Skip to main content

Advertisement

Log in

Synthesis of baghdadite using modified sol–gel route and investigation of its properties for bone treatment applications

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

The requirement for biomaterials with superior properties, used in bone treatment applications, is inevitable due to escalated bone tissue defects. Baghdadite (BAG) is a calcium silicate that benefits from the presence of zirconium (Zr) in its structure and has attracted huge attention in recent years. In this study, a modified sol–gel route was proposed to synthesize BAG by dissolving Zr precursor separately and using optimum amounts of solvent and chelating agent. Due to thermal gravimetric analysis and differential thermal analysis (TGA–DTA), X-ray diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FTIR) results, the BAG nanoparticles were successfully synthesized using this modified approach for the first time, and they were comprehensively characterized in terms of physicochemical, mechanical, and biological properties. During synthesis, a transparent sol without any insoluble Ca or Zr precursors and/or no premature gelation was observed, unlike samples that we produced using the conventional sol–gel method in the literature. The crystalline BAG nanoparticles with semi-spherical shapes demonstrated ~ 20% weight loss after 28 days during the biodegradability test, extensive bioactivity, and enhanced mechanical strength (~4 MPa). Moreover, BAG powder was biocompatible with no cytotoxic effect and osteoinductive in the absence of an osteogenic medium. We believe that the synthesized BAG nanoparticles through this modified sol–gel route could serve as a promising biomaterial for cancellous bone defect treatment applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Turnbull, J. Clarke, F. Picard, P. Riches, L. Jia, F. Han, B. Li, W. Shu, 3D bioactive composite scaffolds for bone tissue engineering. Bioact. Mater. 3, 278–314 (2018). https://doi.org/10.1016/j.bioactmat.2017.10.001

    Article  Google Scholar 

  2. H. Jodati, B. Yılmaz, Z. Evis, A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features. Ceram. Int. 46, 15725–15739 (2020). https://doi.org/10.1016/j.ceramint.2020.03.192

    Article  CAS  Google Scholar 

  3. P. Feng, P. Wei, P. Li, C. Gao, C. Shuai, S. Peng, Calcium silicate ceramic scaffolds toughened with hydroxyapatite whiskers for bone tissue engineering. Mater. Charact. 97, 47–56 (2014). https://doi.org/10.1016/J.MATCHAR.2014.08.017

    Article  CAS  Google Scholar 

  4. Y. Zhu, M. Zhu, X. He, J. Zhang, C. Tao, Substitutions of strontium in mesoporous calcium silicate and their physicochemical and biological properties. Acta Biomater. 9, 6723–6731 (2013). https://doi.org/10.1016/J.ACTBIO.2013.01.021

    Article  CAS  Google Scholar 

  5. A. Zheng, L. Cao, Y. Liu, J. Wu, D. Zeng, L. Hu, X. Zhang, X. Jiang, Biocompatible silk/calcium silicate/sodium alginate composite scaffolds for bone tissue engineering. Carbohydr. Polym. 199, 244–255 (2018). https://doi.org/10.1016/J.CARBPOL.2018.06.093

    Article  CAS  Google Scholar 

  6. H. Mohammadi, M. Hafezi, N. Nezafati, S. Heasarki, A. Nadernezhad, S.M.H. Ghazanfari, M. Sepantafar, Bioinorganics in bioactive calcium silicate ceramics for bone tissue repair: Bioactivity and biological properties. J. Ceram. Sci. Technol. 5, 1–12 (2014). https://doi.org/10.4416/JCST2013-00027

    Article  Google Scholar 

  7. G.C. Wang, Z.F. Lu, H. Zreiqat, Bioceramics for skeletal bone regeneration, in Bone substitute biomaterials. ed. by K. Mallick (Woodhead Publishing, Cambridge, 2014), pp.180–216

    Chapter  Google Scholar 

  8. T. Luo, C. Wu, Y. Zhang, The in vivo osteogenesis of Mg or Zr-modified silicate-based bioceramic spheres. J. Biomed. Mater. Res. Part A 100, 2269–2277 (2012). https://doi.org/10.1002/jbm.a.34161

    Article  CAS  Google Scholar 

  9. C. Wu, Y. Ramaswamy, A. Soeparto, H. Zreiqat, Incorporation of titanium into calcium silicate improved their chemical stability and biological properties. J. Biomed. Mater. Res. - Part A 86, 402–410 (2008). https://doi.org/10.1002/jbm.a.31623

