Skip to main content

Advertisement

Log in

CeSe nanocube anchored on the nanosheet of reduced graphene oxide (rGO) as a binder free electrode for energy conversion system

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

There is a persistent imbalance between energy demand and supply since renewable energy sources are intermittent. A potential answer to this ongoing problem is the development of suitable materials that could be utilized in storage energy devices. Among all the devices, supercapacitors with efficient electrode material are one of the possible storage technologies. Here in the present work, a cerium selenide/reduced graphene oxide (CeSe/rGO) heterostructure-based electrode is fabricated via hydrothermal technique. The synthesized CeSe/rGO performs well with 810.45 F g−1 specific capacitance at 1.5 A g−1, and an exceptional rate of capability with negligible instability up to 5000th cycles. Additionally, the probable contribution of rGO to the composite's ability to increase supercapacitance through synergy effect of CeSe and rGO has been observed. EIS (Electrochemical impedance spectroscopy) was exploited to find out the mechanism of charge transmission for the fabricated material. The electrochemical analysis indicates that CeSe/rGO exhibited the superior performance than the apparently cutting-edge structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

The corresponding author will provide the datasets produced and/or analysed during the current work upon reasonable request.

References

  1. B. Ameri, A.M. Zardkhoshoui, S.S. Hosseiny-Davarani, Engineering of hierarchical NiCoSe2@NiMn-LDH core-shell nanostructures as a high-performance positive electrode material for hybrid supercapacitors. Sustain. Energy Fuels. 4, 5144–5155 (2020). https://doi.org/10.1039/D0SE00909A

    Article  CAS  Google Scholar 

  2. A.M. Zardkhoshoui, M.M. Ashtiani, M. Sarparast, S.S. Hosseiny Davarani, Enhanced the energy density of supercapacitors via rose-like nanoporous ZnGa2S4 hollow spheres cathode and yolk-shell FeP hollow spheres anode. J. Power Sources. 450, 227691 (2020). https://doi.org/10.1016/J.JPOWSOUR.2019.227691

    Article  CAS  Google Scholar 

  3. A. Mohammadi Zardkhoshoui, S.S. Hosseiny Davarani, M.M. Ashtiani, M. Sarparast, High-performance energy storage device based on triple-shelled cobalt gallium oxide hollow spheres and graphene wrapped copper iron disulfide porous spheres. ACS Sustain. Chem. Eng. 7, 7908–7917 (2019). https://doi.org/10.1021/ACSSUSCHEMENG.9B00549/ASSET/IMAGES/LARGE/SC-2019-00549F_0005.JPEG

    Article  CAS  Google Scholar 

  4. A. Mohammadi Zardkhoshoui, S.S. Hosseiny Davarani, Formation of graphene-wrapped multi-shelled NiGa2O4 hollow spheres and graphene-wrapped yolk–shell NiFe2O4 hollow spheres derived from metal–organic frameworks for high-performance hybrid supercapacitors. Nanoscale 12, 1643–1656 (2020). https://doi.org/10.1039/C9NR09108D

    Article  CAS  Google Scholar 

  5. A. Mohammadi Zardkhoshoui, S.S. Hosseiny Davarani, Ultra-high energy density supercapacitors based on metal–organic framework derived yolk–shell Cu–Co–P hollow nanospheres and CuFeS2 nanosheet arrays. Dalt. Trans. 49, 3353–3364 (2020). https://doi.org/10.1039/C9DT04897A

    Article  CAS  Google Scholar 

  6. A.M. Zardkhoshoui, S.S.H. Davarani, A rational design of nanoporous Cu–Co–Ni–P nanotube arrays and CoFe2Se4 nanosheet arrays for flexible solid-state asymmetric devices. Dalt. Trans. 49, 10028–10041 (2020). https://doi.org/10.1039/D0DT00989J

    Article  Google Scholar 

  7. A. Mohammadi Zardkhoshoui, S.S. Hosseiny Davarani, M. Maleka Ashtiani, M. Sarparast, Designing an asymmetric device based on graphene wrapped yolk–double shell NiGa2S4 hollow microspheres and graphene wrapped FeS2–FeSe2 core–shell cratered spheres with outstanding energy density. J. Mater. Chem. A. 7, 10282–10292 (2019). https://doi.org/10.1039/C9TA00532C

