Skip to main content
Log in

Development of CuO/CuS/MnO2 ternary nanocomposite for visible light-induced photocatalytic degradation of methylene blue

  • Original Paper
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

A ternary CuO/CuS/MnO2 nanocomposite was developed via the hydrothermal method for visible light-assisted photodegradation of methylene blue. The fabricated nanocomposite was characterized using powder X-ray diffraction having a cubic, hexagonal and tetragonal geometry for the CuO, CuS, and MnO2 with a crystallite size of 3.86 nm, 13.63 nm, and 5.65 nm, respectively. Scanning electron microscopy analysis indicated spherical morphology of nanocomposite. The optical bandgap for the CuO, CuS, MnO2, and CuO/CuS/MnO2 was 2.63 eV, 3.1 eV, 2.615 eV, and 1.8 eV, respectively. The as-synthesized nanocomposite showed 98% degradation efficiency toward methylene blue in 160 min. This study suggests a potential route for the investigation of the photocatalytic performance of CuO/CuS/MnO2 nanocomposite under visible light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahmed S, Ahmad ZJ (2020) Monitoring Management, Development of hexagonal nanoscale nickel ferrite for the removal of organic pollutant via Photo-Fenton type catalytic oxidation process. Environ Nanotechnol Monit Manag 14:100321

    Google Scholar 

  2. Ahmed S, Rehman HU, Ali Z, Qadeer A, Haseeb A, Ajmal Z (2021) Interfaces Solvent assisted synthesis of hierarchical magnesium oxide flowers for adsorption of phosphate and methyl orange: Kinetic, isotherm, thermodynamic and removal mechanism. Surf Interfaces 23:100953

    Article  Google Scholar 

  3. Ahmed S, Ashiq MN, Li D, Tang P, Feng YJ (2018) Carbon fiber paper@ MgO films: in situ fabrication and high-performance removal capacity for phosphate anions. Environ Sci Pollut Res 25:34788–34792

    Article  Google Scholar 

  4. Ahmed S, Ahmad Z, Kumar A, Rafiq M, Vashistha VK, Ashiq MN, Kumar AJ (2021) Effective removal of methylene blue using nanoscale manganese oxide rods and spheres derived from different precursors of manganese. J Phys Chem Solids 155:110121

    Article  Google Scholar 

  5. Areerob Y, Cho JY, Jang WK, Oh W-C (2018) Enhanced sonocatalytic degradation of organic dyes from aqueous solutions by novel synthesis of mesoporous Fe3O4-graphene/ZnO@ SiO2 nanocomposites. Ultrason Sonochem 41:267–278

    Article  Google Scholar 

  6. Ahmed S, Guo Y, Li D, Tang P, Feng YJ (2018) Superb removal capacity of hierarchically porous magnesium oxide for phosphate and methyl orange. Environ Sci Pollut Res 25:24907–24916

    Article  Google Scholar 

  7. Ali RM, Hamad HA, Hussein MM, Malash GF (2016) Potential of using green adsorbent of heavy metal removal from aqueous solutions: adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecol Eng 91:317–332

    Article  Google Scholar 

  8. Khan SA, Arshad Z, Shahid S, Arshad I, Rizwan K, Sher M, Fatima UJ (2019) Synthesis of TiO2/Graphene oxide nanocomposites for their enhanced photocatalytic activity against methylene blue dye and ciprofloxacin. Compos B Eng 175:107120

    Article  Google Scholar 

  9. Mahanthappa M, Kottam N, Yellappa SJ (2019) Enhanced photocatalytic degradation of methylene blue dye using CuSCdS nanocomposite under visible light irradiation. Appl Surf Sci 475:828–838

    Article  Google Scholar 

  10. Ramesh T, Saravanamuthu V, Shik MJ (2008) A review on UV/TiO photocatalytic oxidation 2 process. Korean J Chem Eng 25:64–72

    Article  Google Scholar 

  11. Venkatesh S, Venkatesh K, Quaff AR (2017) Technology Dye decomposition by combined ozonation and anaerobic treatment: Cost effective technology. J Appl Res Technol 15:340–345

    Article  Google Scholar 

  12. Perelo LW (2010) In situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177:81–89

    Article  Google Scholar 

  13. Robinson T, McMullan G, Marchant R, Nigam PJ (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Biores Technol 77:247–255

    Article  Google Scholar 

  14. Ayodhya D, Venkatesham MJ, Kumari AS, Reddy GB, Ramakrishna D, Veerabhadram G (2015) Photocatalytic degradation of dye pollutants undersolar, visible and UV lights using green synthesised CuS nanoparticles. J Exp Nanosci 11:418–432

