Skip to main content
Log in

A review of zirconia-based solid electrolytes

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Zirconia-based electrolyte is considered to be the most reliable candidate as oxide-ion electrolyte for oxygen sensor, oxygen pump, and solid-oxide fuel cell. The electrical property and stability of zirconia-based electrolyte depend strongly on dopant type and concentration. In this review, phase diagrams, electrical properties, and the latest developments of zirconia-based electrolyte with different dopant are discussed. The methods used to increase oxide-ion conductivity and decrease the electronic conductivity of stabilized zirconia are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Goodenough JB (1997) Solid State Ionics 94:17–25

    Article  CAS  Google Scholar 

  2. Gellings PJ, Bouwmeester HJM (eds) (1997) The CRC handbook of solid state electrochemistry. CRC Press, New York

    Google Scholar 

  3. Kharton VV, Marques FMB, Atkinson A (2004) Solid State Ionics 174:135–149

    Article  CAS  Google Scholar 

  4. Fergus JW, Power J (162 (2006) Sources:30–40

  5. Badwal SPS (1992) Solid State Ionics 52:23–32

    Article  CAS  Google Scholar 

  6. Kharton VV, Naumovich EN, Vecher AA, Solid State J (1999) Electrochem 3:61–81

    CAS  Google Scholar 

  7. Yamamoto O, Arati Y, Takeda Y, Imanishi N, Mizutani Y, Kawai M, Nakamura Y (1995) Solid State Ionics 79:137–142

    Article  CAS  Google Scholar 

  8. Tuller HL (2000) Solid State Ionics 131:143–157

    Article  CAS  Google Scholar 

  9. Nowotny J, Bak T, Nowotny MK, Sorrell CC (2005) Adv Appl Ceram 104:147–153

    Article  CAS  Google Scholar 

  10. B. Butz (2009) Yttria-doped zirconia as solid electrolyte for fuel-cell applications. PhD thesis, Karlsruhe Institute of Technology

  11. Zhou Y, Lei TC, Sakuma T (1991) J Am Ceram Soc 74:633–640

    Article  CAS  Google Scholar 

  12. Dixon JM, LaGrange LD, Merten U, Miller CF, Porter JT (1963) J Electrochem Soc 110:276–280

    Article  CAS  Google Scholar 

  13. Strickler DW, Carlson WG (1964) J Am Ceram Soc 47:122–127

    Article  CAS  Google Scholar 

  14. Casselton REW (1970) Phys Status Solidi A 2:571–585

    Article  CAS  Google Scholar 

  15. Baumard JF, Papet P, Abelard P (1988) Science and technology of zirconia III. In: Somiya S, Yamato N, Yanagida H (eds) Advances in ceramics. American Ceramic Society, Westerville, Ohio, pp 779–788