    Article  CAS  Google Scholar 

  10. C. Wu, Y. Ramaswamy, J. Chang, J. Woods, Y. Chen, H. Zreiqat, The effect of Zn contents on phase composition, chemical stability and cellular bioactivity in Zn-Ca-Si system ceramics. J Biomed. Mater. Res. Part B Appl. Biomater. 87, 346–353 (2008). https://doi.org/10.1002/jbm.b.31109

    Article  CAS  Google Scholar 

  11. H.M. Al-Hermezi, D. McKie, A.J. Hall, Baghdadite, a new calcium zirconium silicate mineral from Iraq. Mineral. Mag. 50, 119–123 (1986). https://doi.org/10.1180/minmag.1986.050.355.15

    Article  CAS  Google Scholar 

  12. Y. Ramaswamy, C. Wu, A. Van Hummel, V. Combes, G. Grau, H. Zreiqat, The responses of osteoblasts, osteoclasts and endothelial cells to zirconium modified calcium-silicate-based ceramic. Biomaterials 29, 4392–4402 (2008). https://doi.org/10.1016/J.BIOMATERIALS.2008.08.006

    Article  CAS  Google Scholar 

  13. A. Arefpour, M. Kasiri-Asgarani, A. Monshi, A. Doostmohammadi, S. Karbasi, Fabrication, characterization and examination of in vitro of baghdadite nanoparticles for biomedical applications. Mater. Res. Express. 6, 095411 (2019). https://doi.org/10.1088/2053-1591/ab318c

    Article  CAS  Google Scholar 

  14. H. Jodati, B. Yilmaz, Z. Evis, Calcium zirconium silicate (baghdadite) ceramic as a biomaterial. Ceram. Int. 46, 21902–21909 (2020). https://doi.org/10.1016/j.ceramint.2020.06.105

    Article  CAS  Google Scholar 

  15. Z. Lu, G. Wang, I. Roohani-esfahani, Baghdadite ceramics modulate the cross talk between human adipose stem cells and osteoblasts. Tissue Eng. Part A 20, 992–1003 (2014). https://doi.org/10.1089/ten.tea.2013.0470

    Article  CAS  Google Scholar 

  16. J.J. Li, A. Akey, C.R. Dunstan, M. Vielreicher, O. Friedrich, D.C. Bell, H. Zreiqat, Effects of material–tissue interactions on bone regeneration outcomes using baghdadite implants in a large animal model. Adv. Healthc. Mater. 7, 1–9 (2018). https://doi.org/10.1002/adhm.201800218

    Article  CAS  Google Scholar 

  17. S.I. Roohani-Esfahani, C.R. Dunstan, B. Davies, S. Pearce, R. Williams, H. Zreiqat, Repairing a critical-sized bone defect with highly porous modified and unmodified baghdadite scaffolds. Acta Biomater. 8, 4162–4172 (2012). https://doi.org/10.1016/J.ACTBIO.2012.07.036

    Article  CAS  Google Scholar 

  18. S. Sadeghzade, R. Emadi, F. Tavangarian, A. Doostmohammadi, In vitro evaluation of diopside/baghdadite bioceramic scaffolds modified by polycaprolactone fumarate polymer coating. Mater. Sci. Eng. C 106, 110176 (2020). https://doi.org/10.1016/j.msec.2019.110176

    Article  CAS  Google Scholar 

  19. T.C. Schumacher, A. Aminian, E. Volkmann, H. Lührs, D. Zimnik, D. Pede, W. Wosniok, L. Treccani, K. Rezwan, Synthesis and mechanical evaluation of Sr-doped calcium-zirconium-silicate (baghdadite) and its impact on osteoblast cell proliferation and ALP activity. Biomed. Mater. 10, 055013 (2015). https://doi.org/10.1088/1748-6041/10/5/055013

    Article  CAS  Google Scholar 

  20. Y.P. Fu, Y.H. Su, C.H. Lin, Comparison of microwave-induced combustion and solid-state reaction for synthesis of LiMn2−xCrxO4 powders and their electrochemical properties. Solid State Ionics 166, 137–146 (2004). https://doi.org/10.1016/J.SSI.2003.09.018