    Article  Google Scholar 

  15. Lan ZA, Wu M, Fang Z, Chi X, Chen X, Zhang Y, Wang XJ (2021) A fully coplanar donor–acceptor polymeric semiconductor with promoted charge separation kinetics for photochemistry. Angew Chem Int Ed 60:16355–16359

    Article  Google Scholar 

  16. Banerjee T, Podjaski F, Kröger J, Biswal BP, Lotsch BV (2021) Polymer photocatalysts for solar-to-chemical energy conversion. Nat Rev Mater 6:168–190

    Article  Google Scholar 

  17. Yang L, Peng Y, Luo X, Dan Y, Ye J, Zhou Y, Zou ZJ (2021) Beyond C 3 N 4 π-conjugated metal-free polymeric semiconductors for photocatalytic chemical transformations. Chem Soc Rev 50:2147–2172

    Article  Google Scholar 

  18. Li Y, Dong H, Li L, Tang L, Tian R, Li R, Chen J, Xie Q, Jin Z, Xiao JJ (2021) Recent advances in waste water treatment through transition metal sulfides-based advanced oxidation processes. Water Res 192:116850

    Article  Google Scholar 

  19. Xia C, Wang H, Kim JK, Wang JJ (2021) Rational design of metal oxide-based heterostructure for efficient photocatalytic and photoelectrochemical systems. Adv Func Mater 31:2008247

    Article  Google Scholar 

  20. Zhao D, Wang Y, Dong C-L, Huang Y-C, Chen J, Xue F, Shen S, Guo LJ (2021) Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat Energy 6:388–397

    Article  Google Scholar 

  21. Huang C, Wen Y, Ma J, Dong D, Shen Y, Liu S, Ma H, Zhang YJ (2021) Unraveling fundamental active units in carbon nitride for photocatalytic oxidation reactions. Nat Commun 12:1–8

    Google Scholar 

  22. Xiong L, Tang J (2021) Strategies and challenges on selectivity of photocatalytic oxidation of organic substances. Adv Energy Mater 11:2003216

    Article  Google Scholar 

  23. Wu LY, Mu YF, Guo XX, Zhang W, Zhang ZM, Zhang M, Lu TB (2019) Encapsulating perovskite quantum dots in iron-based metal–organic frameworks (MOFs) for efficient photocatalytic CO2 reduction. Angew Chem Int Ed 58:9491–9495

    Article  Google Scholar 

  24. Chung P-H, Kuo C-T, Wang T-H, Lu Y-Y, Liu C-I, Yew T-R (2021) Interfaces, a sensitive visible light photodetector using cobalt-doped zinc ferrite oxide thin films. ACS Appl Mater Interfaces 13:6411–6420

    Article  Google Scholar 

  25. Tobaldi D, Dvoranová D, Lajaunie L, Rozman N, Figueiredo B, Seabra M, Škapin AS, Calvino J, Brezová V, Labrincha JJ (2021) Graphene-TiO2 hybrids for photocatalytic aided removal of VOCs and nitrogen oxides from outdoor environment. Chem Eng J 405:126651

    Article  Google Scholar 

  26. Koop J, Deutschmann OJ (2009) Detailed surface reaction mechanism for Pt-catalyzed abatement of automotive exhaust gases. Appl Catal B 91:47–58

    Article  Google Scholar 

  27. Ku J, Zhang L, Fu W, Wang S, Yin W, Chen HJ (2021) Mechanistic study on calcium ion diffusion into fayalite: a step toward sustainable management of copper slag. J Hazard Mater 410:124630

    Article  Google Scholar 

  28. Liu Y, Kong J, Yuan J, Zhao W, Zhu X, Sun C, Xie JJ (2018) Enhanced photocatalytic activity over flower-like sphere Ag/Ag2CO3/BiVO4 plasmonic heterojunction photocatalyst for tetracycline degradation. Chem Eng J 331:242–254

    Article  Google Scholar 

  29. Rambabu K, Bharath G, Banat F, Show PL (2021) Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment. J Hazard Mater 402:123560

    Article  Google Scholar 

  30. Shi J, Yuan T, Zheng M, Wang XJ (2021) Metal-free heterogeneous semiconductor for visible-light photocatalytic decarboxylation of carboxylic acids. ACS Catal 11:3040–3047

    Article  Google Scholar 

  31. Mateo D, Morlanes N, Maity P, Shterk G, Mohammed OF, Gascon JJ (2021) Efficient visible-light driven photothermal conversion of CO2 to methane by nickel nanoparticles supported on barium titanate. Adv Func Mater 31:2008244