    Google Scholar 

  16. Bonanos N, Drennan J, Slotwinski RK, Steele BCH, Butler EP (1985) Silic Ind 50:127–132

    CAS  Google Scholar 

  17. Miyayama M, Yanagida H (1984) J Am Ceram Soc 67:C194–C195

    Article  CAS  Google Scholar 

  18. Cheikh A, Madani A, Touati A, Boussetta H, Monty C (2001) J Eur Ceram Soc 21:1837–1841

    Article  CAS  Google Scholar 

  19. Peters C, Weber A, Butz B, Gerthsen D, Ivers-Tiffee E (2009) J Am Ceram Soc 92:2017–2024

    Article  CAS  Google Scholar 

  20. Guo X, Zhang ZL (2003) Acta Mater 51:2539–2547

    Article  CAS  Google Scholar 

  21. Guo X, Ding Y (2004) J Electrochem Soc 151:J1–J7

    Article  CAS  Google Scholar 

  22. Boutz MMR, Chen CS, Winnubst L, Burggraaf AJ (1994) J Am Ceram Soc 77:2632–2640

    Article  CAS  Google Scholar 

  23. Ikuhara Y, Thavorniti P, Sakuma T (1997) Acta Mater 45:5275–5284

    Article  CAS  Google Scholar 

  24. Dickey EC, Fan XD, Pennycook SJ (2001) J Am Ceram Soc 84:1361–1368

    Article  CAS  Google Scholar 

  25. Martin MC, Mecartney ML (2003) Solid State Ionics 161:67–79

    Article  CAS  Google Scholar 

  26. Mecartney ML (1987) J Am Ceram Soc 70:54–58

    Article  CAS  Google Scholar 

  27. Ruhle M, Claussen N, Heuer AH (1984) Science and technology of zirconia II. In: Claussen N, Ruhle M, Heuer AH (eds) Advances in ceramics. American Ceramic Society, Columbus, Ohio, p 352

    Google Scholar 

  28. Stoto T, Nauer M, Carry C (1991) J Am Ceram Soc 74:2615–2621

    Article  CAS  Google Scholar 

  29. Aoki M, Chiang YM, Kosacki I, Lee LJR, Tuller H, Liu YP (1996) J Am Ceram Soc 79:1169–1180

    Article  CAS  Google Scholar 

  30. Ikuhara Y, Nagai Y, Yamamoto T, Sakuma T (1999) Interface Sci 7:77–84

    Article  CAS  Google Scholar 

  31. Lee JH, Mori T, Li JG, Ikegami T, Komatsu M, Haneda H (2000) J Electrochem Soc 147:2822–2829

    Article  CAS  Google Scholar 

  32. Song XC, Lu J, Zhang TS, Ma J (2011) J Am Ceram Soc 94:1053–1059

    Article  CAS  Google Scholar 

  33. Wang K, Li CH, Gao YH, Lu XG, Ding WZ (2009) J Am Ceram Soc 92:1098–1104

    Article  CAS  Google Scholar 

  34. Xue J, Tinkler JH, Dieckmann R (2004) Solid State Ionics 166:199–205

    Article  CAS  Google Scholar 

  35. Grain CF (1967) J Am Ceram Soc 50:288–290

    Article  CAS  Google Scholar 

  36. Banerjee S, Mukhopadhyay P (2007) Phase transformations: examples from titanium and zirconium alloys. Elsevier Science Ltd, Oxford

    Google Scholar 

  37. Ghenadii K (2014) Handbook of gas sensor materials: properties, advantages and shortcomings for applications: new trends and technologies. Springer, Berlin

    Google Scholar 

  38. Liu T, Yu JK (2015) (in Chinese) ZrO2-based solid electrolytes and its applications. Science Press, Beijing

    Google Scholar 

  39. Yamamoto O, Arachi Y, Sakai H, Takeda Y, Imanishi N, Mizutani Y, Kawai M, Nakamura Y (1998) Ionics 4:403–408

    Article  CAS  Google Scholar 

  40. Chiba R, Yoshimura F, Yamaki J, Ishii T, Yonezawa T, Endou K (1997) Solid State Ionics 104:259–266

    Article  CAS  Google Scholar 

  41. Yamahara K, Jacobson CP, Visco SJ, De Jonghe LC (2003) In: Proc. 8th Int. Symp. Solid Oxide Fuel Cells (SOFC VIII), Electrochem. Soc. Proc. pp. 187–195

  42. Badwal SPS, Ciacchi FT, Milosevic D (2000) Solid State Ionics 136–137:91–99

    Article  Google Scholar 

  43. Sarat S, Sammes N, Smirnova A, Power J (2006) Sources 160:892–896

    Article  CAS  Google Scholar 

  44. Haering C, Roosen A, Schichl H, Schnoller M (2005) Solid State Ionics 176:261–268

    Article  CAS  Google Scholar 

  45. Peck DH, Song RH, Kim JH, Lim TH, Shin DR, Jung DH, Hilpert K (2005) In: Proc. 9th Int. Symp. Solid Oxide Fuel Cells (SOFC IX), Electrochem. Soc. Proc. pp. 947–953

  46. Irvine JTS, Politova T, Kruth A (2005) In: Proc. 9th Int. Symp. Solid Oxide Fuel Cells (SOFC IX), Electrochem. Soc. Proc. pp. 941–946

