org/10.1016/j.compositesb.2020.108405

    Article  CAS  Google Scholar 

  12. B. Singh, J.-H. Kim, I. Ha-Ni, S.J. Song, Cerium pyrophosphate-based proton-conducting ceramic electrolytes for low temperature fuel cells. J. Korean Ceram. Soc. 51, 248–259 (2014)

    Article  CAS  Google Scholar 

  13. S.K. Gautam, A. Singh, L. Mathur, N. Devi, R.K. Singh, S.J. Song, D. Henkensmeier, B. Singh, Sintering and electrical behavior of ZrP2O7–CeP2O7 solid solutions Zr1-xCexP2O7; x = 0–0.2 and (Zr0.92Y0.08)1-yCeyP2O7; y = 0–0.1 for application as electrolyte in intermediate temperature fuel cells. Ionics 25, 155–162 (2019). https://doi.org/10.1007/s11581-018-2563-x

    Article  CAS  Google Scholar 

  14. B. Singh, N. Devi, L. Mathur, S.J. Song, A.K. Srivastava, R.K. Singh, M. Ashiq, D.P. Mondal, A new solution phase synthesis of cerium(IV)pyrophosphate compounds of different morphologies using cerium(III)precursor. J. Alloys Compd. 793, 686–694 (2019). https://doi.org/10.1016/j.jallcom.2019.04.221

    Article  CAS  Google Scholar 

  15. B. Singh, N. Devi, L. Mathur, R.K. Singh, A. Bhardwaj, S.J. Song, D. Henkensmeier, Fabrication of dense Ce0.9Mg0.1P2O7-PmOn composites by microwave heating for application as electrolyte in intermediate-temperature fuel cells. Ceram. Int. 44, 6170–6175 (2018). https://doi.org/10.1016/j.ceramint.2017.12.252

    Article  CAS  Google Scholar 

  16. S. Singhal, Solid oxide fuel cells designs, materials, and applications. J. Korean Ceram. Soc. 42, 777–786 (2005). https://doi.org/10.4191/KCERS.2005.42.12.777

    Article  CAS  Google Scholar 

  17. E. Wachsman, T. Ishihara, J. Kilner, Low-temperature solid-oxide fuel cells. MRS Bull. 39, 773–779 (2014). https://doi.org/10.1557/mrs.2014.192

    Article  CAS  Google Scholar 

  18. S. Jo, B. Sharma, D.H. Park, J. Ha Myung, Materials and nano-structural processes for use in solid oxide fuel cells: a review. J. Korean Ceram. Soc. 57, 135–151 (2020). https://doi.org/10.1007/s43207-020-00022-3

    Article  CAS  Google Scholar 

  19. C. Su, W. Wang, R. Ran, Z. Shao, M.O. Tade, S. Liu, Renewable acetic acid in combination with solid oxide fuel cells for sustainable clean electric power generation. J. Mater. Chem. A. 1, 5620–5627 (2013). https://doi.org/10.1039/c3ta10538e

    Article  CAS  Google Scholar 

  20. W. An, X. Sun, Y. Jiao, S. Wang, W. Wang, M.O. Tadé, Z. Shao, S.D. Li, S. Shuang, Inherently catalyzed boudouard reaction of bamboo biochar for solid oxide fuel cells with improved performance. Energy Fuels 32, 4559–4568 (2018). https://doi.org/10.1021/acs.energyfuels.7b03131

    Article  CAS  Google Scholar 

  21. S. Hussain, L. Yangping, Review of solid oxide fuel cell materials: cathode, anode, and electrolyte. Energy Transitions. 4, 113–126 (2020). https://doi.org/10.1007/s41825-020-00029-8

    Article  Google Scholar 

  22. S.P.S. Shaikh, A. Muchtar, M.R. Somalu, A review on the selection of anode materials for solid-oxide fuel cells. Renew. Sustain. Energy Rev. 51, 1–8 (2015). https://doi.org/10.1016/j.rser.2015.05.069

    Article  CAS  Google Scholar 

  23. C. Sun, R. Hui, J. Roller, Cathode materials for solid oxide fuel cells: a review. J. Solid State Electrochem. 14, 1125–1144 (2010). https://doi.org/10.1007/s10008-009-0932-0

    Article  CAS  Google Scholar 

  24. B. Dziurdzia, Z. Magonski, H. Jankowski, Commercialisation of solid oxide fuel cells—opportunities and forecasts. IOP Conf. Ser. Mater. Sci. Eng. (2016). https://doi.org/10.1088/1757-899X/104/1/012020

    Article  Google Scholar 

  25. J.C. Ruiz-Morales, J. Canales-Vázquez, C. Savaniu, D. Marrero-López, W. Zhou, J.T.S. Irvine, Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation. Nature 439, 568–571 (2006). https://doi.org/10.1038/nature04438

    Article  CAS  Google Scholar 

  26. W. Wang, C. Su, Y. Wu, R. Ran, Z. Shao, Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels. Chem. Rev. 113, 8104–8151 (2013). https://doi.org/10.1021/cr300491e

    Article  CAS  Google Scholar 

  27. M. Irshad, K. Siraj, R. Raza, A. Ali, P. Tiwari, B. Zhu, A. Rafique, A. Ali, M.K. Ullah, A. Usman, A brief description of high temperature solid oxide fuel cell’s operation, materials, design, fabrication technologies and performance. Appl. Sci. (2016). https://doi.org/10.3390/app6030075

    Article  Google Scholar 

  28. J. Bae, A novel metal supported SOFC fabrication method developed in kaist: a sinter-joining method. J. Korean Ceram. Soc. 53, 478–482 (2016). https://doi.org/10.4191/kcers.2016.53.5.478

    Article  CAS  Google Scholar 

  29. L. Mathur, A. Kumar, I.H. Kim, H. Bae, J.Y. Park, S.J. Song, Novel organic-inorganic polyphosphate based composite material as highly dense and robust electrolyte for low temperature fuel cells. J. Power Sources. 493, 229696 (2021). https://doi.org/10.1016/j.jpowsour.2021.229696

    Article  CAS  Google Scholar 

  30. M. Singh, D. Zappa, E. Comini, Solid oxide fuel cell: Decade of progress, future perspectives and challenges. Int. J. Hydrogen Energy. 46, 27643–27674 (2021). https://doi.org/10.1016/j.ijhydene.2021.06.020

    Article  CAS  Google Scholar 

  31. N.Q. Minh, Solid oxide fuel cell technology—features and applications. Solid State Ionics 174, 271–277 (2004). https://doi.org/10.1016/j.ssi.2004.07.042

    Article  CAS  Google Scholar 

  32. F.R. Bianchi, R. Spotorno, P. Piccardo, B. Bosio, Solid oxide fuel cell performance analysis through local modelling. Catalysts 10, 1–14 (2020). https://doi.org/10.3390/catal10050519

    Article  CAS  Google Scholar 

  33. M. Tonekabonimoghaddam, A. Shamiri, Simulation and sensitivity analysis for various geometries and optimization of solid oxide fuel cells: a review. Eng. 2, 386–415 (2021). https://doi.org/10.3390/eng2030025

    Article  Google Scholar 

  34. H. Sumi, K. Ukai, Y. Mizutani, H. Mori, C.J. Wen, H. Takahashi, O. Yamamoto, Performance of nickel-scandia-stabilized zirconia cermet anodes for SOFCs in 3% H2O-CH4. Solid State Ionics 174, 151–156 (2004). https://doi.org/10.1016/j.ssi.2004.06.016

    Article  CAS  Google Scholar 

  35. H. Bae, Y. Shin, L. Mathur, D. Lee, S.J. Song, Defect chemistry of p-type perovskite oxide La0.2Sr0.8FeO3-δ: a combined experimental and computational study. J. Korean Ceram. Soc. 59, 876–888 (2022). https://doi.org/10.1007/s43207-022-00237-6

    Article  CAS  Google Scholar 

  36. A. Bhardwaj, H. Bae, I.-H. Kim, L. Mathur, J.-Y. Park, S.-J. Song, High capacity, rate-capability, and power delivery at high-temperature by an oxygen-deficient perovskite oxide as proton insertion anodes for energy storage devices. J. Electrochem. Soc. 168, 070540 (2021). https://doi.org/10.1149/1945-7111/ac131f