    Article  Google Scholar 

  32. Chen Y, Wang X, He X, An Q, Zuo ZJ (2021) Photocatalytic dehydroxymethylative arylation by synergistic cerium and nickel catalysis. J Am Chem Soc 143:4896–4902

    Article  Google Scholar 

  33. Li X, Lin J, Li J, Zhang H, Duan X, Sun H, Huang Y, Fang Y, Wang SJ (2021) Engineering, Temperature-induced variations in photocatalyst properties and photocatalytic hydrogen evolution: differences in UV, visible, and infrared radiation. ACS Sustain Chem Eng 9:7277–7285

    Article  Google Scholar 

  34. Mohammed AM, Mohtar SS, Aziz F, Aziz M, Ul-Hamid A, Salleh WNW, Yusof N, Jaafar J, Ismail AF (2021) Ultrafast degradation of Congo Red dye using a facile one-pot solvothermal synthesis of cuprous oxide/titanium dioxide and cuprous oxide/zinc oxide pn heterojunction photocatalyst. Mater Sci Semicond Process 122:105481

    Article  Google Scholar 

  35. Loan TT, Huy DK, Chung HM, Thanh NK, Hoan TD, Duong NP, Soontaranon S, Klysubun WJ (2021) Structure and magnetic properties of magnetic iron oxide/zinc oxide core/shell nanocomposites: effect of ZnO coating. Mater Today Commun 26:101733

    Article  Google Scholar 

  36. Karuppasamy P, Nisha NRN, Pugazhendhi A, Kandasamy S, Pitchaimuthu SJ (2021) An investigation of transition metal doped TiO2 photocatalysts for the enhanced photocatalytic decoloration of methylene blue dye under visible light irradiation. J Environ Chem Eng 9:105254

    Article  Google Scholar 

  37. Kayani ABA, Kuriakose S, Monshipouri M, Khalid FA, Walia S, Sriram S, Bhaskaran MJ (2021) UV photochromism in transition metal oxides and hybrid materials. Small 17:2100621

    Article  Google Scholar 

  38. Soni V, Singh P, Quang HHP, Khan AAP, Bajpai A, Van Le Q, Thakur VK, Thakur S, Nguyen V-H, Raizada PJ (2022) Emerging architecture titanium carbide (Ti3C2Tx) MXene based photocatalyst toward degradation of hazardous pollutants: recent progress and perspectives. Chemosphere 293:133541

    Article  Google Scholar 

  39. Soni V, Khosla A, Singh P, Nguyen V-H, Van Le Q, Selvasembian R, Hussain CM, Thakur S, Raizada PJ (2022) Current perspective in metal oxide based photocatalysts for virus disinfection: a review. J Environ Manage 308:114617

    Article  Google Scholar 

  40. Hasija V, Patial S, Singh P, Nguyen V-H, Le QV, Thakur VK, Hussain CM, Selvasembian R, Huang C-W, Thakur SJ (2021) Photocatalytic inactivation of viruses using graphitic carbon nitride-based photocatalysts: virucidal performance and mechanism. Catalysts 11:1448

    Article  Google Scholar 

  41. Sharma K, Hasija V, Patial S, Singh P, Nguyen V-H, Nadda Ak, Thakur S, Nguyen-Tri P, Nguyen CC, Kim SY (2022) Recent progress on MXenes and MOFs hybrids: Structure, synthetic strategies and catalytic water splitting. Int J Hydrog Energy

  42. Kumar A, Singh P, Khan AAP, Van Le Q, Thaku S, Raizada PJ (2022) CO2 photoreduction into solar fuels via vacancy engineered bismuth-based photocatalysts: Selectivity and mechanistic insights. Chem Eng J 439:135563

    Article  Google Scholar 

  43. Thakur S, Pandey S, Arotiba OA (2016) Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue. Carbohydr Polym 153:34–46

    Article  Google Scholar 

  44. Yang R, Fan Y, Ye R, Tang Y, Cao X, Yin Z, Zeng Z (2021) MnO2-based materials for environmental applications. Adv Mater 33:2004862

    Article  Google Scholar 

  45. Taddesse AM, Alemu M, Kebede TJ (2020) Enhanced photocatalytic activity of pnn heterojunctions ternary composite Cu2O/ZnO/Ag3PO4 under visible light irradiation. J Environ Chem Eng 8:104356

    Article  Google Scholar 

  46. Behjati S, Sheibani S, Herritsch J, Gottfried JM (2020) Photodegradation of dyes in batch and continuous reactors by Cu2O-CuO nano-photocatalyst on Cu foils prepared by chemical-thermal oxidation. Mater Res Bull 130:110920

