Skip to main content

Advertisement

Log in

Multiferroic and energy-storage characteristics of polycrystalline Ca-doped BiFeO3 thin films on Si substrates

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Significant progress has been made in the enhancement of multiferroic properties with possibilities for energy harvesting and storage applications. In this study, BiFeO3 (BFO) thin films were doped with Ca, and the multiferroic, piezoelectric, and energy-storage properties of Bi1−xCaxFeO3−δ (x = 0.3, BCFO) thin films were compared with those of BFO to investigate the effects of the doping. The BCFO thin films were deposited on Pt/TiO2/SiO2/Si substrates using pulsed laser deposition. The BCFO thin films having a polycrystalline structure, exhibited improved crystallinity and larger grains, compared with the BFO thin films. The high crystallinity further resulted in the BCFO thin films exhibiting improved leakage current, ferroelectric, and ferromagnetic characteristics, compared with the BFO thin films. The morphotropic phase boundary formed in the mixed crystal phase, which was driven by the Ca doping, and it improved the piezoelectric coefficients of the BCFO thin films. Additionally, we found that the BCFO thin films have superior energy-storage characteristics, compared with the BFO thin films, owing to the improved ferroelectric properties. Our findings suggest that the Ca doping of the BFO thin films improves their multiferroic properties, piezoelectric response, and energy-storage characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Ramesh, N.A. Spaldin, Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007)

    Article  CAS  Google Scholar 

  2. S. Roy, S.B. Majumder, Recent advances in multiferroic thin films and composites. J. Alloys Compd. 538, 153–159 (2012)

    Article  CAS  Google Scholar 

  3. M.M. Vopson, Fundamentals of multiferroic materials and their possible applications. Crit. Rev. Solid State Mater. Sci. 40, 223–250 (2015)

    Article  CAS  Google Scholar 

  4. H. Palneedi, V. Annapureddy, S. Priya, J. Ryu, Status and perspectives of multiferroic magnetoelectric composite materials and applications. Actuators 5, 9 (2016)

    Article  Google Scholar 

  5. J. Wu, Z. Fan, D. Xiao, J. Zhu, J. Wang, Multiferroic bismuth ferrite-based materials for multifunctional applications: ceramic bulks, thin films and nanostructures. Prog. Mater. Sci. 84, 335–402 (2016)

    Article  CAS  Google Scholar 

  6. N.A. Spaldin, R. Ramesh, Advances in magnetoelectric multiferroics. Nat. Mater. 18, 203–212 (2019)

    Article  CAS  Google Scholar 

  7. C.C. Lee, J.M. Wu, Effect of film thickness on interface and electric properties of BiFeO3 thin films. Appl. Surf. Sci. 253, 7069–7073 (2007)

    Article  CAS  Google Scholar 

  8. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)

    Article  CAS  Google Scholar 

  9. D.C. Arnold, Composition-driven structural phase transitions in rare-earth-doped BiFeO3 ceramics: a review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62, 62–82 (2015)

    Article  Google Scholar 

  10. J. Rödel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, D. Damjanovic, Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153–1177 (2009)

    Article  Google Scholar 

  11. P. Kharel, S. Talebi, B. Ramachandran, A. Dixit, V.M. Naik, M.B. Sahana, C. Sudakar, R. Naik, M.S.R. Rao, G. Lawes, Structural, magnetic, and electrical studies on polycrystalline transition-metal-doped BiFeO3 thin films. J. Phys. Condens. Matter 21, 036001 (2008)

    Article  Google Scholar 

  12. V. Sharma, R.K. Ghosh, B.K. Kuanr, Investigation of room temperature ferromagnetism in transition metal doped BiFeO3. J. Phys. Condens. Matter 31, 395802 (2019)

    Article  CAS  Google Scholar 

  13. H. Yan, H. Deng, N. Ding, J. He, L. Peng, L. Sun, P. Yang, J. Chu, Influence of transition elements doping on structural, optical and magnetic properties of BiFeO3 films fabricated by magnetron sputtering. Mater. Lett. 111, 123–125 (2013)

    Article  CAS  Google Scholar 

  14. S. Yang, F. Zhang, X. Xie, X. Guo, L. Zhang, S. Fan, Effects of transition metal (Cu, Zn, Mn) doped on leakage current and ferroelectric properties of BiFeO3 thin films. J. Mater. Sci. Mater. Electron. 28, 14944–14948 (2017)

    Article  CAS  Google Scholar 

  15. V.S. Puli, A. Kumar, N. Panwar, I.C. Panwar, R.S. Katiyar, Transition metal modified bulk BiFeO3 with improved magnetization and linear magneto-electric coupling. J. Alloys Compd. 509, 8223–8227 (2011)