    Article  CAS  Google Scholar 

  37. J.-W. Moon, H.-L. Lee, G.-D. Kim, J.-D. Kim, H. Lee, Effect of current collecting layer on the impedance of LSM and LSM-YSZ cathode. J. Korean Ceram. Soc. 35, 1070–1077 (1998)

    CAS  Google Scholar 

  38. Y. Yoo, Y. Namgung, A. Bhardwaj, S. Song, A facile combustion synthesis route for performance enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428) as a robust cathode material for IT-SOFC. J. Korean Ceram. Soc. 56, 497–505 (2019). https://doi.org/10.4191/kcers.2019.56.5.05

    Article  CAS  Google Scholar 

  39. D. Sarantaridis, A. Atkinson, Redox cycling of Ni-based solid oxide fuel cell anodes: a review. Fuel Cells. 7, 246–258 (2007). https://doi.org/10.1002/fuce.200600028

    Article  CAS  Google Scholar 

  40. J. Laurencin, G. Delette, O. Sicardy, S. Rosini, F. Lefebvre-Joud, Impact of “redox” cycles on performances of solid oxide fuel cells: case of the electrolyte supported cells. J. Power Sources. 195, 2747–2753 (2010). https://doi.org/10.1016/j.jpowsour.2009.10.099

    Article  CAS  Google Scholar 

  41. M.E. Chelmehsara, J. Mahmoudimehr, Techno-economic comparison of anode-supported, cathode-supported, and electrolyte-supported SOFCs. Int. J. Hydrogen Energy. 43, 15521–15530 (2018). https://doi.org/10.1016/j.ijhydene.2018.06.114

    Article  CAS  Google Scholar 

  42. C. Jin, Y. Mao, D.W. Rooney, N. Zhang, K. Sun, Fabrication and characterization of SSZ tape cast electrolyte-supported solid oxide fuel cells. Ceram. Int. 42, 5523–5529 (2016). https://doi.org/10.1016/j.ceramint.2015.12.110

    Article  CAS  Google Scholar 

  43. C. Yuan, Y. Liu, Y. Zhou, Z. Zhan, S. Wang, Fabrication and characterization of a cathode-support solid oxide fuel cell by tape casting and lamination. Int. J. Hydrogen Energy. 38, 16584–16589 (2013). https://doi.org/10.1016/j.ijhydene.2013.08.146

    Article  CAS  Google Scholar 

  44. C. Jin, Y. Mao, N. Zhang, K. Sun, Fabrication and characterization of Ni-SSZ/SSZ/LSM-SSZ anode-supported SOFCs by tape casting and single-step co-sintering techniques. Ionics (Kiel). 22, 1145–1152 (2016). https://doi.org/10.1007/s11581-015-1626-5

    Article  CAS  Google Scholar 

  45. S. Vafaeenezhad, A.R. Hanifi, M.A. Laguna-Bercero, T.H. Etsell, P. Sarkar, Microstructure and long-term stability of Ni–YSZ anode supported fuel cells: a review. Mater. Futur. 1, 042101 (2022). https://doi.org/10.1088/2752-5724/ac88e7

    Article  Google Scholar 

  46. T. Armstrong, E. EL Batawi, M. Janousek, M. Pillai, Phase stable doped zirconia electrolyte composition with low degradation, US8,580,456 B2, 2013.

  47. K.T. Lim, H.L. Lee, H.C. Shin, Scandia stabilized zirconia electrolyte for solid oxide fuel cell having improved stability in reducing atmosphere, US 10,218,024 B2, 2019.

  48. M. Gottmann, D. Nguyen, E.E. Batawi, T. Armstrong, G. Wang, D. Hickey, Electrolyte supported cell designed for longer life and higher power, US8,999,601B2, 2015.

  49. O. Yamamoto, Y. Arati, Y. Takeda, N. Imanishi, Y. Mizutani, M. Kawai, Y. Nakamura, Electrical conductivity of stabilized zirconia with ytterbia and scandia. Solid State Ionics 79, 137–142 (1995). https://doi.org/10.1016/0167-2738(95)00044-7

    Article  CAS  Google Scholar 

  50. H. Shi, C. Su, R. Ran, J. Cao, Z. Shao, Electrolyte materials for intermediate-temperature solid oxide fuel cells. Prog. Nat. Sci. Mater. Int. 30, 764–774 (2020). https://doi.org/10.1016/j.pnsc.2020.09.003

    Article  CAS  Google Scholar 

  51. J. Ramírez-González, A.R. West, Electrical properties of calcia-stabilised zirconia ceramics. J. Eur. Ceram. Soc. 40, 5602–5611 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.06.023

    Article  CAS  Google Scholar 

  52. B. Kim, H. Lee, Valence state and ionic conduction in Mn-doped MgO partially stabilized zirconia. J. Am. Ceram. Soc. 101, 1790–1795 (2018). https://doi.org/10.1111/jace.15333

    Article  CAS  Google Scholar 

  53. S.P.S. Badwal, F.T. Ciacchi, D. Milosevic, Scandia-zirconia electrolytes for intermediate temperature solid oxide fuel cell operation. Solid State Ionics 136–137, 91–99 (2000). https://doi.org/10.1016/S0167-2738(00)00356-8

    Article  Google Scholar 

  54. M. Lo Faro, A.S. Aricò, Electrochemical behaviour of an all-perovskite-based intermediate temperature solid oxide fuel cell. Int. J. Hydrogen Energy. 38, 14773–14778 (2013). https://doi.org/10.1016/j.ijhydene.2013.08.122

    Article  CAS  Google Scholar 

  55. B. Timurkutluk, S. Dokuyucu, The role of tape thickness on mechanical properties and performance of electrolyte supports in solid oxide fuel cells. Ceram. Int. 44, 17399–17406 (2018). https://doi.org/10.1016/j.ceramint.2018.06.205

    Article  CAS  Google Scholar 

  56. T. Ishihara, H. Matsuda, Y. Takita, Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. J. Am. Chem. Soc. 116, 3801–3803 (1994). https://doi.org/10.1021/ja00088a016

    Article  CAS  Google Scholar 

  57. M. Feng, J.B. Goodenough, K. Huang, C. Milliken, Fuel cells with doped lanthanum gallate electrolyte. J. Power Sources. 63, 47–51 (1996). https://doi.org/10.1016/S0378-7753(96)02441-X

    Article  CAS  Google Scholar 

  58. D. Marrero-López, J.C. Ruiz-Morales, J. Peña-Martínez, M.C. Martín-Sedeño, J.R. Ramos-Barrado, Influence of phase segregation on the bulk and grain boundary conductivity of LSGM electrolytes. Solid State Ionics 186, 44–52 (2011). https://doi.org/10.1016/j.ssi.2011.01.015

    Article  CAS  Google Scholar 

  59. J.W. Stevenson, T.R. Armstrong, D.E. McCready, L.R. Pederson, W.J. Weber, Processing and electrical properties of alkaline earth-doped lanthanum gallate. J. Electrochem. Soc. 144, 3613–3620 (1997). https://doi.org/10.1149/1.1838057

    Article  CAS  Google Scholar 

  60. H. Hayashi, H. Inaba, M. Matsuyama, N.G. Lan, M. Dokiya, H. Tagawa, Structural consideration on the ionic conductivity of perovskite-type oxides. Solid State Ionics 122, 1–15 (1999). https://doi.org/10.1016/S0167-2738(99)00066-1

    Article  CAS  Google Scholar 

  61. M. Morales, J.J. Roa, J. Tartaj, M. Segarra, A review of doped lanthanum gallates as electrolytes for intermediate temperature solid oxides fuel cells: from materials processing to electrical and thermo-mechanical properties. J. Eur. Ceram. Soc. 36, 1–16 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.09.025

    Article  CAS  Google Scholar 

  62. V.V. Kharton, F.M.B. Marques, A. Atkinson, Transport properties of solid oxide electrolyte ceramics: a brief review. Solid State Ionics 174, 135–149 (2004). https://doi.org/10.1016/j.ssi.2004.06.015

    Article  CAS  Google Scholar 

  63. P. Datta, P. Majewski, F. Aldinger, Synthesis and microstructural characterization of Sr- and Mg-substituted LaGaO3 solid electrolyte. Mater. Chem. Phys. 102, 240–244 (2007). https://doi.org/10.1016/j.matchemphys.2006.12.010