    Article  CAS  Google Scholar 

  21. A. Arefpour, M. Kasiri-Asgarani, A. Monshi, S. Karbasi, A. Doostmohammadi, Baghdadite/Polycaprolactone nanocomposite scaffolds: preparation, characterisation, and in vitro biological responses of human osteoblast-like cells (Saos-2 cell line). Mater. Technol. 00, 1–12 (2019). https://doi.org/10.1080/10667857.2019.1692161

    Article  CAS  Google Scholar 

  22. V. Abbasian, R. Emadi, M. Kharaziha, Biomimetic nylon 6-baghdadite nanocomposite scaffold for bone tissue engineering. Mater. Sci. Eng. C 109, 110549 (2020). https://doi.org/10.1016/j.msec.2019.110549

    Article  CAS  Google Scholar 

  23. M.K. Ahmad, M. Rusop, Influence of glacial acetic acid and nitric acid as a chelating agent in sol-gel process to the nanostructured titanium dioxide thin films. AIP Conf. Proc. 1136, 339 (2009). https://doi.org/10.1063/1.3160160

    Article  CAS  Google Scholar 

  24. A. Monshi, M.R. Foroughi, M.R. Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 02, 154–160 (2012). https://doi.org/10.4236/wjnse.2012.23020

    Article  CAS  Google Scholar 

  25. Y. Kaya, H. Jodati, Z. Evis, Effects of biomimetic synthesis route and sintering temperature on physicochemical, microstructural, and mechanical properties of hydroxyapatite. J. Aust. Ceram. Soc. 57, 1117–1129 (2021). https://doi.org/10.1007/s41779-021-00609-x

    Article  CAS  Google Scholar 

  26. Z. Evis, B. Yilmaz, M. Usta, S. LeventAktug, X-ray investigation of sintered cadmium doped hydroxyapatites. Ceram. Int. 39, 2359–2363 (2013). https://doi.org/10.1016/J.CERAMINT.2012.08.087

    Article  CAS  Google Scholar 

  27. R. Moonesi Rad, D. Atila, E.E. Akgün, Z. Evis, D. Keskin, A. Tezcaner, Evaluation of human dental pulp stem cells behavior on a novel nanobiocomposite scaffold prepared for regenerative endodontics. Mater. Sci. Eng. C 100, 928–948 (2019). https://doi.org/10.1016/J.MSEC.2019.03.022

    Article  CAS  Google Scholar 

  28. H. Kariem, M.-I. Pastrama, S.I. Roohani-Esfahani, P. Pivonka, H. Zreiqat, C. Hellmich, Micro-poro-elasticity of baghdadite-based bone tissue engineering scaffolds: A unifying approach based on ultrasonics, nanoindentation, and homogenization theory. Mater. Sci. Eng. C. 46, 553–564 (2015). https://doi.org/10.1016/J.MSEC.2014.10.072

    Article  CAS  Google Scholar 

  29. ASTM Standard, D3967–08 Standard test method for splitting tensile strength of intact rock core specimens (West Conshohocken ASTM International, 2008).

  30. ASTM International, E384–17 Standard test method for microindentation hardness of materials (ASTM International, West Conshohocken, 2017)

    Google Scholar 

  31. H. Jodati, B. Güner, Z. Evis, D. Keskin, A. Tezcaner, Synthesis and characterization of magnesium-lanthanum dual doped bioactive glasses. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.01.050

    Article  Google Scholar 

  32. T. Kokubo, H. Takadama, Simulated body fluid (SBF) as a standard tool to test the bioactivity of implants. Handb. Biominer. Biol. Asp. Struct. Form. 3, 97–109 (2008). https://doi.org/10.1002/9783527619443.ch51

    Article  Google Scholar 

  33. E. Murray, D. Provvedini, D. Curran, B. Catherwood, H. Sussman, S. Manolagas, Characterization of a human osteoblastic osteosarcoma cell line (SAOS-2) with high bone alkaline phosphatase activity. J. Bone Miner. Res. 2, 231–238 (1987). https://doi.org/10.1002/jbmr.5650020310

    Article  CAS  Google Scholar 

  34. A.E. Pazarçeviren, A. Tezcaner, D. Keskin, S.T. Kolukısa, S. Sürdem, Z. Evis, Boron-doped biphasic hydroxyapatite/β-tricalcium phosphate for bone tissue engineering. Biol. Trace Elem. Res. 199, 968–980 (2020). https://doi.org/10.1007/s12011-020-02230-8