    Article  CAS  Google Scholar 

  8. A.H. Khaleghi, K. Tahmasebi, A. Irannejad, Carbon and graphite coating on Cu(OH)2 nanowires as high-performance supercapacitor electrode. J. Korean Ceram. Soc. 59, 104–112 (2022). https://doi.org/10.1007/s43207-021-00157-x

    Article  CAS  Google Scholar 

  9. B. Ameri, A. Mohammadi Zardkhoshoui, S.S. Hosseiny Davarani, Metal–organic-framework derived hollow manganese nickel selenide spheres confined with nanosheets on nickel foam for hybrid supercapacitors. Dalt. Trans. 50, 8372–8384 (2021). https://doi.org/10.1039/D1DT01215K

    Article  CAS  Google Scholar 

  10. H. Liu, W. Lei, Z. Tong, X. Li, Z. Wu, Q. Jia, S. Zhang, H. Zhang, Defect Engineering of 2D materials for electrochemical energy storage. Adv. Mater. Interfaces. 7, 2020 (2020). https://doi.org/10.1002/ADMI.202000494

    Article  Google Scholar 

  11. R.R. Salunkhe, Y.H. Lee, K.H. Chang, J.M. Li, P. Simon, J. Tang, N.L. Torad, C.C. Hu, Y. Yamauchi, Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications. Chem. A Eur. J. 20, 13838–13852 (2014). https://doi.org/10.1002/CHEM.201403649

    Article  CAS  Google Scholar 

  12. A. Vlad, N. Singh, C. Galande, P.M. Ajayan, Design considerations for unconventional electrochemical energy storage architectures. Adv. Energy Mater. 5, 56 (2015). https://doi.org/10.1002/AENM.201402115

    Article  Google Scholar 

  13. S.M. Oh, S. Hwang, Recent advances in two-dimensional inorganic nanosheet-based supercapacitor electrodes. J. Korean Ceram. Soc. 57, 119–134 (2020). https://doi.org/10.1007/s43207-020-00023-2

    Article  CAS  Google Scholar 

  14. C. Yuan, H. Bin Wu, Y. Xie, X.W. Lou, Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53, 1488–1504 (2014). https://doi.org/10.1002/ANIE.201303971

    Article  CAS  Google Scholar 

  15. V. Egorov, U. Gulzar, Y. Zhang, S. Breen, C. O’Dwyer, Evolution of 3D printing methods and materials for electrochemical energy storage. Adv. Mater. 32, 25 (2020). https://doi.org/10.1002/ADMA.202000556

    Article  Google Scholar 

  16. T. Chu, S. Park, K. Fu, 3D printing-enabled advanced electrode architecture design. Carbon Energy 3, 424–439 (2021). https://doi.org/10.1002/CEY2.114

    Article  Google Scholar 

  17. A. Afif, S. Rahman, A. Azad, J. Zaini et al., Advanced Materials and Technologies for Hybrid Supercapacitors for Energy Storage—A Review (Elsevier, Amsterdam, 2019)

    Book  Google Scholar 

  18. H. Das, S. Dutta, N. Das, P. Das et al., Recent Trend of CeO2-Based Nanocomposites Electrode in Supercapacitor: A Review on Energy Storage Applications (Elsevier, Amsterdam, 2022)

    Google Scholar 

  19. M. Abdullah, P. John, Z. Ahmad, M.N. Ashiq, S. Manzoor, M.I. Ghori, M.U. Nisa, A.G. Abid, K.Y. Butt, S. Ahmed, Visible-light-driven ZnO/ZnS/MnO2 ternary nanocomposite catalyst: synthesis, characterization and photocatalytic degradation of methylene blue. Appl. Nanosci. 11, 2361–2370 (2021). https://doi.org/10.1007/S13204-021-02008-X

    Article  CAS  Google Scholar 

  20. M. Nisa, S. Manzoor, A. Abid, N. Tamam, M.A. Fuel et al., CdSe Supported SnO2 Nanocomposite with Strongly Hydrophilic Surface for Enhanced Overall Water Splitting (Elsevier, Amsterdam, 2022)

    Book  Google Scholar 

  21. M.A. Almessiere, A.V. Trukhanov, Y. Slimani, K.Y. You, S.V. Trukhanov, E.L. Trukhanova, F. Esa, A. Sadaqati, K. Chaudhary, M. Zdorovets, A. Baykal, Correlation between composition and electrodynamics properties in nanocomposites based on hard/soft ferrimagnetics with strong exchange coupling. Nanomaterials 9, 202 (2019). https://doi.org/10.3390/NANO9020202