    Article  CAS  Google Scholar 

  16. Y. Yao, W. Liu, Y. Chan, C. Leung, C. Mak, B. Ploss, Studies of rare-earth-doped BiFeO3 ceramics. Int. J. Appl. Ceram. Technol. 8, 1246–1253 (2011)

    Article  CAS  Google Scholar 

  17. S. Karimi, I.M. Reaney, Y. Han, J. Pokorny, I. Sterianou, Crystal chemistry and domain structure of rare-earth doped BiFeO3 ceramics. J. Mater. Sci. 44, 5102–5112 (2009)

    Article  CAS  Google Scholar 

  18. P. Suresh, S. Srinath, Study of structure and magnetic properties of rare earth doped BiFeO3. Phys. B Condens. Matter 448, 281–284 (2014)

    Article  CAS  Google Scholar 

  19. S.K. Singh, H. Ishiwara, Doping effect of rare-earth ions on electrical properties of BiFeO3 thin films fabricated by chemical solution deposition. Jpn. J. Appl. Phys. 45, 3194–3197 (2006)

    Article  CAS  Google Scholar 

  20. S. Hussain, S.K. Hasanain, G.H. Jaffari, N.Z. Ali, M. Siddique, S.I. Shah, Correlation between structure, oxygen content and the multiferroic properties of Sr doped BiFeO3. J. Alloys Compd. 622, 8–16 (2015)

    Article  CAS  Google Scholar 

  21. S. Layek, H.C. Verma, A. Garg, Enhancement in magnetic properties of Ba-doped BiFeO3 ceramics by mechanical activation. J. Alloys Compd. 651, 294–301 (2015)

    Article  CAS  Google Scholar 

  22. L. Yao, X. Wu, S. Yang, Y. Zhang, Structural and optical properties of Ca doped BiFeO3 thin films prepared by a sol-gel method. Ceram. Int. 43, S470–S473 (2017)

    Article  CAS  Google Scholar 

  23. Z. Fu, Z.G. Yin, N.F. Chen, X.W. Zhang, Y.J. Zhao, Y.M. Bai, Y. Chen, H.-H. Wang, X.L. Zhang, J.L. Wu, Tetragonal-tetragonal-monoclinic-rhombohedral transition: strain relaxation of heavily compressed BiFeO3 epitaxial thin films. Appl. Phys. Lett. 104, 052908 (2014)

    Article  Google Scholar 

  24. R.J. Zeches, M.D. Rossell, J.X. Zhang, A.J. Hatt, Q. He, C.-H. Yang, A. Kumar, C.H. Wang, A. Melville, C. Adamo, G. Sheng, Y.-H. Chu, J.F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L.Q. Chen, D.G. Schlom, N.A. Spaldin, L.W. Martin, R. Ramesh, A strain-driven morphotropic phase boundary in BiFeO3. Science 326, 977–980 (2009)

    Article  CAS  Google Scholar 

  25. X. Yin, C. Chen, Z. Fan, M. Qin, M. Zeng, X. Lu, G. Zhou, X. Gao, D. Chen, J.-M. Liu, Coexistence of multiple morphotropic phase boundaries in strained La-doped BiFeO3 thin films. Mater. Today Phys. 17, 100345 (2021)

    Article  CAS  Google Scholar 

  26. P.P. Biswas, S. Pal, V. Subramanian, P. Murugavel, Large photovoltaic response in rare-earth doped BiFeO3 polycrystalline thin films near morphotropic phase boundary composition. Appl. Phys. Lett. 114, 173901 (2019)

    Article  Google Scholar 

  27. C.-J. Cheng, D. Kan, V. Anbusathaiah, I. Takeuchi, V. Nagarajan, Microstructure-electromechanical property correlations in rare-earth-substituted BiFeO3 epitaxial thin films at morphotropic phase boundaries. Appl. Phys. Lett. 97, 212905 (2010)

    Article  Google Scholar 

  28. Y. Yamashita, Large electromechanical coupling factors in perovskite binary material system. Jpn. J. Appl. Phys. 33, 5328–5331 (1994)

    Article  CAS  Google Scholar 

  29. M. Ahart, M. Somayazulu, R.E. Cohen, P. Ganesh, P. Dera, H.-K. Mao, R.J. Hemley, Y. Ren, P. Liermann, Z. Wu, Origin of morphotropic phase boundaries in ferroelectrics. Nature 451, 545–548 (2008)

    Article  CAS  Google Scholar 

  30. X.-H. Du, J. Zheng, U. Belegundu, K. Uchino, Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary. Appl. Phys. Lett. 72, 2421–2423 (1998)