    Article  CAS  Google Scholar 

  35. Y. Hu, J. Chen, T. Fan, Y. Zhang, Y. Zhao, X. Shi, Q. Zhang, Biomimetic mineralized hierarchical hybrid scaffolds based on in situ synthesis of nano-hydroxyapatite/chitosan/chondroitin sulfate/hyaluronic acid for bone tissue engineering. Colloids Surf. B Biointerfaces 157, 93–100 (2017). https://doi.org/10.1016/j.colsurfb.2017.05.059

    Article  CAS  Google Scholar 

  36. A.Z. Alshemary, A. EnginPazarceviren, A. Tezcaner, Z. Evis, Fe3+/SeO42− dual doped nano hydroxyapatite: A novel material for biomedical applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 106, 340–352 (2018). https://doi.org/10.1002/jbm.b.33838

    Article  CAS  Google Scholar 

  37. A.E. Pazarçeviren, Z. Evis, D. Keskin, A. Tezcaner, Resorbable PCEC/gelatin-bismuth doped bioglass-graphene oxide bilayer membranes for guided bone regeneration. Biomed. Mater. 14, 035018 (2019). https://doi.org/10.1088/1748-605X/AB007B

    Article  Google Scholar 

  38. A.E. Pazarçeviren, A. Tahmasebifar, A. Tezcaner, D. Keskin, Z. Evis, Investigation of bismuth doped bioglass/graphene oxide nanocomposites for bone tissue engineering. Ceram. Int. 44, 3791–3799 (2018). https://doi.org/10.1016/j.ceramint.2017.11.164

    Article  CAS  Google Scholar 

  39. A. Doostmohammadi, Z. KarimzadehEsfahani, A. Ardeshirylajimi, Z. Rahmati Dehkordi, Zirconium modified calcium-silicate-based nanoceramics: An in vivo evaluation in a rabbit tibial defect model. Int. J. Appl. Ceram. Technol. 16, 431–437 (2019). https://doi.org/10.1111/ijac.13076

    Article  CAS  Google Scholar 

  40. L.C.R. Quiroga, J.A.P. Balestieri, I. Ávila, Thermal behavior and kinetics assessment of ethanol/gasoline blends during combustion by thermogravimetric analysis. Appl. Therm. Eng. 115, 99–110 (2017). https://doi.org/10.1016/j.applthermaleng.2016.12.051

    Article  CAS  Google Scholar 

  41. K. Lawson-wood, I. Robertson, Study of the decomposition of calcium oxalate monohydrate using a hyphenated thermogravimetric analyser - FT-IR system (TG-IR), PerkinElmer Inc. 1–3 (2016). https://resources.perkinelmer.com/lab-solutions/resources/docs/app-DecompositionCalcium-oxalate-monohydrate-013078-01.pdf

  42. J.S. Alzahrani, I.H. Midala, H.M. Kamari, N.M. Al-Hada, C.K. Tim, N.N.S. Nidzam, Z.A. Alrowaili, M.S. Al-Buriahi, Effect of calcination temperature on the structural and optical properties of (ZnO)0.8 (ZrO2)0.2 nanoparticles. J. Inorg. Organomet. Polym. Mater. 32, 1755–1765 (2022). https://doi.org/10.1007/S10904-022-02238-8/FIGURES/9

    Article  CAS  Google Scholar 

  43. A. Zhao, B. Xiong, Y. Han, H. Tong, Thermal decomposition paths of calcium nitrate tetrahydrate and calcium nitrite. Thermochim. Acta. 714, 179264 (2022). https://doi.org/10.1016/J.TCA.2022.179264

    Article  CAS  Google Scholar 

  44. J.M. Coldrey, M.J. Purton, Application of thermal analysis in investigations on calcium silicate bricks. J. Appl. Chem. 18, 353–360 (2007). https://doi.org/10.1002/jctb.5010181203

    Article  Google Scholar 

  45. R. Lakshmi, V. Velmurugan, S. Sasikumar, Preparation and phase evolution of Wollastonite by sol-gel combustion method using Sucrose as the fuel. Combust. Sci. Technol. 185, 1777–1785 (2013). https://doi.org/10.1080/00102202.2013.835308