    Article  CAS  Google Scholar 

  64. R. Polini, A. Pamio, E. Traversa, Effect of synthetic route on sintering behaviour, phase purity and conductivity of Sr- and Mg-doped LaGaO3 perovskites. J. Eur. Ceram. Soc. 24, 1365–1370 (2004). https://doi.org/10.1016/S0955-2219(03)00592-2

    Article  CAS  Google Scholar 

  65. S. Li, B. Bergman, Doping effect on secondary phases, microstructure and electrical conductivities of LaGaO3 based perovskites. J. Eur. Ceram. Soc. 29, 1139–1146 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.08.017

    Article  CAS  Google Scholar 

  66. K. Huang, J.-H. Wan, J.B. Goodenough, Increasing power density of LSGM-based solid oxide fuel cells using new anode materials. J. Electrochem. Soc. 148, A788 (2001). https://doi.org/10.1149/1.1378289

    Article  CAS  Google Scholar 

  67. T. Fukui, S. Ohara, K. Murata, H. Yoshida, K. Miura, T. Inagaki, Performance of intermediate temperature solid oxide fuel cells with La(Sr)Ga(Mg)O3 electrolyte film. J. Power Sources. 106, 142–145 (2002). https://doi.org/10.1016/S0378-7753(01)01026-6

    Article  CAS  Google Scholar 

  68. C. Jin, Z. Yang, H. Zheng, C. Yang, F. Chen, La0.6Sr1.4MnO4 layered perovskite anode material for intermediate temperature solid oxide fuel cells. Electrochem. Commun. 14, 75–77 (2012). https://doi.org/10.1016/j.elecom.2011.11.008

    Article  CAS  Google Scholar 

  69. K.N. Kim, B.K. Kim, J.W. Son, J. Kim, H.W. Lee, J.H. Lee, J. Moon, Characterization of the electrode and electrolyte interfaces of LSGM-based SOFCs. Solid State Ionics 177, 2155–2158 (2006). https://doi.org/10.1016/j.ssi.2006.02.011

    Article  CAS  Google Scholar 

  70. J.H. Lee, K.N. Kim, J.W.S.J. Kim, B.K. Kim, H.W. Lee, J. Moon, An investigation of the interfacial stability between the anode and electrolyte layer of LSGM-based SOFCs. J. Mater. Sci. 42, 1866–1871 (2007). https://doi.org/10.1007/s10853-006-1315-x

    Article  CAS  Google Scholar 

  71. J.H. Wan, J.Q. Yan, J.B. Goodenough, LSGM-based solid oxide fuel cell with 1.4 W/cm2 power density and 30 day long-term stability. J. Electrochem. Soc. 152, A1511 (2005). https://doi.org/10.1149/1.1943587

    Article  CAS  Google Scholar 

  72. Z. Bi, Y. Dong, M. Cheng, B. Yi, Behavior of lanthanum-doped ceria and Sr-, Mg-doped LaGaO3 electrolytes in an anode-supported solid oxide fuel cell with a La0.6Sr0.4CoO3 cathode. J. Power Sources. 161, 34–39 (2006). https://doi.org/10.1016/j.jpowsour.2006.03.065

    Article  CAS  Google Scholar 

  73. Y. Lin, S.A. Barnett, Co-firing of anode-supported SOFCs with Thin La 0.9Sr 0.1Ga 0.8Mg 0.2O 3-δ electrolytes. Electrochem. Solid-State Lett. 9, 285–288 (2006). https://doi.org/10.1149/1.2191132

    Article  CAS  Google Scholar 

  74. Z. Bi, B. Yi, Z. Wang, Y. Dong, H. Wu, Y. She, M. Cheng, A high-performance anode-supported SOFC with LDC-LSGM bilayer electrolytes. Electrochem. Solid-State Lett. 7, 105–107 (2004). https://doi.org/10.1149/1.1667016

    Article  CAS  Google Scholar 

  75. W. Guo, J. Liu, Y. Zhang, Electrical and stability performance of anode-supported solid oxide fuel cells with strontium- and magnesium-doped lanthanum gallate thin electrolyte. Electrochim. Acta. 53, 4420–4427 (2008). https://doi.org/10.1016/j.electacta.2008.01.039

    Article  CAS  Google Scholar 

  76. X. Zhu, K. Sun, S. Le, N. Zhang, Q. Fu, X. Chen, Y. Yuan, Improved electrochemical performance of NiO-La0.45Ce0.55O2-δ composite anodes for IT-SOFC through the introduction of a La0.45Ce0.55O2-δ interlayer. Electrochim. Acta. 54, 862–867 (2008). https://doi.org/10.1016/j.electacta.2008.03.060

    Article  CAS  Google Scholar 

  77. K. Huang, J.B. Goodenough, A solid oxide fuel cell based on Sr- And Mg-doped LaGaO3 electrolyte: the role of a rare-earth oxide buffer. J. Alloys Compd. 303–304, 454–464 (2000). https://doi.org/10.1016/S0925-8388(00)00626-5

    Article  Google Scholar 

  78. K. Huang, R. Tichy, J.B. Goodenough III., Performance tests of single ceramic fuel cells. J. Am. Ceram. Soc. 85, 2581–2585 (1998)

    Google Scholar 

  79. Y.W. Ju, H. Eto, T. Inagaki, S. Ida, T. Ishihara, Preparation of Ni-Fe bimetallic porous anode support for solid oxide fuel cells using LaGaO3 based electrolyte film with high power density. J. Power Sources. 195, 6294–6300 (2010). https://doi.org/10.1016/j.jpowsour.2010.04.068

    Article  CAS  Google Scholar 

  80. K.-N. Kim, J. Moon, J.-W. Son, J. Kim, H. Lee, J.-H. Lee, B.-K. Kim, Introduction of a buffering layer for the interfacial stability of LSGM-Based SOFCs. J. Korean Ceram. Soc. 42, 637–644 (2005)

    Article  CAS  Google Scholar 

  81. K.J. Hwang, M. Jang, M.K. Kim, S.H. Lee, T.H. Shin, Effective buffer layer thickness of La-doped CeO2 for high durability and performance on La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte supported type solid oxide fuel cells. J. Eur. Ceram. Soc. 41, 2674–2681 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.11.036

    Article  CAS  Google Scholar 

  82. T. Ishihara, T. Shibayama, S. Ishikawa, K. Hosoi, H. Nishiguchi, Y. Takita, Novel fast oxide ion conductor and application for the electrolyte of solid oxide fuel cell. J. Eur. Ceram. Soc. 24, 1329–1335 (2004). https://doi.org/10.1016/S0955-2219(03)00508-9

    Article  CAS  Google Scholar 

  83. Z. Yang, C. Yang, C. Jin, M. Han, F. Chen, Ba0.9Co0.7Fe0.2Nb0.1O 3-δ as cathode material for intermediate temperature solid oxide fuel cells. Electrochem. Commun. 13, 882–885 (2011). https://doi.org/10.1016/j.elecom.2011.05.029

    Article  CAS  Google Scholar 

  84. N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, Progress in material selection for solid oxide fuel cell technology: a review. Prog. Mater. Sci. 72, 141–337 (2015). https://doi.org/10.1016/j.pmatsci.2015.01.001

    Article  CAS  Google Scholar 

  85. S. Hui, J. Roller, S. Yick, X. Zhang, C. Decès-Petit, Y. Xie, R. Maric, D. Ghosh, A brief review of the ionic conductivity enhancement for selected oxide electrolytes. J. Power Sources. 172, 493–502 (2007). https://doi.org/10.1016/j.jpowsour.2007.07.071

    Article  CAS  Google Scholar 

  86. V.V. Kharton, A.A. Yaremchenko, E.N. Naumovich, Research on the electrochemistry of oxygen ion conductors in the former Soviet Union. II. Perovskite-related oxides. J. Solid State Electrochem. 3, 303–326 (1999). https://doi.org/10.1007/s100080050161

    Article  CAS  Google Scholar 

  87. V.V. Kharton, E.N. Naumovich, A.A. Vecher, Research on the electrochemistry of oxygen ion conductors in the former Soviet Union. I. ZrO2-based ceramic materials. J. Solid State Electrochem. 3, 61–81 (1999). https://doi.org/10.1007/s100080050131