    Article  CAS  Google Scholar 

  22. A. Kumar, I. Kim, K. Mathur, H. Kim, S. Song, Design of tin polyphosphate for hydrogen evolution reaction and supercapacitor applications. J. Korean Ceram. Soc. 58, 688–699 (2021). https://doi.org/10.1007/s43207-021-00143-3

    Article  CAS  Google Scholar 

  23. M. Zdorovets, A. Kozlovskiy, D. Tishkevich, T. Zubar, A. Trukhanov, The effect of doping of TiO2 thin films with low-energy O2+ ions on increasing the efficiency of hydrogen evolution in photocatalytic reactions of water splitting. J. Mater. Sci. Mater. Electron. 31, 21142–21153 (2020). https://doi.org/10.1007/S10854-020-04626-7/FIGURES/7

    Article  CAS  Google Scholar 

  24. A.V. Trukhanov, V.O. Turchenko, I.A. Bobrikov, S.V. Trukhanov, I.S. Kazakevich, A.M. Balagurov, Crystal structure and magnetic properties of the BaFe12−xAlxO19 (x=0.1–1.2) solid solutions. J. Magn. Magn. Mater. 393, 253–259 (2015). https://doi.org/10.1016/J.JMMM.2015.05.076

    Article  CAS  Google Scholar 

  25. D.A. Vinnik, V.V. Kokovkin, V.V. Volchek, V.E. Zhivulin, P.A. Abramov, N.A. Cherkasova, Z. Sun, M.I. Sayyed, D.I. Tishkevich, A.V. Trukhanov, Electrocatalytic activity of various hexagonal ferrites in OER process. Mater. Chem. Phys. 270, 124818 (2021). https://doi.org/10.1016/J.MATCHEMPHYS.2021.124818

    Article  CAS  Google Scholar 

  26. S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, A.V. Trukhanov, E.L. Trukhanova, D.I. Tishkevich, V.M. Ivanov, T.I. Zubar, M. Salem, V.G. Kostishyn, L.V. Panina, D.A. Vinnik, S.A. Gudkova, Polarization origin and iron positions in indium doped barium hexaferrites. Ceram. Int. 44, 290–300 (2018). https://doi.org/10.1016/J.CERAMINT.2017.09.172

    Article  CAS  Google Scholar 

  27. M. Hassan, Y. Slimani, M.A. Gondal, M.J.S. Mohamed, S. Güner, M.A. Almessiere, A.M. Surrati, A. Baykal, S. Trukhanov, A. Trukhanov, Structural parameters, energy states and magnetic properties of the novel Se-doped NiFe2O4 ferrites as highly efficient electrocatalysts for HER. Ceram. Int. 48, 24866–24876 (2022). https://doi.org/10.1016/J.CERAMINT.2022.05.140

    Article  CAS  Google Scholar 

  28. S. Manzoor, S.V. Trukhanov, M.N. Ansari, M. Abdullah, A. Alruwaili, A.V. Trukhanov, M.U. Khandaker, A.M. Idris, K.S. El-Nasser, T.A. Taha, Flowery ln2MnSe4 novel electrocatalyst developed via anion exchange strategy for efficient water splitting. Nanomaterials 12, 2209 (2022). https://doi.org/10.3390/NANO12132209

    Article  CAS  Google Scholar 

  29. M. Abdullah, P. John, M.N. Ashiq, S. Manzoor, M.I. Ghori, M.U. Nisa, A.G. Abid, K.Y. Butt, S. Ahmed, Development of CuO/CuS/MnO2 ternary nanocomposite for visible light-induced photocatalytic degradation of methylene blue. Nanotechnol. Environ. Eng. (2022). https://doi.org/10.1007/S41204-022-00266-W

    Article  Google Scholar 

  30. B.Z. Tang, Y. Geng, J.W.Y. Lam, B. Li, X. Jing, X. Wang, F. Wang, A.B. Pakhomov, X.X. Zhang, Processible nanostructured materials with electrical conductivity and magnetic susceptibility: preparation and properties of maghemite/polyaniline nanocomposite films. Chem. Mater. 11, 1581–1589 (1999). https://doi.org/10.1021/CM9900305