    Article  Google Scholar 

  47. Likodimos V, Dionysiou DD, Falaras P (2010) Bio/Technology Clean water: water detoxification using innovative photocatalysts. Rev Environ Sci Bio/Technol 9:87–94

    Article  Google Scholar 

  48. Kamali M, Dewil R, Appels L, Aminabhavi TM (2021) Nanostructured materials via green sonochemical routes–Sustainability aspects. Chemosphere 276:130146

    Article  Google Scholar 

  49. Hu R, Zhang R, Ma Y, Liu W, Chu L, Mao W, Zhang J, Yang J, Pu Y, Li XA (2018) Enhanced hole transfer in hole-conductor-free perovskite solar cells via incorporating CuS into carbon electrodes. Appl Surf Sci 462:840–846

    Article  Google Scholar 

  50. Shaheen TI, Fouda A, Salem SS (2021) Integration of cotton fabrics with biosynthesized CuO nanoparticles for bactericidal activity in the terms of their cytotoxicity assessment. Ind Eng Chem Res 60:1553–1563

    Article  Google Scholar 

  51. Ghasemian MB, Mayyas M, Idrus-Saidi SA, Jamal MA, Yang J, Mofarah SS, Adabifiroozjaei E, Tang J, Syed N, O’Mullane AP (2019) Self-limiting galvanic growth of MnO2 monolayers on a liquid metal—applied to photocatalysis. Adv Func Mater 29:1901649

    Article  Google Scholar 

  52. Gurgenc TJ (2021) Structural characterization and dielectrical properties of Ag-doped nano-strontium apatite particles produced by hydrothermal method. J Mol Struct 1223:128990

    Article  Google Scholar 

  53. Yang C, Su X, Xiao F, Jian J, Wang J, Chemical AB (2011) Gas sensing properties of CuO nanorods synthesized by a microwave-assisted hydrothermal method. Sens Actuat B Chem 158:299–303

    Article  Google Scholar 

  54. Zhang J, Zhang Z (2008) Hydrothermal synthesis and optical properties of CuS nanoplates. Mater Lett 62:2279–2281

    Article  Google Scholar 

  55. Iyyapushpam S, Nishanthi S, Padiyan DP (2013) Compounds, Photocatalytic degradation of methyl orange using α-Bi2O3 prepared without surfactant. J Alloy Compd 563:104–107

    Article  Google Scholar 

  56. Holzwarth U, Gibson N (2011) The Scherrer equation versus the’Debye-Scherrer equation’. Nat Nanotechnol 6:534–534

    Article  Google Scholar 

  57. Kumar P, Pathak S, Jain K, Singh A, Basheed G, Pant RJ (2022) Compounds, Low-temperature large-scale hydrothermal synthesis of optically active PEG-200 capped single domain MnFe2O4 nanoparticles. J Alloy Compd 904:163992

    Article  Google Scholar 

  58. Kanwal A, Sajjad S, Leghari SAK, Yousaf ZJ (2021) Cascade electron transfer in ternary CuO/α-Fe2O3/γ-Al2O3 nanocomposite as an effective visible photocatalyst. J Phys Chem Solids 151:109899

    Article  Google Scholar 

  59. Yang J, Fu M, Liu H, Yin G, Tan M, Sun X, Huang H (2021) An inexpensive CuO nanoparticles as cocatalyst significantly enhanced the photo-oxidation performance of Bi2.Ga28Al1.2O9 photocatalyst under visible-light. Mater Lett 283:128796

    Article  Google Scholar 

  60. Riyaz S, Parveen A, Azam A (2016) Microstructural and optical properties of CuS nanoparticles prepared by sol–gel route. Persp Sci 8:632–635

    Google Scholar 

  61. Gu Y, Min Y, Li L, Lian Y, Sun H, Wang D, Rummeli MH, Guo J, Zhong J, Xu L (2021) Crystal splintering of β-MnO2 induced by interstitial ru doping toward reversible oxygen conversion. Chem Mater 33:4135–4145

    Article  Google Scholar 

  62. Rittiruam M, Somdee S, Buapin P, Aumnongpho N, Kerdprasit N, Saelee T, Kheawhom S, Chotigkrai N, Praserthdam S, Praserthdam PJ (2021) Compounds, On the deactivation mechanisms of MnO2 electrocatalyst during operation in rechargeable zinc-air batteries studied via density functional theory. J Alloy Compd 869:159280