    Article  CAS  Google Scholar 

  88. T. Liu, X. Zhang, X. Wang, J. Yu, L. Li, A review of zirconia-based solid electrolytes. Ionics (Kiel). 22, 2249–2262 (2016). https://doi.org/10.1007/s11581-016-1880-1

    Article  CAS  Google Scholar 

  89. D.K. Lim, J.G. Guk, H.S. Choi, S.J. Song, Measurement of partial conductivity of 8YSZ by Hebb-Wagner polarization method. J. Korean Ceram. Soc. 52, 299–303 (2015). https://doi.org/10.4191/kcers.2015.52.5.299

    Article  CAS  Google Scholar 

  90. J.S. Lee, D.K. Shin, B.Y. Choi, J.K. Jeon, S.H. Jin, K.H. Jung, P.A. An, S.J. Song, Effects of yttria and calcia co-doping on the electrical conductivity of zirconia ceramics. J. Korean Ceram. Soc. 44, 655–659 (2007). https://doi.org/10.4191/KCERS.2007.44.1.655

    Article  Google Scholar 

  91. M.S. Islam, A. Bhardwaj, L. Mathur, I. Kim, J. Park, S. Song, Effects of electrolyte variation on ammonia sensing temperature for BiVO 4 sensing electrode in mixed potential gas sensor. Sens. Actuat. B. Chem. 371, 132504 (2022). https://doi.org/10.1016/j.snb.2022.132504

    Article  CAS  Google Scholar 

  92. A. Bhardwaj, I.H. Kim, L. Mathur, J.Y. Park, S.J. Song, Ultrahigh-sensitive mixed-potential ammonia sensor using dual-functional NiWO4 electrocatalyst for exhaust environment monitoring. J. Hazard. Mater. 403, 123797 (2021). https://doi.org/10.1016/j.jhazmat.2020.123797

    Article  CAS  Google Scholar 

  93. A. Bhardwaj, H. Bae, L. Mathur, S. Mathur, S.-J. Song, Cubic Bi 2 O 3-based electrochemical nitric oxide sensor using double perovskite oxide electrodes. J. Electrochem. Soc. 169, 117510 (2022). https://doi.org/10.1149/1945-7111/aca2e0

    Article  CAS  Google Scholar 

  94. Y. Arachi, H. Sakai, O. Yamamoto, Y. Takeda, N. Imanishai, Electrical conductivity of the ZrO2-Ln2O3 (Ln = lanthanides) system. Solid State Ionics 121, 133–139 (1999). https://doi.org/10.1016/S0167-2738(98)00540-2

    Article  CAS  Google Scholar 

  95. F. Wang, Y. Lyu, D. Chu, Z. Jin, G. Zhang, D. Wang, The electrolyte materials for SOFCs of low-intermediate temperature: review. Mater. Sci. Technol. (United Kingdom) 35, 1551–1562 (2019). https://doi.org/10.1080/02670836.2019.1639008

    Article  CAS  Google Scholar 

  96. J. Jiang, J.L. Hertz, On the variability of reported ionic conductivity in nanoscale YSZ thin films. J. Electroceramics. 32, 37–46 (2014). https://doi.org/10.1007/s10832-013-9857-1

    Article  CAS  Google Scholar 

  97. M. Mogensen, D. Lybye, N. Bonanos, P.V. Hendriksen, F.W. Poulsen, Factors controlling the oxide ion conductivity of fluorite and perovskite structured oxides. Solid State Ionics 174, 279–286 (2004). https://doi.org/10.1016/j.ssi.2004.07.036

    Article  CAS  Google Scholar 

  98. J.W. Fergus, Electrolytes for solid oxide fuel cells. J. Power Sources. 162, 30–40 (2006). https://doi.org/10.1016/j.jpowsour.2006.06.062

    Article  CAS  Google Scholar 

  99. S.P.S. Badwal, Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity. Solid State Ionics 52, 23–32 (1992). https://doi.org/10.1016/0167-2738(92)90088-7

    Article  CAS  Google Scholar 

  100. Z. Zakaria, S.H. Abu Hassan, N. Shaari, A.Z. Yahaya, Y. Boon Kar, A review on recent status and challenges of yttria stabilized zirconia modification to lowering the temperature of solid oxide fuel cells operation. Int. J. Energy Res. 44, 631–650 (2020). https://doi.org/10.1002/er.4944

    Article  CAS  Google Scholar 

  101. D. Udomsilp, C. Lenser, O. Guillon, N.H. Menzler, Performance benchmark of planar solid oxide cells based on material development and designs. Energy Technol. 9, 2001062 (2021). https://doi.org/10.1002/ente.202001062

    Article  CAS  Google Scholar 

  102. M. Noponen, P. Torri, J. Göös, J. Puranen, H. Kaar, S. Pylypko, M. Roostar, E. Õunpuu, Elcogen—next generation solid oxide cell and stack technology. ECS Trans. 91, 91–97 (2019). https://doi.org/10.1149/09101.0091ecst

    Article  CAS  Google Scholar 

  103. Kerafol Keracell III. (2014). https://www.kerafol.com/sofc/komponenten-fuer-brennstoffzellentechnologie/elektrolytgetragene-zellen-esc.

  104. M.A. Buccheri, A. Singh, J.M. Hill, Anode-versus electrolyte-supported Ni-YSZ/YSZ/Pt SOFCs: effect of cell design on OCV, performance and carbon formation for the direct utilization of dry methane. J. Power Sources. 196, 968–976 (2011). https://doi.org/10.1016/j.jpowsour.2010.08.073

    Article  CAS  Google Scholar 

  105. Y. Gu, Y. Zhang, L. Ge, Y. Zheng, H. Chen, L. Guo, YSZ electrolyte support with novel symmetric structure by phase inversion process for solid oxide fuel cells. Energy Convers. Manag. 177, 11–18 (2018). https://doi.org/10.1016/j.enconman.2018.09.051

    Article  CAS  Google Scholar 

  106. J.H. Joo, G.M. Choi, Thick-film electrolyte (thickness <20 μm)-supported solid oxide fuel cells. J. Power Sources. 180, 195–198 (2008). https://doi.org/10.1016/j.jpowsour.2008.02.013

    Article  CAS  Google Scholar 

  107. H. Chang, J. Yan, H. Chen, G. Yang, J. Shi, W. Zhou, F. Cheng, S.-D. Li, Z. Shao, Preparation of thin electrolyte film via dry pressing/heating/quenching/calcining for electrolyte-supported SOFCs. Ceram. Int. 45, 9866–9870 (2019). https://doi.org/10.1016/j.ceramint.2019.02.026

    Article  CAS  Google Scholar 

  108. C.K. Ng, S. Ramesh, C.Y. Tan, A. Muchtar, M.R. Somalu, Microwave sintering of ceria-doped scandia stabilized zirconia as electrolyte for solid oxide fuel cell. Int. J. Hydrogen Energy. 41, 14184–14190 (2016). https://doi.org/10.1016/j.ijhydene.2016.06.146

    Article  CAS  Google Scholar 

  109. A. Azim Jais, S.A. Muhammed Ali, M. Anwar, M. Rao Somalu, A. Muchtar, W.N.R. WanIsahak, C. Yong Tan, R. Singh, N.P. Brandon, Enhanced ionic conductivity of scandia-ceria-stabilized-zirconia (10Sc1CeSZ) electrolyte synthesized by the microwave-assisted glycine nitrate process. Ceram. Int. 43, 8119–8125 (2017). https://doi.org/10.1016/j.ceramint.2017.03.135

    Article  CAS  Google Scholar 

  110. A.O. Zhigachev, V.V. Rodaev, D.V. Zhigacheva, N.V. Lyskov, M.A. Shchukina, Doping of scandia-stabilized zirconia electrolytes for intermediate-temperature solid oxide fuel cell: a review. Ceram. Int. 47, 32490–32504 (2021). https://doi.org/10.1016/j.ceramint.2021.08.285

    Article  CAS  Google Scholar 

  111. Z. Zakaria, S.K. Kamarudin, Advanced modification of scandia-stabilized zirconia electrolytes for solid oxide fuel cells application—a review. Int. J. Energy Res. 45, 4871–4887 (2021). https://doi.org/10.1002/er.6206