    Article  CAS  Google Scholar 

  31. A.M. Zardkhoshoui, S.S.H. Davarani, Boosting the energy density of supercapacitors by encapsulating a multi-shelled zinc–cobalt-selenide hollow nanosphere cathode and a yolk–double shell cobalt–iron-selenide hollow nanosphere anode in a graphene network. Nanoscale 12, 12476–12489 (2020). https://doi.org/10.1039/D0NR02642E

    Article  Google Scholar 

  32. A. Mohammadi Zardkhoshoui, B. Ameri, S.S. Hosseiny Davarani, A high-energy-density supercapacitor with multi-shelled nickel–manganese selenide hollow spheres as cathode and double-shell nickel–iron selenide hollow spheres as anode electrodes. Nanoscale 13, 2931–2945 (2021). https://doi.org/10.1039/D0NR08234A

    Article  CAS  Google Scholar 

  33. A.M. Zardkhoshoui, S.S.H. Davarani, Construction of complex copper-cobalt selenide hollow structures as an attractive battery-type electrode material for hybrid supercapacitors. Chem. Eng. J. 402, 126241 (2020). https://doi.org/10.1016/J.CEJ.2020.126241

    Article  CAS  Google Scholar 

  34. S. Kumar, G. Saeed, L. Zhu, K.N. Hui, N.H. Kim, J.H. Lee, 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review. Chem. Eng. J. 403, 126352 (2021). https://doi.org/10.1016/J.CEJ.2020.126352

    Article  CAS  Google Scholar 

  35. C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10, 4863–4868 (2010). https://doi.org/10.1021/NL102661Q/SUPPL_FILE/NL102661Q_SI_001.PDF

    Article  CAS  Google Scholar 

  36. S.A. Ahmad, M.Z. Ullah Shah, S. ur-Rahman, M. Arif, J. Lu, T. Huang, A. Ahmad, A.A. Al-Kahtani, A.M. Tighezza, M. Sajjad, A. Shah, P. Song, M.S. Javed, Facile synthesis of hierarchical ZnS@FeSe2 nanostructures as new energy-efficient cathode material for advanced asymmetric supercapacitors. J. Sci. Adv. Mater. Devices. 2022, 100489 (2022). https://doi.org/10.1016/J.JSAMD.2022.100489

    Article  Google Scholar 

  37. J. Jiang, G. Luo, Z. Zhang, M. Arruda Nakagawa, C. Brito de Souza, E. Sarmento Gonçalves, S. Müllner, T. Held, A. Schmidt-Rodenkirchen, R. Adyansya Rochman, S. Wahyuningsih, A. Handono Ramelan, Q. Awliya Hanif, Preparation of nitrogen and sulphur Co-doped reduced graphene oxide (rGO-NS) using N and S heteroatom ofthiourea. IOP Conf. Ser. Mater. Sci. Eng. 509, 012119 (2019). https://doi.org/10.1088/1757-899X/509/1/012119

    Article  Google Scholar 

  38. D. Khalafallah, M. Zhi, Z. Hong, Shape-dependent electrocatalytic activity of carbon reinforced ni2p hybrids toward urea electrocatalysis. Energy Technol. 7, 1900548 (2019). https://doi.org/10.1002/ENTE.201900548

    Article  Google Scholar 

  39. D. Khalafallah, C. Ouyang, M. Zhi, Z. Hong, Synthesis of porous Ag2S−NiCo2S4 hollow architecture as effective electrode material with high capacitive performances. Nanotechnology 31, 475401 (2020). https://doi.org/10.1088/1361-6528/AB9C54

    Article  CAS  Google Scholar 

  40. S.M. Li, S.Y. Yang, Y.S. Wang, H.P. Tsai, H.W. Tien, S.T. Hsiao, W.H. Liao, C.L. Chang, C.C.M. Ma, C.C. Hu, N-doped structures and surface functional groups of reduced graphene oxide and their effect on the electrochemical performance of supercapacitor with organic electrolyte. J. Power Sources. 278, 218–229 (2015). https://doi.org/10.1016/J.JPOWSOUR.2014.12.025

    Article  CAS  Google Scholar 

  41. S. Karade, B.R. Sankapal, Two dimensional cryptomelane like growth of MoSe2 over MWCNTs: symmetric all-solid-state supercapacitor (Elsevier, Amsterdam, 2017)