  47. Raj ES, Atkinson A, Kilner JA (2009) Solid State Ionics 180:952–955

    Article  CAS  Google Scholar 

  48. Orlovskaya N, Lukich S, Subhash G, Graule T, Kuebler J, Power J (2010) Sources 195:2774–2781

    Article  CAS  Google Scholar 

  49. Badwal SPS, Ciacchi FT, Rajendran S, Drennan J (1998) Solid State Ionics 109:167–186

    Article  CAS  Google Scholar 

  50. Terauchi S, Takizawa H, Endo T, Uchida S, Terui T, Shimada M (1995) Mater Lett 23:273–275

    Article  CAS  Google Scholar 

  51. Tietz F, Fischer W, Hauber T, Mariotto G (1997) Solid State Ionics 100:289–295

    Article  CAS  Google Scholar 

  52. Ishii T, Iwata T, Tajima Y (1993) In: Proc. 3rd Int. Symp. Solid Oxide Fuel Cells (SOFC III), Electrochem. Soc. Proc. pp. 59–64

  53. Ishii T (1995) Solid State Ionics 78:333–338

    Article  CAS  Google Scholar 

  54. Gong JH, Li Y, Tang ZL, Zhang ZT (2000) J Mater Sci 35:3547–3551

    Article  CAS  Google Scholar 

  55. Gong JH, Li Y, Zhang ZT, Tang ZL (2000) J Am Ceram Soc 83:648–650

    Article  CAS  Google Scholar 

  56. Gong JH, Li Y, Tang ZL, Zhang ZT (2000) Mater Lett 46:115–119

    Article  CAS  Google Scholar 

  57. Fonseca FC, Muccillo R (2000) Solid State Ionics 131:301–309

    Article  CAS  Google Scholar 

  58. Fonseca FC, Florio DZ, De Muccillo R (2009) Solid State Ionics 180:822–826

    Article  CAS  Google Scholar 

  59. Shiratori Y, Tietz F, Penkalla HJ, He JQ, Shiratori Y, Stover D, Power J (2005) Sources 148:32–42

    Article  CAS  Google Scholar 

  60. Kaneko H, Jin F, Taimatsu H, Kusakabe H (2005) J Am Ceram Soc 76:793–795

    Article  Google Scholar 

  61. De Souza DPF, Chinelatto AL, De Souza MF (1995) J Mater Sci 30:4355–4362

    Article  Google Scholar 

  62. Duh JG, Lee MY (1989) J Mater Sci 24:4467–4474

    Article  CAS  Google Scholar 

  63. Lee CH, Choi GM (2000) Solid State Ionics 135:653–661

    Article  CAS  Google Scholar 

  64. Belous AG, Kravchyk KV, Pashkova EV, Bohnke O, Galven C (2007) Chem Mat 19:5179–5184

    Article  CAS  Google Scholar 

  65. Yang F, Zhao XF, Xiao P, Power J (2011) Sources 196:4943–4949

    Article  CAS  Google Scholar 

  66. Naito H, Sakai N, Otake T, Yugami H, Yokokawa H (2000) Solid State Ionics 135:669–673

    Article  CAS  Google Scholar 

  67. Guo FW, Xiao P (2012) J Eur Ceram Soc 32:4157–4164

    Article  CAS  Google Scholar 

  68. Valov I (2006) Nitrogen doped zirconia (N-YSZ): preparation, characterization and electrode processes (PhD thesis) Physical-Chemical Institute

  69. Kilo M, Taylor MA, Argirusis C, Borchardt G, Lerch M, Kaïtasovc O, Lesaged B (2004) Phys Chem Chem Phys 6:3645–3649

    Article  CAS  Google Scholar 

  70. Taylor MA, Kilo M, Argirusis C, Borchardt G, Valov I, Korte C, Janek J, Rödel TC, Lerch M (2005) Defect Diffus Forum 237–240:479–484

