Skip to main content
Log in

Temperature and frequency depended structural, morphological, and electrical topographies of Bi2MnFeO6 double perovskite

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

A double perovskite ceramic electronic sample of Bi2MnFeO6 has been formulated and synthesized using an ordinary solid-state sintering route from the metal oxides of bismuth, manganese, and iron. The crystallographic structure, morphological, dielectric, electrical, and current–voltage parameters have been analyzed for the fabricated sample. Room temperature XRD (X-ray diffraction) investigation confirms the monoclinic phase. The microstructure obtained from scanning electron microscope reveals compact grain structures with little or no voids. The impedance as well as its electrical properties have been appraised through the impedance analyzer (LCR meter) for a wide range of temperatures and frequencies (30–230 °C and 1 kHz–1 MHz). The negative temperature coefficient of the material is derived from the impedance analysis. The non-ohmic behavior of the sample was confirmed by the current versus voltage (V–I) characteristic of the sample. Most of the significant physical and chemical properties linked with this compound may be critical in the development of future peer group electrical and electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 765 (2006)

    Article  Google Scholar 

  2. Y. Lan, X. Feng, X. Zhang, Y. Shen, D. Wang, Phys. Lett. A 380, 2967 (2016)

    Article  Google Scholar 

  3. A.K. Paul, M. Reehuis, V. Ksenofontov, B.H. Yan, A. Hoser, D.M. Többens, P.M. Abdala, P. Adler, M. Jansen, C. Felser, Phys. Rev. Lett. 111, 18 (2013)

    Article  Google Scholar 

  4. S.N. Das, S.K. Pradhan, D.P. Kar, S. Bhuyan, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 29(11), 9375–9379 (2018)

    Article  CAS  Google Scholar 

  5. M. Green, A.H. Baillie, H.J. Snaith, Nat. Photonics 8, 514 (2014)

    Article  Google Scholar 

  6. S.N. Das, J. Appl. Phys. 128(11), 114101 (2020)

    Article  CAS  Google Scholar 

  7. S. Im, J.H. Lee, H.I. Ji, J. Korean Ceram. Soc. 58, 351 (2021)

    Article  CAS  Google Scholar 

  8. R.K. Raji, T. Ramachandran, M. Muralidharan, R. Suriakarthick, M. Dhilip, F. Hamed, V. Kurapati, Int. J. Mater. Res. 112, 753 (2021)

    Article  CAS  Google Scholar 

  9. S. Patel, L.K. Venkataraman, H. Yadav, J. Korean Ceram. Soc. 58, 337 (2021)

    Article  CAS  Google Scholar 

  10. C.L. Bull, D. Gleeson, K.S. Knight, J. Phys. Condens. Matter 15, 4936 (2003)

    Article  Google Scholar 

  11. R.I. Dass, J.B. Goodenough, Phys. Rev. B 67, 014401 (2003)

    Article  Google Scholar 

  12. H.W. Shin, Y. Ahn, J.Y. Son, Thin Solid Films 692, 137655 (2019)

    Article  CAS  Google Scholar 

  13. M.T. Anderson, K.B. Greenwood, G.A. Taylor, K.R. Poeppelmeier, Progr. Solid State Chem. 22, 233 (1993)

    Article  Google Scholar 

  14. A. Tripathy, S.N. Das, S.K. Pradhan, S. Bhuyan, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 29, 4776 (2018)

    Article  Google Scholar 

  15. H.J. Feng, F.M. Liu, Phys. Lett. A 372, 1909 (2008)

    Google Scholar 

  16. Y.Q. Lin, X.M. Chen, Dielectric. J. Am. Ceram. Soc. 94, 787 (2010)

    Google Scholar 

  17. M. Ullah, S.A. Khan, G. Murtaza, R. Khenata, N. Ullah, S.B. Omran, J. Magn. Magn. Mater. 377, 203 (2015)

    Article  Google Scholar 

  18. E. Wu, J. Appl. Crystallogr. 22, 510 (1989)

    Article  Google Scholar 

  19. M. Kumar, K.L. Yadav, J. Appl. Phys. 100, 074111 (2006)

    Article  Google Scholar 

  20. B. Asbani, A. Lahmar, M. Amjoud, J.L. Dellis, Y. Gagou, D. Mezzane, M.E. Marssi, Super. Micro. 71, 167 (2014)

    Article  Google Scholar 

  21. S.N. Das, S. Pradhan, S. Bhuyan, R.N.P. Choudhary, P. Das, J. Elec. Mater. 46, 1649 (2016)

    Google Scholar 

  22. K.K. Mishra, A.T. Satya, A. Bharathi, V. Sivasubramanian, V.R.K. Murthy, A.K. Arora, J. App. Phys. 110, 123529 (2011)

    Article  Google Scholar 

  23. S.N. Das, A. Pattanaik, S. Kadambini, S. Pradhan, S. Bhuyan, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 27, 10105 (2016)

    Google Scholar 

  24. J.E. Garcia, V. Gomis, R. Perez, A. Albareda, App. Phys. Lett. 91, 042902 (2007)

    Article  Google Scholar 

  25. K.S. Kumar, C. Venkateswar, D. Kannan, B. Tiwari, M.S.R. Rao, J. Phys. D App. Phys. 45, 415302 (2012)

    Article  Google Scholar 

  26. D.K. Pradhan, B. Behera, P.R. Das, J. Mater. Sci. Mater. Electron. 23, 785 (2012)

    Article  Google Scholar 

  27. W. Liu, G. Tan, G. Dong, X. Xue, H. Ren, A. Xia, Superlatt. Microstruct. 72, 193 (2014)

    Google Scholar 

  28. H. Jain, C.H. Hsieh, J. Noncrystall. Solids 172–174, 1412 (1994)

    Google Scholar 

  29. D.P. Almond, A.R. West, Solid State Ionics 11, 64 (1983)

    Article  Google Scholar 

  30. S. Chatterjee, P.K. Mahapatra, R.N.P. Choudhary, A.K. Thakur, Phys. Status Solid (A) 201, 595 (2004)

    Article  Google Scholar 

  31. S.K.S. Parashar, S. Chaudhuri, S.N. Singh, M. Ghoranneviss, J. Ther. Appl. Phys 7, 267 (2013)

    Google Scholar 

  32. Y. Zhang, J.P. Zhou, Q. Liu, S. Zhang, C.Y. Deng, Ceram. Int. 40, 5860 (2014)

    Google Scholar 

  33. R. Mukherjee, A. Dutta, T.P. Sinha, J. Electron. Mater. 45, 852 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Das.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that they have NO affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathy, A., Bhuyan, S., Das, S.N. et al. Temperature and frequency depended structural, morphological, and electrical topographies of Bi2MnFeO6 double perovskite. J. Korean Ceram. Soc. 60, 373–380 (2023). https://doi.org/10.1007/s43207-022-00272-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00272-3

Keywords

Navigation