    Article  CAS  Google Scholar 

  46. S. Mehrafzoon, S.A. Hassanzadeh-Tabrizi, A. Bigham, Synthesis of nanoporous Baghdadite by a modified sol-gel method and its structural and controlled release properties. Ceram. Int. 44, 13951–13958 (2018). https://doi.org/10.1016/J.CERAMINT.2018.04.244

    Article  CAS  Google Scholar 

  47. S. Sadeghzade, F. Shamoradi, R. Emadi, F. Tavangarian, Fabrication and characterization of baghdadite nanostructured scaffolds by space holder method. J. Mech. Behav. Biomed. Mater. 68, 1–7 (2017). https://doi.org/10.1016/J.JMBBM.2017.01.034

    Article  CAS  Google Scholar 

  48. T.C. Schumacher, E. Volkmann, R. Yilmaz, A. Wolf, L. Treccani, K. Rezwan, Mechanical evaluation of calcium-zirconium-silicate (baghdadite) obtained by a direct solid-state synthesis route. J. Mech. Behav. Biomed. Mater. 34, 294–301 (2014). https://doi.org/10.1016/j.jmbbm.2014.02.021

    Article  CAS  Google Scholar 

  49. M. Yurddaskal, E. Celik, Effect of halogen-free nanoparticles on the mechanical, structural, thermal and flame retardant properties of polymer matrix composite. Compos. Struct. 183, 381–388 (2018). https://doi.org/10.1016/J.COMPSTRUCT.2017.03.093

    Article  Google Scholar 

  50. X. Chen, J. Yu, S. Guo, S. Lu, Z. Luo, M. He, Surface modification of magnesium hydroxide and its application in flame retardant polypropylene composites. J. Mater. Sci. 44, 1324–1332 (2009). https://doi.org/10.1007/S10853-009-3273-6/FIGURES/11

    Article  CAS  Google Scholar 

  51. E. Spahiu, ATR-FTIR evaluation of structural and functional changes on murine macrophage cells upon activation and suppression by immuno-therapeutic oligodeoxynucleotides, Middle East Technical University (2015). https://etd.lib.metu.edu.tr/upload/12618753/index.pdf.

  52. A. Najafinezhad, M. Abdellahi, H. Ghayour, A. Soheily, A. Chami, A. Khandan, A comparative study on the synthesis mechanism, bioactivity and mechanical properties of three silicate bioceramics. Mater. Sci. Eng. C 72, 259–267 (2017). https://doi.org/10.1016/J.MSEC.2016.11.084

    Article  CAS  Google Scholar 

  53. H.R. Bakhsheshi-Rad, E. Hamzah, A.F. Ismail, M. Aziz, Z. Hadisi, M. Kashefian, A. Najafinezhad, Novel nanostructured baghdadite-vancomycin scaffolds: In-vitro drug release, antibacterial activity and biocompatibility. Mater. Lett. 209, 369–372 (2017). https://doi.org/10.1016/J.MATLET.2017.08.027

    Article  CAS  Google Scholar 

  54. F. Pahlevanzadeh, H.R. Bakhsheshi-Rad, E. Hamzah, In-vitro biocompatibility, bioactivity, and mechanical strength of PMMA-PCL polymer containing fluorapatite and graphene oxide bone cements. J. Mech. Behav. Biomed. Mater. 82, 257–267 (2018). https://doi.org/10.1016/j.jmbbm.2018.03.016

    Article  CAS  Google Scholar 

  55. C.J. Fu, Z.W. Zhan, M. Yu, S.M. Li, J.H. Liu, L. Dong, Influence of Zr/Si molar ratio on structure, morphology and corrosion resistance of organosilane coatings doped with zirconium(IV) n-propoxide. Int. J. Electrochem. Sci. 9, 2603–2619 (2014)

    Google Scholar 

  56. D.M. Pickup, G. Mountjoy, G.W. Wallidge, R.J. Newport, M.E. Smith, Structure of (ZrO2)(x)(SiO2)(1–x) xerogels (x =0.1, 0.2, 0.3 and 0.4) from FTIR, 29Si and 17O MAS NMR and EXAFS. Phys. Chem. Chem. Phys. 1, 2527–2533 (1999). https://doi.org/10.1039/a901401b