    Article  CAS  Google Scholar 

  112. Q. Wang, H. Fan, Y. Xiao, Y. Zhang, Applications and recent advances of rare earth in solid oxide fuel cells. J. Rare Earths. (2022). https://doi.org/10.1016/j.jre.2021.09.003

    Article  Google Scholar 

  113. V. Shukla, K. Balani, A. Subramaniam, S. Omar, Effect of thermal aging on the phase stability of 1Yb2O3- xSc2O3-(99 - X)ZrO2 (x = 7, 8 mol %). J. Phys. Chem. C. 123, 21982–21992 (2019). https://doi.org/10.1021/acs.jpcc.9b05672

    Article  CAS  Google Scholar 

  114. V. Shukla, S. Singh, A. Subramaniam, S. Omar, Long-term conductivity stability of metastable tetragonal phases in 1Yb2O3- xSc2O3-(99 - X)ZrO2(x = 7, 8 mol %). J. Phys. Chem. C. 124, 23490–23500 (2020). https://doi.org/10.1021/acs.jpcc.0c05298

    Article  CAS  Google Scholar 

  115. H.C. Shin, J.H. Yu, K.T. Lim, H.L. Lee, K.H. Baik, Effects of partial substitution of CeO2 with M2O3 (M = Yb, Gd, Sm) on electrical degradation of Sc2O3 and CeO2 Co-doped ZrO2. J. Korean Ceram. Soc. 53, 500–505 (2016). https://doi.org/10.4191/kcers.2016.53.5.500

    Article  CAS  Google Scholar 

  116. Y. Mizutani, K. Hisada, K. Ukai, H. Sumi, M. Yokoyama, Y. Nakamura, O. Yamamoto, From rare earth doped zirconia to 1 kW solid oxide fuel cell system. J. Alloys Compd. 408–412, 518–524 (2006). https://doi.org/10.1016/j.jallcom.2004.12.177

    Article  CAS  Google Scholar 

  117. S. Nakayama, R. Tokunaga, M. Takata, S. Kondo, Y. Nakajima, Crystal phase, electrical properties, and solid oxide fuel cell electrolyte application of scandia-stabilized zirconia doped with rare earth elements. Open Ceram. 6, 100136 (2021). https://doi.org/10.1016/j.oceram.2021.100136

    Article  CAS  Google Scholar 

  118. T.I. Politova, J.T.S. Irvine, Investigation of scandia-yttria-zirconia system as an electrolyte material for intermediate temperature fuel cells—influence of yttria content in system (Y2O3)x(Sc2O3) (11–x)(ZrO2)89. Solid State Ionics 168, 153–165 (2004). https://doi.org/10.1016/j.ssi.2004.02.007

    Article  CAS  Google Scholar 

  119. C. Haering, A. Roosen, H. Schichl, M. Schnöller, Degradation of the electrical conductivity in stabilised zirconia system Part II: Scandia-stabilised zirconia. Solid State Ionics 176, 261–268 (2005). https://doi.org/10.1016/j.ssi.2004.07.039

    Article  CAS  Google Scholar 

  120. S. Omar, N. Bonanos, Ionic conductivity ageing behaviour of 10 mol.% Sc2O 3–1 mol.% CeO2-ZrO2 ceramics. J. Mater. Sci. 45, 6406–6410 (2010). https://doi.org/10.1007/s10853-010-4723-x

    Article  CAS  Google Scholar 

  121. S.P.S. Badwal, J. Drennan, Microstructure / conductivity relationship in the scandia-zirconia system. Solid State Ionics 56, 769–776 (1992)

    Article  Google Scholar 

  122. C.N.S. Kumar, R. Bauri, G.S. Reddy, Phase stability and conductivity of rare earth co-doped nanocrystalline zirconia electrolytes for solid oxide fuel cells. J. Alloys Compd. 833, 155100 (2020). https://doi.org/10.1016/j.jallcom.2020.155100

    Article  CAS  Google Scholar 

  123. C. Viazzi, J.P. Bonino, F. Ansart, A. Barnabé, Structural study of metastable tetragonal YSZ powders produced via a sol-gel route. J. Alloys Compd. 452, 377–383 (2008). https://doi.org/10.1016/j.jallcom.2006.10.155

    Article  CAS  Google Scholar 

  124. F.M. Spiridonov, L.N. Popova, R.Y. Popilskii, On the phase relations and the electrical conductivity in the system ZrO2Sc2O3. J. Solid State Chem. 2, 430–438 (1970). https://doi.org/10.1016/0022-4596(70)90102-7

    Article  CAS  Google Scholar 

  125. Q.N. Xue, L.G. Wang, X.W. Huang, J.X. Zhang, H. Zhang, Influence of codoping on the conductivity of Sc-doped zirconia by first-principles calculations and experiments. Mater. Des. 160, 131–137 (2018). https://doi.org/10.1016/j.matdes.2018.09.001

    Article  CAS  Google Scholar 

  126. C. Haering, A. Roosen, H. Schichl, Degradation of the electrical conductivity in stabilised zirconia systems Part I: Yttria-stabilised zirconia. Solid State Ionics 176, 253–259 (2005). https://doi.org/10.1016/j.ssi.2004.07.038

    Article  CAS  Google Scholar 

  127. H.A. Abbas, C. Argirusis, M. Kilo, H.D. Wiemhöfer, F.F. Hammad, Z.M. Hanafi, Preparation and conductivity of ternary scandia-stabilised zirconia. Solid State Ionics 184, 6–9 (2011). https://doi.org/10.1016/j.ssi.2010.10.012

    Article  CAS  Google Scholar 

  128. J.T.S. Irvine, J.W.L. Dobson, T. Politova, S. García Martín, A. Shenouda, Co-doping of scandia-zirconia electrolytes for SOFCs. Faraday Discuss. 134, 41–49 (2007). https://doi.org/10.1039/b604441g

    Article  CAS  Google Scholar 

  129. V. Vijaya Lakshmi, R. Bauri, Phase formation and ionic conductivity studies on ytterbia co-doped scandia stabilized zirconia (0.9ZrO2-0.09Sc2O3-0. 01Yb2O3) electrolyte for SOFCs. Solid State Sci. 13, 1520–1525 (2011). https://doi.org/10.1016/j.solidstatesciences.2011.05.014

    Article  CAS  Google Scholar 

  130. D.A. Agarkov, M.A. Borik, S.I. Bredikhin, I.N. Burmistrov, G.M. Eliseeva, A.V. Kulebyakin, I.E. Kuritsyna, E.E. Lomonova, F.O. Milovich, V.A. Myzina, N.Y. Tabachkova, Phase compositions, structures and properties of scandia-stabilized zirconia solid solution crystals co-doped with yttria or ytterbia and grown by directional melt crystallization. Solid State Ionics 346, 115218 (2020). https://doi.org/10.1016/j.ssi.2019.115218

    Article  CAS  Google Scholar 

  131. A.O. Zhigachev, D.V. Zhigacheva, N.V. Lyskov, Influence of yttria and ytterbia doping on phase stability and ionic conductivity of ScSZ solid electrolytes. Mater. Res. Express. 6, 1–8 (2019). https://doi.org/10.1088/2053-1591/ab3ed0

    Article  CAS  Google Scholar 

  132. A. Spirin, V. Ivanov, A. Nikonov, A. Lipilin, S. Paranin, V. Khrustov, A. Spirina, Scandia-stabilized zirconia doped with yttria: synthesis, properties, and ageing behavior. Solid State Ionics 225, 448–452 (2012). https://doi.org/10.1016/j.ssi.2012.02.022

    Article  CAS  Google Scholar 

  133. Y. Mizutani, M. Tamura, M. Kawai, O. Yamamoto, Development of high-performance electrolyte in SOFC. Solid State Ionics 72, 271–275 (1994). https://doi.org/10.1016/0167-2738(94)90158-9

    Article  CAS  Google Scholar 

  134. R. Slilaty, F. Marques, Electrical conductivity of Yttria Stabilized Zirconia (YSC) doped with transition metals, Boletín La Soc. Española Cerámica y Vidr. 35, 109–115 (1996)

    CAS  Google Scholar 

  135. A. Kumar, R.P. Singh, S. Singh, A. Jaiswal, S. Omar, Phase stability and ionic conductivity of cubic xNb2O5-(11–x)Sc2O3-ZrO2(0 ≤ x ≤4). J. Alloys Compd. 703, 643–651 (2017). https://doi.org/10.1016/j.jallcom.2017.01.301