    Article  CAS  Google Scholar 

  31. K.-I. Kakimoto, H. Kakemoto, S. Fujita, Y. Masuda, Control of crystal orientation and piezoelectric response of lead zirconate titanate thin films near the morphotropic phase boundary. J. Am. Ceram. Soc. 85, 1019–1021 (2002)

    Article  CAS  Google Scholar 

  32. D. Fu, H. Suzuki, T. Ogawa, K. Ishikawa, High-piezoelectric behavior of c-axis-oriented lead zirconate titanate thin films with composition near the morphotropic phase boundary. Appl. Phys. Lett. 80, 3572–3574 (2002)

    Article  CAS  Google Scholar 

  33. L.V. Costa, L.S. Rocha, J.A. Cortés, M.A. Ramirez, E. Longo, A.Z. Simões, Enhancement of ferromagnetic and ferroelectric properties in calcium doped BiFeO3 by chemical synthesis. Ceram. Int. 41, 9265–9275 (2015)

    Article  CAS  Google Scholar 

  34. W. Xing, Y. Ma, Z. Ma, Y. Bai, J. Chen, S. Zhao, Improved ferroelectric and leakage current properties of Er-doped BiFeO3 thin films derived from structural transformation. Smart Mater. Struct. 23, 085030 (2014)

    Article  CAS  Google Scholar 

  35. Y. Han, W. Mao, C. Quan, X. Wang, J. Yang, T. Yang, X.A. Li, W. Huang, Enhancement of magnetic and ferroelectric properties of BiFeO3 by Er and transition element (Mn, Co) co-doping. Mater. Sci. Eng. B 188, 26–30 (2014)

    Article  CAS  Google Scholar 

  36. Q. Yun, W. Xing, J. Chen, W. Gao, Y. Bai, S. Zhao, Effect of Ho and Mn co-doping on structural, ferroelectric and ferromagnetic properties of BiFeO3 thin films. Thin Solid Films 584, 103–107 (2015)

    Article  CAS  Google Scholar 

  37. S. Riaz, F. Majid, S.M.H. Shah, S. Naseem, Enhanced magnetic and structural properties of Ca doped BiFeO3 thin films. Indian J. Phys. 88, 1037–1044 (2014)

    Article  CAS  Google Scholar 

  38. C.H. Yang, J. Seidel, S.Y. Kim, P.B. Rossen, P. Yu, M. Gajek, Y.H. Chu, L.W. Martin, M.B. Holcomb, Q. He, P. Maksymovych, N. Balke, S.V. Kalinin, A.P. Baddorf, S.R. Basu, M.L. Scullin, R. Ramesh, Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nat. Mater. 8, 485–493 (2009)

    Article  CAS  Google Scholar 

  39. J.-Z. Huang, Y. Shen, M. Li, C.-W. Nan, Structural transitions and enhanced ferroelectricity in Ca and Mn co-doped BiFeO3 thin films. J. Appl. Phys. 110, 094106 (2011)

    Article  Google Scholar 

  40. L.V. Costa, R.C. Deus, C.R. Foschini, E. Longo, M. Cilense, A.Z. Simões, Experimental evidence of enhanced ferroelectricity in Ca doped BiFeO3. Mater. Chem. Phys. 144, 476–483 (2014)

    Article  CAS  Google Scholar 

  41. J. Wu, J. Wang, BiFeO3 thin films of (111)-orientation deposited on SrRuO3 buffered Pt/TiO2/SiO2/Si(100) substrates. Acta Mater. 58, 1688–1697 (2010)

    Article  CAS  Google Scholar 

  42. F.L. McCrackin, E. Passaglia, R.R. Stromberg, H.L. Steinberg, Measurement of the thickness and refractive index of very thin films and the optical properties of surfaces by ellipsometry. J. Res. Natl. Bur. Stand. A Phys. Chem. 67A, 363–377 (1963)

    Article  Google Scholar 

  43. F.-C. Chiu, A review on conduction mechanisms in dielectric films. Adv. Mater. Sci. Eng. 2014, 578168 (2014)

    Article  Google Scholar 

  44. H. Zhang, R. Jia, Y. Lei, X. Tang, Y. Zhang, Y. Zhang, Leakage current conduction mechanisms and electrical properties of atomic-layer-deposited HfO2/Ga2O3 MOS capacitors. J. Phys. D Appl. Phys. 51, 075104 (2018)

    Article  Google Scholar 

  45. T. Mihara, H. Watanabe, Electronic conduction characteristics of sol-gel ferroelectric Pb(Zr0.4Ti0.6)O3 thin-film capacitors: Part I. Jpn. J. Appl. Phys. 34, 5664–5673 (1995)

    Article  CAS  Google Scholar 

  46. J. Sun, X.J. Zheng, W. Yin, M.H. Tang, W. Li, Space-charge-limited leakage current in high dielectric constant and ferroelectric thin films considering the field-dependent permittivity. Appl. Phys. Lett. 97, 242905 (2010)