    Article  Google Scholar 

  63. Somraksa W, Suwanboon S, Amornpitoksuk P, Randorn C (2020) Physical and photocatalytic properties of CeO 2/ZnO/ZnAl 2 O 4 ternary nanocomposite prepared by Co-precipitation method. Mater Res 23

  64. Sajjad S, Khan M, Leghari SAK, Ryma NA, Farooqi SA (2019) Potential visible WO 3/GO composite photocatalyst. Int J Appl Ceram Technol 16:1218–1227

    Article  Google Scholar 

  65. Singhal S, Dixit S, Shukla A (2018) Self-assembly of the Ag deposited ZnO/carbon nanospheres: a resourceful photocatalyst for efficient photocatalytic degradation of methylene blue dye in water. Adv Powder Technol 29:3483–3492

    Article  Google Scholar 

  66. Lei R, Ni H, Chen R, Zhang B, Zhan W (2017) synthesis of WO3/Fe2O3 nanosheet arrays on iron foil for photocatalytic degradation of methylene blue. J Mater Sci Mater Electron 28:10481–10487

    Article  Google Scholar 

  67. Dinari M, Momeni MM, Ahangarpour M (2016) Efficient degradation of methylene blue dye over tungsten trioxide/multi-walled carbon nanotube system as a novel photocatalyst. Appl Phys A 122:1–9

    Article  Google Scholar 

  68. Raghavan N, Thangavel S, Venugopal G (2015) Enhanced photocatalytic degradation of methylene blue by reduced graphene-oxide/titanium dioxide/zinc oxide ternary nanocomposites. Mater Sci Semicond Process 30:321–329

    Article  Google Scholar 

  69. Isai KA, Shrivastava VS (2019) Photocatalytic degradation of methylene blue using ZnO and 2% Fe–ZnO semiconductor nanomaterials synthesized by sol–gel method: a comparative study. SN Appl Sci 1:1–11

    Article  Google Scholar 

  70. Chaudhary K, Shaheen N, Zulfiqar S, Sarwar MI, Suleman M, Agboola PO, Shakir I, Warsi MF (2020) Binary WO3-ZnO nanostructures supported rGO ternary nanocomposite for visible light driven photocatalytic degradation of methylene blue. Synth Met 269:116526

    Article  Google Scholar 

  71. Tian L, Rui Y, Sun K, Cui W, An W (2018) Surface decoration of ZnWO4 nanorods with Cu2O nanoparticles to build heterostructure with enhanced photocatalysis. Nanomaterials 8:33

    Article  Google Scholar 

  72. Zou W, Zhang L, Liu L, Wang X, Sun J, Wu S, Deng Y, Tang C, Gao F, Dong L (2016) Engineering the Cu2O–reduced graphene oxide interface to enhance photocatalytic degradation of organic pollutants under visible light. Appl Catal B 181:495–503

    Article  Google Scholar 

  73. Shang Y, Chen Y, Shi ZJ (2013) Synthesis and visible light photocatalytic activities of Au/Cu2O heterogeneous nanospheres. Acta Phys Chim Sin 29:1819–1826

    Article  Google Scholar 

  74. Nadimi M, Saravani AZ, Aroon M, Pirbazari AE (2019) Photodegradation of methylene blue by a ternary magnetic TiO2/Fe3O4/graphene oxide nanocomposite under visible light. Mater Chem Phys 225:464–474

    Article  Google Scholar 

  75. Anand K, Thangaraj R, Kumar P, Kaur J, Singh R (2015) Synthesis, characterization, photocatalytic activity and ethanol-sensing properties of In2O3 and Eu3+: In2O3 nanoparticles. In: AIP Conference Proceedings, AIP Publishing LLC, pp 110002

  76. Chinnathambi A, Syed A, Elgorban AM, Marraiki N, Al-Rashed S, Yassin MT (2021) Compounds, Performance analysis of novel La6WO12/Ag2WO4 nano-system for efficient visible-light photocatalysis and antimicrobial activity. J Alloy Compd 879:160075

    Article  Google Scholar 

  77. Verma P, Samanta SK (2017) Degradation kinetics of pollutants present in a simulated wastewater matrix using UV/TiO2 photocatalysis and its microbiological toxicity assessment. Res Chem Intermed 43:6317–6341

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Naeem Ashiq or Saeed Ahmed.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationship that could have appeared to influence this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, M., John, P., Ashiq, M.N. et al. Development of CuO/CuS/MnO2 ternary nanocomposite for visible light-induced photocatalytic degradation of methylene blue. Nanotechnol. Environ. Eng. 8, 63–73 (2023). https://doi.org/10.1007/s41204-022-00266-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41204-022-00266-w

Keywords

Navigation