    Article  CAS  Google Scholar 

  136. V.S. Singh, A. Jaiswal, K. Balani, A. Subramaniam, S. Omar, Temporal stability of oxygen-ion conductivity in 1Nb2O5-10Sc2O3-89ZrO2. J. Eur. Ceram. Soc. 38, 1688–1694 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.11.008

    Article  CAS  Google Scholar 

  137. Z. Lei, Q. Zhu, Phase transformation and low temperature sintering of manganese oxide and scandia co-doped zirconia. Mater. Lett. 61, 1311–1314 (2007). https://doi.org/10.1016/j.matlet.2006.07.020

    Article  CAS  Google Scholar 

  138. O. Bohnke, V. Gunes, K.V. Kravchyk, A.G. Belous, O.Z. Yanchevskii, O.I. V’Yunov, Ionic and electronic conductivity of 3 mol% Fe2O 3-substituted cubic yttria-stabilized ZrO2 (YSZ) and scandia-stabilized ZrO2 (ScSZ). Solid State Ionics 262, 517–521 (2014). https://doi.org/10.1016/j.ssi.2013.11.003

    Article  CAS  Google Scholar 

  139. D.A. Agarkov, M.A. Borik, S.I. Bredikhin, I.N. Burmistrov, G.M. Eliseeva, V.A. Kolotygin, A.V. Kulebyakin, I.E. Kuritsyna, E.E. Lomonova, F.O. Milovich, V.A. Myzina, P.A. Ryabochkina, N.Y. Tabachkova, T.V. Volkova, Structure and transport properties of zirconia crystals co-doped by scandia, ceria and yttria. J. Mater. 5, 273–279 (2019). https://doi.org/10.1016/j.jmat.2019.02.004

    Article  Google Scholar 

  140. P. Li, I.W. Chen, J.E. Penner-Hahn, Effect of dopants on zirconia stabilization—an X-ray absorption study: II, tetravalent dopants. J. Am. Ceram. Soc. 77, 118–128 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb05403.x

    Article  CAS  Google Scholar 

  141. S. Omar, W. Bin Najib, W. Chen, N. Bonanos, Electrical conductivity of 10 mol% Sc 2 O 3–1 mol% M 2 O 3- ZrO 2 ceramics. J. Am. Ceram. Soc. 95, 1965–1972 (2012). https://doi.org/10.1111/j.1551-2916.2012.05126.x

    Article  CAS  Google Scholar 

  142. Y. Arachi, T. Asai, O. Yamamoto, Y. Takeda, N. Imanishi, K. Kawate, C. Tamakoshi, Electrical conductivity of ZrO2-Sc2O3 doped with HfO2, CeO2, and Ga2O3. J. Electrochem. Soc. 148, A520 (2001). https://doi.org/10.1149/1.1366622

    Article  CAS  Google Scholar 

  143. C.N. Shyam Kumar, R. Bauri, Enhancing the phase stability and ionic conductivity of scandia stabilized zirconia by rare earth co-doping. J. Phys. Chem. Solids. 75, 642–650 (2014). https://doi.org/10.1016/j.jpcs.2014.01.014

    Article  CAS  Google Scholar 

  144. Z. Wang, M. Cheng, Z. Bi, Y. Dong, H. Zhang, J. Zhang, Z. Feng, C. Li, Structure and impedance of ZrO2 doped with Sc2O3 and CeO2. Mater. Lett. 59, 2579–2582 (2005). https://doi.org/10.1016/j.matlet.2004.07.065

    Article  CAS  Google Scholar 

  145. M. Liu, C. He, J. Wang, W.G. Wang, Z. Wang, Investigation of (CeO2)x(Sc2O 3)(0.11–x)(ZrO2)0.89 (x = 0.01–0.10) electrolyte materials for intermediate-temperature solid oxide fuel cell. J. Alloys Compd. 502, 319–323 (2010). https://doi.org/10.1016/j.jallcom.2009.12.134

    Article  CAS  Google Scholar 

  146. A. Kumar, A. Jaiswal, M. Sanbui, S. Omar, Oxygen-ion conduction in scandia-stabilized zirconia-ceria solid electrolyte (xSc2O3–1CeO2–(99–x)ZrO2, 5 ≤ x ≤ 11). J. Am. Ceram. Soc. 100, 659–668 (2017). https://doi.org/10.1111/jace.14595

    Article  CAS  Google Scholar 

  147. A. Escardino, A. Belda, M.J. Orts, A. Gozalbo, Ceria-doped scandia-stabilized zirconia (10Sc2O3·1CeO2·89ZrO2) as electrolyte for SOFCs: Sintering and ionic conductivity of thin, flat sheets. Int. J. Appl. Ceram. Technol. 14, 532–542 (2017). https://doi.org/10.1111/ijac.12675

    Article  CAS  Google Scholar 

  148. H. Tu, X. Liu, Q. Yu, Synthesis and characterization of scandia ceria stabilized zirconia powders prepared by polymeric precursor method for integration into anode-supported solid oxide fuel cells. J. Power Sources. 196, 3109–3113 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.108

    Article  CAS  Google Scholar 

  149. I.V. Brodnikovska, Y.M. Brodnikovskyi, M.M. Brychevskyi, O.D. Vasylyev, Joint impedance spectroscopy analysis of 10Sc1CeSZ and 8YSZ solid electrolytes for SOFC. Powder Metall. Met. Ceram. 57, 723–730 (2019). https://doi.org/10.1007/s11106-019-00037-4

    Article  CAS  Google Scholar 

  150. Y. Brodnikovskyi, N. McDonald, I. Polishko, D. Brodnikovskyi, I. Brodnikovska, M. Brychevskyi, L. Kovalenko, O. Vasylyev, A. Belous, R. Steinberger-Wilckens, Properties of 10Sc1CeSZ-35YSZ(33-, 40-, 50-wt.%) composite ceramics for SOFC application. Mater. Today Proc. 6, 26–35 (2019). https://doi.org/10.1016/j.matpr.2018.10.071

    Article  CAS  Google Scholar 

  151. Q. Xue, X. Huang, J. Zhang, H. Zhang, Z. Feng, Grain boundary segregation and its influences on ionic conduction properties of scandia doped zirconia electrolytes. J. Rare Earths. 37, 645–651 (2019). https://doi.org/10.1016/j.jre.2018.11.006

    Article  CAS  Google Scholar 

  152. K.S. Yun, Y. Il Kwon, J.H. Kim, S. Jo, C.Y. Yoo, J.H. Yu, J.H. Joo, Effects of Ni diffusion on the accelerated conductivity degradation of scandia-stabilized zirconia films under a reducing atmosphere. J. Eur. Ceram. Soc. 36, 1835–1839 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.02.007

    Article  CAS  Google Scholar 

  153. Z.-P. Li, T. Mori, J. Zou, J. Drennan, Defects clustering and ordering in di- and trivalently doped ceria. Mater. Res. Bull. 48, 807–812 (2013). https://doi.org/10.1016/j.materresbull.2012.11.073

    Article  CAS  Google Scholar 

  154. C. Madhusudan, K. Venkataramana, C. Madhuri, C. Vishnuvardhan Reddy, Structural, electrical and thermal studies on microwave sintered Dy and Pr co-doped ceria ceramics as electrolytes for intermediate temperature solid oxide fuel cells. J. Mater. Sci. Mater. Electron. 29, 17067–17077 (2018). https://doi.org/10.1007/s10854-018-9803-8

    Article  CAS  Google Scholar 

  155. J.A. Kilner, R.J. Brook, A study of oxygen ion conductivity in doped non-stoichiometric oxides. Solid State Ionics 6, 237–252 (1982). https://doi.org/10.1016/0167-2738(82)90045-5

    Article  CAS  Google Scholar 

  156. N. Kim, B.H. Kim, D. Lee, Effect of co-dopant addition on properties of gadolinia-doped ceria electrolyte. J. Power Sources. 90, 139–143 (2000). https://doi.org/10.1016/S0378-7753(00)00389-X

    Article  CAS  Google Scholar 

  157. S. Lübke, H.D. Wiemhöfer, Electronic conductivity of Gd-doped ceria with additional Pr-doping. Solid State Ionics 117, 229–243 (1999). https://doi.org/10.1016/s0167-2738(98)00408-1