    Article  Google Scholar 

  47. K. Abe, N. Sakai, J. Takahashi, H. Itoh, N. Adachi, T. Ota, Leakage current properties of cation-substituted BiFeO3 ceramics. Jpn. J. Appl. Phys. 49, 09MB01 (2010)

    Article  Google Scholar 

  48. Y. Ahn, J. Seo, D. Lim, J.Y. Son, Ferroelectric domain structures and polarization switching characteristics of polycrystalline BiFeO3 thin films on glass substrates. Curr. Appl. Phys. 15, 584–587 (2015)

    Article  Google Scholar 

  49. C.H.P.L.H. Bennett, L.J. Swartzendruber, Comments on units in magnetism. J. Res. Natl. Bur. Stand. 83, 9–12 (1978)

    Article  CAS  Google Scholar 

  50. G. Catalan, J.F. Scott, A. Schilling, J.M. Gregg, Wall thickness dependence of the scaling law for ferroic stripe domains. J. Phys. Condens. Matter 19, 022201 (2006)

    Article  Google Scholar 

  51. G. Catalan, H. Béa, S. Fusil, M. Bibes, P. Paruch, A. Barthélémy, J.F. Scott, Fractal dimension and size scaling of domains in thin films of multiferroic BiFeO3. Rhys. Rev. Lett. 100, 027602 (2008)

    Article  CAS  Google Scholar 

  52. J.Y. Son, S. Song, J.-H. Lee, H.M. Jang, Anomalous domain periodicity observed in ferroelectric PbTiO3 nanodots having 180° stripe domains. Sci. Rep. 6, 26644 (2016)

    Article  CAS  Google Scholar 

  53. J. Wang, H. Zheng, Z. Ma, S. Prasertchoung, M. Wuttig, R. Droopad, J. Yu, K. Eisenbeiser, R. Ramesh, Epitaxial BiFeO3 thin films on Si. Appl. Phys. Lett. 85, 2574–2576 (2004)

    Article  CAS  Google Scholar 

  54. L. You, N.T. Chua, K. Yao, L. Chen, J. Wang, Influence of oxygen pressure on the ferroelectric properties of epitaxial BiFeO3 thin films by pulsed laser deposition. Phys. Rev. B 80, 024105 (2009)

    Article  Google Scholar 

  55. Y.K. Kim, S.S. Kim, H. Shin, S. Baik, Thickness effect of ferroelectric domain switching in epitaxial PbTiO3 thin films on Pt(001)/MgO(001). Appl. Phys. Lett. 84, 5085–5087 (2004)

    Article  CAS  Google Scholar 

  56. K. Zou, Y. Dan, H. Xu, Q. Zhang, Y. Lu, H. Huang, Y. He, Recent advances in lead-free dielectric materials for energy storage. Mater. Res. Bull. 113, 190–201 (2019)

    Article  CAS  Google Scholar 

  57. Y. Zhang, L. Bellaiche, B. Xu, Ultrahigh energy storage density in lead-free antiferroelectric rare-earth-substituted bismuth ferrite. Phys. Rev. Mater. 6, L051401 (2022)

    Article  CAS  Google Scholar 

  58. H. Pan, Y. Zeng, Y. Shen, Y.-H. Lin, J. Ma, L. Li, C.-W. Nan, BiFeO3–SrTiO3 thin film as a new lead-free relaxor-ferroelectric capacitor with ultrahigh energy storage performance. J. Mater. Chem. A 5, 5920–5926 (2017)

    Article  CAS  Google Scholar 

  59. H. Pan, Y. Zeng, Y. Shen, Y.-H. Lin, C.-W. Nan, Thickness-dependent dielectric and energy storage properties of (Pb0.96La0.04)(Zr0.98Ti0.02)O3 antiferroelectric thin films. J. Appl. Phys. 119, 124106 (2016)

    Article  Google Scholar 

  60. N.D. Quan, N.V. Hong, T.Q. Toan, V.N. Hung, Enhanced ferroelectric properties and energy storage density in PLZT/BNKT heterolayered thin films prepared by sol-gel method. Eur. Phys. J. B 91, 316 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Research Foundation of Korea (NRF) Grants funded by the Korean Government (NRF-2021R1F1A1048693 and NRF-2019R1A2C1010927).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoonho Ahn or Jong Yeog Son.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, Y., Son, J.Y. Multiferroic and energy-storage characteristics of polycrystalline Ca-doped BiFeO3 thin films on Si substrates. J. Korean Ceram. Soc. 60, 301–309 (2023). https://doi.org/10.1007/s43207-022-00265-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00265-2

Keywords

Navigation