    Google Scholar 

  42. Y. Zhang, A. Pan, Y. Wang, X. Cao, Z. Zhou et al., Self-Templated Synthesis of N-doped CoSe2/C Double-Shelled Dodecahedra for High-Performance Supercapacitors (Elsevier, Amsterdam, 2017)

    Book  Google Scholar 

  43. C. Miao, X. Yin, G. Xia, K. Zhu, K. Ye, Q. Wang et al., Facile Microwave-Assisted Synthesis of Cobalt Diselenide/Reduced Graphene Oxide Composite for High-Performance Supercapacitors (Elsevier, Amsterdam, 2021)

    Book  Google Scholar 

  44. T. Zhou, S. Tang, H. Yu, L. Shen, Q. Huang, S. Yang, L. Yu, L. Zhang, Microwave heating followed by a solvothermal method to synthesize nickel–cobalt selenide/rGO for high-performance supercapacitors. New J. Chem. 46, 10328–10338 (2022). https://doi.org/10.1039/D2NJ00488G

    Article  CAS  Google Scholar 

  45. G. Zhang, H. Xuan, J. Yang, R. Wang, Z. Xie, X. Liang, P. Han, Y. Wu, Preparation and characterization of novel 2D/3D NiSe2/MnSe grown on rGO/Ni foam for high-performance battery-supercapacitor hybrid devices. J. Power Sourc. 506, 230255 (2021). https://doi.org/10.1016/J.JPOWSOUR.2021.230255

    Article  CAS  Google Scholar 

  46. Z. Sun, F. Liu, J. Wang, Y. Hu, Y. Fan, S. Yan, J. Yang, L. Xu, Tiny Ni0.85Se nanosheets modified by amorphous carbon and rGO with enhanced electrochemical performance toward hybrid supercapacitors. J. Energy Storage 29, 101348 (2020). https://doi.org/10.1016/J.EST.2020.101348

    Article  Google Scholar 

  47. S.E. Moosavifard, A. Mohammadi, M. Ebrahimnejad Darzi, A. Kariman, M.M. Abdi, G. Karimi, A facile strategy to synthesis graphene-wrapped nanoporous copper-cobalt-selenide hollow spheres as an efficient electrode for hybrid supercapacitors. Chem. Eng. J. 415, 128662 (2021). https://doi.org/10.1016/J.CEJ.2021.128662

    Article  CAS  Google Scholar 

  48. R. Sehrish-Gohar, Z. Ahmad, I. Zaki, M. Imran, M.N. Ashiq, M. Shafqat, M. Najam-Ul-Haq, W.Q. Khan, A. Shah, J. Nisar, Z.I. Zaki, Fabrication of rGO/SrSeO4 nanocomposite as an electrode material with enhanced specific power for supercapacitor applications. J. Taibah Univ. Sci. 15, 357–366 (2021). https://doi.org/10.1080/16583655.2021.1978831

    Article  Google Scholar 

  49. B. Chen, Y. Tian, Z. Yang, Y. Ruan, J. Jiang, C. Wang, Construction of (Ni, Cu) Se2//reduced graphene oxide for high energy density asymmetric supercapacitor. Chem. Electro. Chem. 4, 3004–3010 (2017). https://doi.org/10.1002/CELC.201700742

    Article  CAS  Google Scholar 

  50. B. Hu, X. Liu, A. Liu, Y. Ren, Z. Guo, J. Mu, X. Zhang, Z. Zhang, X. Liu, H. Che, Reduced graphene oxide nanosheet-wrapped hollow cobalt selenide nanocubes as electrodes for supercapacitors. ACS Appl. Nano Mater. 4, 13267–13278 (2021). https://doi.org/10.1021/ACSANM.1C02792/ASSET/IMAGES/LARGE/AN1C02792_0009.JPEG

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors (Majid Hayat & Bakhat Ali) thankful to Khwaja Fareed University of Engineering and Information Technology for providing facilities. Deanship of Scientific Research at King Khalid University is greatly appreciated for funding this work under grant number R.G.P.1/274/43.The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R132), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Naeem Ashiq.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, M., Ali, B., Yunis, M. et al. CeSe nanocube anchored on the nanosheet of reduced graphene oxide (rGO) as a binder free electrode for energy conversion system. J. Korean Ceram. Soc. 60, 646–656 (2023). https://doi.org/10.1007/s43207-023-00289-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00289-2

Keywords

Navigation