    Article  CAS  Google Scholar 

  57. A. Khandan, E. Karamian, M. Mehdikhani-Nahrkhalaji, H. Mirmohammadi, A. Farzadi, N. Ozada, B. Heidarshenas, K. Zamani, Influence of spark plasma sintering and baghdadite powder on mechanical properties of hydroxyapatite. Procedia Mater. Sci. 11, 183–189 (2015). https://doi.org/10.1016/J.MSPRO.2015.11.087

    Article  CAS  Google Scholar 

  58. Y.L. Lee, W.H. Wang, F.H. Lin, C.P. Lin, Hydration behaviors of calcium silicate-based biomaterials. J. Formos. Med. Assoc. 116, 424–431 (2017). https://doi.org/10.1016/J.JFMA.2016.07.009

    Article  CAS  Google Scholar 

  59. S. Arya, P. Mahajan, S. Mahajan, A. Khosla, R. Datt, V. Gupta, S.-J. Young, S.K. Oruganti, Review—Influence of processing parameters to control morphology and optical properties of Sol-Gel synthesized ZnO nanoparticles. ECS J. Solid State Sci. Technol. 10, 023002 (2021). https://doi.org/10.1149/2162-8777/ABE095

    Article  CAS  Google Scholar 

  60. S. Sadeghpour, A. Amirjani, M. Hafezi, A. Zamanian, Fabrication of a novel nanostructured calcium zirconium silicate scaffolds prepared by a freeze-casting method for bone tissue engineering. Ceram. Int. 40, 16107–16114 (2014). https://doi.org/10.1016/J.CERAMINT.2014.07.039

    Article  CAS  Google Scholar 

  61. O.Y. Zadorozhnaya, T.A. Khabas, O.V. Tiunova, S.E. Malykhin, Effect of grain size and amount of zirconia on the physical and mechanical properties and the wear resistance of zirconia-toughened alumina. Ceram. Int. 46, 9263–9270 (2019). https://doi.org/10.1016/j.ceramint.2019.12.180

    Article  CAS  Google Scholar 

  62. A. Averardi, C. Cola, S.E. Zeltmann, N. Gupta, Effect of particle size distribution on the packing of powder beds: A critical discussion relevant to additive manufacturing. Mater. Today Commun. 24, 100964 (2020). https://doi.org/10.1016/J.MTCOMM.2020.100964

    Article  CAS  Google Scholar 

  63. Z. Evis, Reactions in hydroxylapatite–zirconia composites. Ceram. Int. 33, 987–991 (2007). https://doi.org/10.1016/J.CERAMINT.2006.02.012

    Article  CAS  Google Scholar 

  64. M. Martín-Garrido, M. Teresa Molina-Delgado, S. Martínez-Ramírez, A comparison between experimental and theoretical Ca/Si ratios in C-S–H and C–S(A)–H gels. J. Sol-Gel Sci. Technol. 94, 11–21 (2020). https://doi.org/10.1007/S10971-019-05097-X/FIGURES/5

    Article  Google Scholar 

  65. A.J. Wagoner Johnson, B.A. Herschler, A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater. 7, 16–30 (2011). https://doi.org/10.1016/J.ACTBIO.2010.07.012

    Article  CAS  Google Scholar 

  66. B. Ranjkesh, F. Isidor, M. Dalstra, H. Løvschall, Diametral tensile strength of novel fast-setting calcium silicate cement. Dent. Mater. J. 35, 559–563 (2016). https://doi.org/10.4012/DMJ.2015-390

    Article  CAS  Google Scholar 

  67. S. Kunjalukkal Padmanabhan, F. Gervaso, M. Carrozzo, F. Scalera, A. Sannino, A. Licciulli, Wollastonite/hydroxyapatite scaffolds with improved mechanical, bioactive and biodegradable properties for bone tissue engineering. Ceram. Int. 39, 619–627 (2013). https://doi.org/10.1016/j.ceramint.2012.06.073

    Article  CAS  Google Scholar 

  68. S. Sadeghzade, R. Emadi, T. Ahmadi, F. Tavangarian, Synthesis, characterization and strengthening mechanism of modified and unmodified porous diopside/baghdadite scaffolds. Mater. Chem. Phys. 228, 89–97 (2019). https://doi.org/10.1016/j.matchemphys.2019.02.041