    Article  Google Scholar 

  71. Wrba J, Lerch M (1998) J Eur Ceram Soc 18:1787–1793

    Article  CAS  Google Scholar 

  72. Lerch M, Wrba J, Lerch J (1996) Solid State Chem 125:153–158

    Article  CAS  Google Scholar 

  73. Lerch M, Lerch J, Hock R, Wrba J (1997) J Solid State Chem 128:282–288

    Article  CAS  Google Scholar 

  74. Lerch M, Janek J, Becker KD, Berendts S, Boysen H, Bredow T, Dronskowski R, Ebbinghaus SG, Kilo M, Lumey MW (2009) Prog Solid State Chem 37:81–131

    Article  CAS  Google Scholar 

  75. Valov I, Ruehrup V, Klein R, Rodel TC, Stork A, Berendts S, Dogan M, Wiemhofer HD, Lerch M, Janek J (2009) Solid State Ionics 180:1463–1470

    Article  CAS  Google Scholar 

  76. Lee DK, Fischer CC, Valov I, Reinacher J, Stork A, Lerch M, Janek J (2011) Phys Chem Chem Phys 13:1239–1242

    Article  CAS  Google Scholar 

  77. Llorca J, Orera VM (2006) Prog Mater Sci 51:711–809

    Article  CAS  Google Scholar 

  78. Cicka R, Trnovcova V, Starostin MY (2002) Solid State Ionics 148:425–429

    Article  CAS  Google Scholar 

  79. Trnovcova V, Starostin MY, Cicka R, Fedorov PP, Barta T, Labas V, Sobolev BP (2000) Solid State Ionics 136:11–17

    Article  Google Scholar 

  80. Zhuiykov S (2000) Sens Mater 12:117–132

    CAS  Google Scholar 

  81. Merino RI, Pena JI, Larrea A, de la Fuente GF, Orera VM (2003) Recent Res Devel Mat Sci 4:1–24

    CAS  Google Scholar 

  82. Pena JI, Merino RI, Harlan NR, Larrea A, de la Fuente GF, Orera VM (2002) J Eur Ceram Soc 22:2595–2602

    Article  CAS  Google Scholar 

  83. Mondal P, Hahn H (1997) Ber Bunsenges Phys Chem 101:1765–1768

    Article  CAS  Google Scholar 

  84. Kosacki I, Suzuki T, Petrovsky V, Anderson HU (2000) Solid State Ionics 136:1225–1233

    Article  Google Scholar 

  85. Kosacki I, Gorman B, Anderson HU (1998) Microstructure and electrical conductivity in nanocrystalline oxide thin films. In: Ramanarayanan TA, Worrell WL, Tuller HL, Kandkar AC, Mogensen M, Gopel W (eds) Ionic and mixed conductors. Electrochemcial Society, Pennington, New Jersey, pp 631–642

    Google Scholar 

  86. Kosacki I, Rouleau CM, Becher PF, Bentley J, Lownde DH (2005) Solid State Ionics 176:1319–1326

    Article  CAS  Google Scholar 

  87. Peters A, Korte C, Hesse D, Zakharov N, Janek J (178 (2007) Solid State Ionics:67–76

  88. Richter D, Fritze H (2014) High-temperature gas sensors. In: Kohl CD, Wagner T (eds) Gas Sensing Fundamentals. Springer, Berlin, pp 1–46