    Article  Google Scholar 

  158. M.S. Arshad, R. Raza, M.A. Ahmad, G. Abbas, A. Ali, A. Rafique, M.K. Ullah, S. Rauf, M.I. Asghar, N. Mushtaq, S. Atiq, S. Naseem, An efficient Sm and Ge co-doped ceria nanocomposite electrolyte for low temperature solid oxide fuel cells. Ceram. Int. 44, 170–174 (2018). https://doi.org/10.1016/j.ceramint.2017.09.155

    Article  CAS  Google Scholar 

  159. F.Y. Wang, S. Chen, Q. Wang, S. Yu, S. Cheng, Study on Gd and Mg co-doped ceria electrolyte for intermediate temperature solid oxide fuel cells. Catal. Today. 97, 189–194 (2004). https://doi.org/10.1016/j.cattod.2004.04.059

    Article  CAS  Google Scholar 

  160. E. Suda, B. Pacaud, M. Mori, Sintering characteristics, electrical conductivity and thermal properties of La-doped ceria powders. J. Alloys Compd. 408–412, 1161–1164 (2006). https://doi.org/10.1016/j.jallcom.2004.12.135

    Article  CAS  Google Scholar 

  161. X. Sha, Z. Lü, X. Huang, J. Miao, L. Jia, X. Xin, W. Su, Preparation and properties of rare earth co-doped Ce0.8Sm0.2-xYxO1.9 electrolyte materials for SOFC. J. Alloys Compd. 424, 315–321 (2006). https://doi.org/10.1016/j.jallcom.2005.12.061

    Article  CAS  Google Scholar 

  162. H. Yahiro, T. Ohuchi, K. Eguchi, H. Arai, Electrical properties and microstructure in the system ceria-alkaline earth oxide. J. Mater. Sci. 23, 1036–1041 (1988). https://doi.org/10.1007/BF01154008

    Article  CAS  Google Scholar 

  163. T. Shimonosono, Y. Hirata, S. Sameshima, T. Horita, Electronic conductivity of La-doped ceria ceramics. J. Am. Ceram. Soc. 88, 2114–2120 (2005). https://doi.org/10.1111/j.1551-2916.2005.00401.x

    Article  CAS  Google Scholar 

  164. D.W. Joh, M.K. Rath, J.W. Park, J.H. Park, K.H. Cho, S. Lee, K.J. Yoon, J.H. Lee, K.T. Lee, Sintering behavior and electrochemical performances of nano-sized gadolinium-doped ceria via ammonium carbonate assisted co-precipitation for solid oxide fuel cells. J. Alloys Compd. 682, 188–195 (2016). https://doi.org/10.1016/j.jallcom.2016.04.270

    Article  CAS  Google Scholar 

  165. J.A. Kilner, Fast anion transport in solids. Solid State Ionics 8, 201–207 (1983)

    Article  CAS  Google Scholar 

  166. A. Pandiyan, A. Uthayakumar, C. Lim, V. Ganesan, W. Yu, A. Das, S. Lee, M.N. Tsampas, S. Omar, J.W. Han, S.B. Krishna Moorthy, S.W. Cha, Validation of defect association energy on modulating oxygen ionic conductivity in low temperature solid oxide fuel cell. J. Power Sources. 480, 229106 (2020). https://doi.org/10.1016/j.jpowsour.2020.229106

    Article  CAS  Google Scholar 

  167. T. Matsui, M. Inaba, A. Mineshige, Z. Ogumi, Electrochemical properties of ceria-based oxides for use in intermediate-temperature SOFCs. Solid State Ionics 176, 647–654 (2005). https://doi.org/10.1016/j.ssi.2004.10.011

    Article  CAS  Google Scholar 

  168. S.M. Haile, Fuel cell materials and components. Acta Mater. 51, 5981–6000 (2003). https://doi.org/10.1016/j.actamat.2003.08.004

    Article  CAS  Google Scholar 

  169. T. Mori, J. Drennan, J.H. Lee, J.G. Li, T. Ikegami, Oxide ionic conductivity and microstructures of Sm- or La-doped CeO2-based systems. Solid State Ionics 154–155, 461–466 (2002). https://doi.org/10.1016/S0167-2738(02)00483-6

    Article  Google Scholar 

  170. R. Schmitt, A. Nenning, O. Kraynis, R. Korobko, A.I. Frenkel, I. Lubomirsky, S.M. Haile, J.L.M. Rupp, A review of defect structure and chemistry in ceria and its solid solutions. Chem. Soc. Rev. 49, 554–592 (2020). https://doi.org/10.1039/c9cs00588a

    Article  CAS  Google Scholar 

  171. J. Koettgen, S. Grieshammer, P. Hein, B.O.H. Grope, M. Nakayama, M. Martin, Understanding the ionic conductivity maximum in doped ceria: trapping and blocking. Phys. Chem. Chem. Phys. 20, 14291–14321 (2018). https://doi.org/10.1039/c7cp08535d

    Article  CAS  Google Scholar 

  172. D. Kim, I. Jeong, K.J. Kim, K.T. Bae, D. Kim, J. Koo, H. Yu, K.T. Lee, A brief review of heterostructure electrolytes for high-performance solid oxide fuel cells at reduced temperatures. J. Korean Ceram. Soc. 59, 131–152 (2022). https://doi.org/10.1007/s43207-021-00175-9

    Article  CAS  Google Scholar 

  173. W.S. Hsieh, P. Lin, S.F. Wang, Characteristics of electrolyte supported micro-tubular solid oxide fuel cells with GDC-ScSZ bilayer electrolyte. Int. J. Hydrogen Energy. 39, 17267–17274 (2014). https://doi.org/10.1016/j.ijhydene.2014.08.060

    Article  CAS  Google Scholar 

  174. D. Hirabayashi, A. Tomita, S. Teranishi, T. Hibino, M. Sano, Improvement of a reduction-resistant Ce0.8Sm0.2O 1.9 electrolyte by optimizing a thin BaCe1-xSm xO3-α layer for intermediate-temperature SOFCs. Solid State Ionics 176, 881–887 (2005). https://doi.org/10.1016/j.ssi.2004.12.007

    Article  CAS  Google Scholar 

  175. W. Sun, Z. Shi, Z. Wang, W. Liu, Bilayered BaZr0.1Ce0.7Y0.2O3-δ/Ce0.8Sm0.2O2-δ electrolyte membranes for solid oxide fuel cells with high open circuit voltages. J. Memb. Sci. 476, 394–398 (2015). https://doi.org/10.1016/j.memsci.2014.11.059

    Article  CAS  Google Scholar 

  176. Z. Gong, W. Sun, J. Cao, D. Shan, Y. Wu, W. Liu, Ce0.8Sm0.2O1.9 decorated with electron-blocking acceptor-doped BaCeO3 as electrolyte for low-temperature solid oxide fuel cells. Electrochim. Acta. 228, 226–232 (2017). https://doi.org/10.1016/j.electacta.2017.01.065

    Article  CAS  Google Scholar 

  177. E.D. Wachsman, K.T. Lee, Lowering the temperature of solid oxide fuel cells. Science 334, 935–939 (2011). https://doi.org/10.1126/science.1204090

    Article  CAS  Google Scholar 

  178. Z. Lu, J. Hardy, J. Templeton, J. Stevenson, D. Fisher, N. Wu, A. Ignatiev, Performance of anode-supported solid oxide fuel cell with thin bi-layer electrolyte by pulsed laser deposition. J. Power Sources. 210, 292–296 (2012). https://doi.org/10.1016/j.jpowsour.2012.03.036

    Article  CAS  Google Scholar 

  179. S. Zha, A. Moore, H. Abernathy, M. Liu, GDC-based low-temperature SOFCs powered by hydrocarbon fuels. J. Electrochem. Soc. 151, A1128 (2004). https://doi.org/10.1149/1.1764566

    Article  CAS  Google Scholar 

  180. S.S. Shin, J.H. Kim, K.T. Bae, K.T. Lee, S.M. Kim, J.W. Son, M. Choi, H. Kim, Multiscale structured low-temperature solid oxide fuel cells with 13 W power at 500 ℃. Energy Environ. Sci. 13, 3459–3468 (2020). https://doi.org/10.1039/d0ee00870b