    Article  CAS  Google Scholar 

  69. D.Q. Pham, C.C. Berndt, U. Gbureck, H. Zreiqat, V.K. Truong, A.S.M. Ang, Mechanical and chemical properties of Baghdadite coatings manufactured by atmospheric plasma spraying. Surf. Coat. Technol. 378, 124945 (2019). https://doi.org/10.1016/j.surfcoat.2019.124945

    Article  CAS  Google Scholar 

  70. D.A. Samani, A. Doostmohammadi, M.R. Nilforoushan, H. Nazari, Electrospun polycaprolactone/graphene/baghdadite composite nanofibres with improved mechanical and biological properties. Fibers Polym. 20, 982–990 (2019). https://doi.org/10.1007/s12221-019-1161-5

    Article  CAS  Google Scholar 

  71. Y.J. No, I. Holzmeister, Z. Lu, S. Prajapati, J. Shi, U. Gbureck, H. Zreiqat, Effect of baghdadite substitution on the physicochemical properties of brushite cements. Materials (Basel) 12, 1–15 (2019). https://doi.org/10.3390/MA12101719

    Article  Google Scholar 

  72. S. Punj, J. Singh, K. Singh, Ceramic biomaterials: Properties, state of the art and future prospectives. Ceram. Int. 47, 28059–28074 (2021). https://doi.org/10.1016/J.CERAMINT.2021.06.238

    Article  CAS  Google Scholar 

  73. F.P. Knudsen, Dependence of mechanical strength of Brittle polycrystalline specimens on porosity and grain size. J. Am. Ceram. Soc. 42, 376–387 (1959). https://doi.org/10.1111/J.1151-2916.1959.TB13596.X

    Article  CAS  Google Scholar 

  74. G. Zhao, C. Huang, H. Liu, B. Zou, H. Zhu, J. Wang, Preparation of in-situ growth TaC whiskers toughening Al2O3 ceramic matrix composite. Int. J. Refract. Met. Hard Mater. 36, 122–125 (2013). https://doi.org/10.1016/J.IJRMHM.2012.08.003

    Article  Google Scholar 

  75. D. Basu, A.N. Banerjee, Dynamic mechanical thermal analysis - crystallinity and tensile-strength of PBT/ABS blends: their interdependency and variations with ABS content, Indian. J. Chem. Technol. 1, 31–34 (1994)

    CAS  Google Scholar 

  76. Y.C. Tsui, C. Doyle, T.W. Clyne, Plasma sprayed hydroxyapatite coatings on titanium substrates. Part 2: Optimisation of coating properties. Biomaterials 19, 2031–2043 (1998). https://doi.org/10.1016/S0142-9612(98)00104-5

    Article  CAS  Google Scholar 

  77. Y. Liang, Y. Xie, H. Ji, L. Huang, X. Zheng, Excellent stability of plasma-sprayed bioactive Ca3ZrSi2O9 ceramic coating on Ti–6Al–4V. Appl. Surf. Sci. 256, 4677–4681 (2010). https://doi.org/10.1016/J.APSUSC.2010.02.071

    Article  CAS  Google Scholar 

  78. M. Naghizadeh, H. Mirzadeh, Effects of grain size on mechanical properties and work-hardening behavior of AISI 304 austenitic stainless steel. Steel Res. Int. 90, 1–9 (2019). https://doi.org/10.1002/srin.201900153

    Article  CAS  Google Scholar 

  79. Y.H. An, R.A. Draughn (eds.), Mechanical testing of bone and the bone–implant interface, 1st edn. (CRC Press, Boca Raton, 2000)

    Google Scholar 

  80. G. Boivin, Y. Bala, A. Doublier, D. Farlay, L.G. Ste-Marie, P.J. Meunier, P.D. Delmas, The role of mineralization and organic matrix in the microhardness of bone tissue from controls and osteoporotic patients. Bone 43, 532–538 (2008). https://doi.org/10.1016/j.bone.2008.05.024

    Article  CAS  Google Scholar 

  81. T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907–2915 (2006). https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  CAS  Google Scholar 

  82. B. Yilmaz, A.E. Pazarceviren, A. Tezcaner, Z. Evis, Historical development of simulated body fluids used in biomedical applications: A review. Microchem. J. 155, 104713 (2020). https://doi.org/10.1016/j.microc.2020.104713