    Google Scholar 

  89. Weppner W (1977) J Solid State Chem 20:305–314

    Article  CAS  Google Scholar 

  90. Wagner C (1933) Z Physik Chem B 21:25

    Google Scholar 

  91. Schmalzried H (1963) Z Physik Chem 38:87–102

    Article  CAS  Google Scholar 

  92. Näfe H (1999) J Electrochem Soc 146:1130–1133

    Article  Google Scholar 

  93. Fouletier J, Mantel E, Kleitz M (1982) Solid State Ionics 6:1–13

    Article  CAS  Google Scholar 

  94. Stetson H, Schwartz B (1961) J Am Ceram Soc 44:420–421

    Article  CAS  Google Scholar 

  95. Pretis AD, Longo V, Ricciardiello F, Sbraizero O (1984) Silic Ind 7–8:139–143

    Google Scholar 

  96. Kurita N, Fukatsu N, Ito K, Ohashi T (1995) J Electrochem Soc 142:1552–1559

    Article  CAS  Google Scholar 

  97. Yajima T, Iwahara H, Koide K, Yamamoto K (1991) Sens Actuator B-Chem 5:145–147

    Article  CAS  Google Scholar 

  98. Yajima T, Koide K, Fukatsu N, Ohashi T, Iwahara H (1993) Sens Actuator B-Chem 14:697–699

    Article  CAS  Google Scholar 

  99. Dudek M, Bućko MM (2003) Solid State Ionics 157:183–187

    Article  CAS  Google Scholar 

  100. Iwahara H, Uchida H, Ogaki K, Nagato H (1991) J Electrochem Soc 138:295–299

    Article  CAS  Google Scholar 

  101. Iwahara H, Yajima T, Hibino T, Ozaki K, Suzuki H (1993) Solid State Ionics 61:65–69

    Article  CAS  Google Scholar 

  102. Norby T (2001) Nature 410:877–878

    Article  CAS  Google Scholar 

  103. Wakamura K (2005) J Phys Chem Solids 66:133–142

    Article  CAS  Google Scholar 

  104. Korotcenkov G, Han SD, Stetter JR (2009) Chem Rev 109:1402–1433

    Article  CAS  Google Scholar 

  105. Garbayo I, Tarancón A, Santiso J, Peiró F, Alarcón-LLadó E, Cavallaro A, Gràcia I, Cané C (2010) Neus Sabaté. Solid State Ionics 181:322–331

    Article  CAS  Google Scholar 

  106. Jang DY, Kim HK, Kim JW, Bae K, Schlupp MVF, Park SW, Prestat M, Shim JH, Power J (2015) Sources 274:611–618

    Article  CAS  Google Scholar 

  107. Ramírez EB, Huanosta A, Sebastian JP, Huerta L, Ortiz A, Alonso JC (2007) J Mater Sci 42:901–907

    Article  CAS  Google Scholar 

  108. Inaba H, Tagawa H (1996) Solid State Ionics 83:1–16

    Article  CAS  Google Scholar 

  109. Vlasov AN, Perfiliev MV (1987) Solid State Ionics 25:245–253

    Article  CAS  Google Scholar 

  110. Haering C, Roosen A, Schichl H (2005) Solid State Ionics 176:253–259

    Article  CAS  Google Scholar 

  111. Kondoh J, Kawashima T, Kikuchi S, Tomii Y, Ito Y (1998) J Electrochem Soc 145:1527–1536

    Article  CAS  Google Scholar 

  112. Chen S, Chen Y, Finklea H, Song X, Hackett G, Gerdes K (2012) Solid State Ionics 206:104–111

    Article  CAS  Google Scholar 

  113. Badwal SPS (1990) Appl Phys A Mater Sci Process 50:449–462

    Article  Google Scholar 

  114. Coors WG, O’Brien JR, White JT (2009) Solid State Ionics 180:246–251

    Article  CAS  Google Scholar 

  115. Lee D, Lee I, Jeon Y, Song R (2005) Solid State Ionics 176:1021–1025

    Article  CAS  Google Scholar 

  116. Wang CM, Azad S, Thevuthasan S, Shutthanandan V, McCready DE, Peden CHF (2004) J Mater Res 19:1315–1319

    Article  CAS  Google Scholar 

  117. Ciacchi FT, Badwal SPS, Drennan J (1991) J Eur Ceram Soc 7:185–195

    Article  CAS  Google Scholar 

  118. Terner MR, Schuler JA, Mai A, Penner D (2014) Solid State Ionics 263:180–189

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (51274059, 51374055 and 61403260), the Fundamental Research Funds for the Central Universities of China (N130502003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Zhang, X., Wang, X. et al. A review of zirconia-based solid electrolytes. Ionics 22, 2249–2262 (2016). https://doi.org/10.1007/s11581-016-1880-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1880-1

Keywords

Navigation