    Article  CAS  Google Scholar 

  181. J. Qian, Z. Tao, J. Xiao, G. Jiang, W. Liu, Performance improvement of ceria-based solid oxide fuel cells with yttria-stabilized zirconia as an electronic blocking layer by pulsed laser deposition. Int. J. Hydrogen Energy. 38, 2407–2412 (2013). https://doi.org/10.1016/j.ijhydene.2012.11.112

    Article  CAS  Google Scholar 

  182. J. Qian, Z. Zhu, J. Dang, G. Jiang, W. Liu, Improved performance of solid oxide fuel cell with pulsed laser deposited thin film ceria-zirconia bilayer electrolytes on modified anode substrate. Electrochim. Acta. 92, 243–247 (2013). https://doi.org/10.1016/j.electacta.2013.01.017

    Article  CAS  Google Scholar 

  183. D.L. Maricle, T.E. Swarr, S. Karavolis, Enhanced ceria - a low-temperature SOFC electrolyte. Solid State Ionics 52, 173–182 (1992). https://doi.org/10.1016/0167-2738(92)90103-V

    Article  CAS  Google Scholar 

  184. W. Huang, P. Shuk, M. Greenblatt, Hydrothermal synthesis and properties of terbium- Or praseodymium-doped Ce1-xSmxO2-x/2 solid solutions. Solid State Ionics 113–115, 305–310 (1998). https://doi.org/10.1016/s0167-2738(98)00402-0

    Article  Google Scholar 

  185. A.S. Babu, R. Bauri, Rare earth co-doped nanocrystalline ceria electrolytes for intermediate temperature solid oxide fuel cells (IT-SOFC). ECS Trans. 57, 1115–1123 (2013). https://doi.org/10.1149/05701.1115ecst

    Article  CAS  Google Scholar 

  186. S.G. Bratsch, Standard electrode potentials and temperature coefficients in water at 298.15 K. J. Phys. Chem. Ref. Data. 18, 1–21 (1989). https://doi.org/10.1063/1.555839

    Article  CAS  Google Scholar 

  187. Y. Liu, M.N. Mushtaq, W. Zhang, A. Teng, X. Liu, Single-phase electronic-ionic conducting Sm3+/Pr3+/Nd3+ triple-doped ceria for new generation fuel cell technology. Int. J. Hydrogen Energy. 43, 12817–12824 (2018). https://doi.org/10.1016/j.ijhydene.2018.04.125

    Article  CAS  Google Scholar 

  188. Y. Liu, L. Fan, Y. Cai, W. Zhang, B. Wang, B. Zhu, Superionic conductivity of Sm3+, Pr3+, and Nd3+ triple-doped ceria through bulk and surface two-step doping approach. ACS Appl. Mater. Interfaces. 9, 23614–23623 (2017). https://doi.org/10.1021/acsami.7b02224

    Article  CAS  Google Scholar 

  189. X. Fang, J. Zhu, Z. Lin, Effects of electrode composition and thickness on the mechanical performance of a solid oxide fuel cell. Energies (2018). https://doi.org/10.3390/en11071735

    Article  Google Scholar 

  190. A. Nakajo, J. Kuebler, A. Faes, U.F. Vogt, H.J. Schindler, L.K. Chiang, S. Modena, J. Van Herle, T. Hocker, Compilation of mechanical properties for the structural analysis of solid oxide fuel cell stacks. Constitutive materials of anode-supported cells. Ceram. Int. 38, 3907–3927 (2012). https://doi.org/10.1016/j.ceramint.2012.01.043

    Article  CAS  Google Scholar 

  191. T. Okamura, S. Shimizu, M. Mogi, M. Tanimura, K. Furuya, F. Munakata, Elastic properties of Sr- and Mg-doped lanthanum gallate at elevated temperature. J. Power Sources. 130, 38–41 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.011

    Article  CAS  Google Scholar 

  192. A. Atkinson, A. Selçuk, Mechanical behaviour of ceramic oxygen ion-conducting membranes. Solid State Ionics 134, 59–66 (2000). https://doi.org/10.1016/S0167-2738(00)00714-1

    Article  CAS  Google Scholar 

  193. M. Morales, M.Á. Laguna-Bercero, Influence of anode functional layers on electrochemical performance and mechanical strength in microtubular solid oxide fuel cells fabricated by gel-casting. ACS Appl. Energy Mater. 1, 2024–2031 (2018). https://doi.org/10.1021/acsaem.8b00115

    Article  CAS  Google Scholar 

  194. A. Nakajo, J. Van Herle, D. Favrat, Sensitivity of stresses and failure mechanisms in SOFCs to the mechanical properties and geometry of the constitutive layers. Fuel Cells. 11, 537–552 (2011). https://doi.org/10.1002/fuce.201000108

    Article  CAS  Google Scholar 

  195. F. Fleischhauer, M. Terner, R. Bermejo, R. Danzer, A. Mai, T. Graule, J. Kuebler, Fracture toughness and strength distribution at room temperature of zirconia tapes used for electrolyte supported solid oxide fuel cells. J. Power Sources. 275, 217–226 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.083

    Article  CAS  Google Scholar 

  196. F. Fleischhauer, R. Bermejo, R. Danzer, A. Mai, T. Graule, J. Kuebler, High temperature mechanical properties of zirconia tapes used for electrolyte supported solid oxide fuel cells. J. Power Sources. 273, 237–243 (2015). https://doi.org/10.1016/j.jpowsour.2014.09.068

    Article  CAS  Google Scholar 

  197. A. Larrea, D. Sola, M.A. Laguna-Bercero, J.I. Peña, R.I. Merino, V.M. Orera, Self-supporting thin Yttria-stabilised zirconia electrolytes for solid oxide fuel cells prepared by laser machining. J. Electrochem. Soc. 158, B1193 (2011). https://doi.org/10.1149/1.3619759

    Article  CAS  Google Scholar 

  198. L. Mathur, H. Bae, Y. Namgung, J.Y. Park, S.J. Song, Flow behavior of gadolinium doped ceria under different polymeric and hydrodynamic environment for tape casting application. Korean J. Chem. Eng. 39, 1–13 (2022). https://doi.org/10.1007/s11814-022-1271-4

    Article  CAS  Google Scholar 

  199. L. Zhang, S.P. Jiang, W. Wang, Y. Zhang, NiO/YSZ, anode-supported, thin-electrolyte, solid oxide fuel cells fabricated by gel casting. J. Power Sources. 170, 55–60 (2007). https://doi.org/10.1016/j.jpowsour.2007.03.080

    Article  CAS  Google Scholar 

  200. Y.J. Leng, S.H. Chan, K.A. Khor, S.P. Jiang, P. Cheang, Effect of characteristics of Y2O3/ZrO2 powders on fabrication of anode-supported solid oxide fuel cells. J. Power Sources. 117, 26–34 (2003). https://doi.org/10.1016/S0378-7753(03)00350-1

    Article  CAS  Google Scholar 

  201. P. Tiwari, S. Basu, Performance studies of electrolyte-supported solid oxide fuel cell with Ni-YSZ and Ni-TiO2-YSZ as anodes. J. Solid State Electrochem. 18, 805–812 (2014). https://doi.org/10.1007/s10008-013-2326-6

    Article  CAS  Google Scholar 

  202. R. Muccillo, E.N.S. Muccillo, F.C. Fonseca, D.Z. de Florio, Characteristics and performance of electrolyte-supported solid oxide fuel cells under ethanol and hydrogen. J. Electrochem. Soc. 155, B232 (2008). https://doi.org/10.1149/1.2828024

    Article  CAS  Google Scholar 

  203. S.G. Kim, S.P. Yoon, S.W. Nam, S.H. Hyun, S.A. Hong, Fabrication and characterization of a YSZ/YDC composite electrolyte by a sol-gel coating method. J. Power Sources. 110, 222–228 (2002). https://doi.org/10.1016/S0378-7753(02)00270-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Korea Electric Power Corporation (Grant No. CX71220030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hosung Kim or Sun-Ju Song.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathur, L., Namgung, Y., Kim, H. et al. Recent progress in electrolyte-supported solid oxide fuel cells: a review. J. Korean Ceram. Soc. 60, 614–636 (2023). https://doi.org/10.1007/s43207-023-00296-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00296-3

Keywords

Navigation