    Article  CAS  Google Scholar 

  83. P. Siriphannon, Y. Kameshima, A. Yasumori, K. Okada, S. Hayashi, Formation of hydroxyapatite on CaSiO3 powders in simulated body fluid. J. Eur. Ceram. Soc. 22, 511–520 (2002). https://doi.org/10.1016/S0955-2219(01)00301-6

    Article  CAS  Google Scholar 

  84. X. Liu, S. Tao, C. Ding, Bioactivity of plasma sprayed dicalcium silicate coatings. Biomaterials 23, 963–968 (2002). https://doi.org/10.1016/S0142-9612(01)00210-1

    Article  CAS  Google Scholar 

  85. W.C. Lepry, S. Naseri, S.N. Nazhat, Effect of processing parameters on textural and bioactive properties of sol–gel-derived borate glasses. J. Mater. Sci. 52, 8973–8985 (2017). https://doi.org/10.1007/s10853-017-0968-y

    Article  CAS  Google Scholar 

  86. X. Liu, C. Ding, Morphology of apatite formed on surface of wollastonite coating soaked in simulate body fluid. Mater. Lett. 57, 652–655 (2002). https://doi.org/10.1016/S0167-577X(02)00848-0

    Article  CAS  Google Scholar 

  87. A. Ito, K. Senda, Y. Sogo, A. Oyane, A. Yamazaki, R.Z. LeGeros, Dissolution rate of zinc-containing β-tricalcium phosphate ceramics. Biomed. Mater. 1, 134–139 (2006). https://doi.org/10.1088/1748-6041/1/3/007

    Article  CAS  Google Scholar 

  88. G. Chandra, A. Pandey, Biodegradable bone implants in orthopedic applications: a review. Biocybern. Biomed. Eng. (2020). https://doi.org/10.1016/j.bbe.2020.02.003

    Article  Google Scholar 

  89. P.J. Marie, The calcium-sensing receptor in bone cells: A potential therapeutic target in osteoporosis. Bone 46, 571–576 (2010). https://doi.org/10.1016/j.bone.2009.07.082

    Article  CAS  Google Scholar 

  90. J.-Y. Sun, T.-S. Yang, J. Zhong, D.C. Greenspan, The effect of the ionic products of Bioglass® dissolution on human osteoblasts growth cycle in vitro Jun-Ying. J. Tissue Eng. Regen. Med. 1, 281–286 (2007). https://doi.org/10.1002/term

    Article  CAS  Google Scholar 

  91. M. Diba, M. Kharaziha, M.H. Fathi, M. Gholipourmalekabadi, A. Samadikuchaksaraei, Preparation and characterization of polycaprolactone/forsterite nanocomposite porous scaffolds designed for bone tissue regeneration. Compos. Sci. Technol. 72, 716–723 (2012). https://doi.org/10.1016/J.COMPSCITECH.2012.01.023

    Article  CAS  Google Scholar 

  92. F. Langencach, J. Handschel, Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res. Ther. 4, 117–123 (2013). https://doi.org/10.1089/ten.teb.2011.0199

    Article  CAS  Google Scholar 

  93. O. Tsigkou, J.R. Jones, J.M. Polak, M.M. Stevens, Differentiation of fetal osteoblasts and formation of mineralized bone nodules by 45S5 Bioglass® conditioned medium in the absence of osteogenic supplements. Biomaterials 30, 3542–3550 (2009). https://doi.org/10.1016/j.biomaterials.2009.03.019

    Article  CAS  Google Scholar 

  94. X. Zhang, P. Han, A. Jaiprakash, C. Wu, Y. Xiao, A stimulatory effect of Ca3ZrSi2O9 bioceramics on cementogenic/osteogenic differentiation of periodontal ligament cells. J. Mater. Chem. B 2, 1415–1423 (2014). https://doi.org/10.1039/c3tb21663b

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zafer Evis.

Ethics declarations

Conflict of interest

The authors declare that they did not receive any funds, grants, or other support from any organization and have no competing interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5959 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jodati, H., Tezcaner, A., Evis, Z. et al. Synthesis of baghdadite using modified sol–gel route and investigation of its properties for bone treatment applications. J. Korean Ceram. Soc. 60, 381–398 (2023). https://doi.org/10.1007/s43207-022-00275-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00275-0

Keywords

Navigation