Skip to main content

Advertisement

Log in

Energy-storage performance and pyroelectric energy harvesting effect of PNZST antiferroelectric thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, (111)-oriented (Pb0.99Nb0.02)(Zr, Sn, Ti)0.98O3 (PNZST) antiferroelectric thin films, which located in the tetragonal phase region (PNZSTT) and the orthorhombic phase region (PNZSTO), respectively, were successfully fabricated on platinum-buffered silicon substrates by radio-frequency magnetron sputtering technique. The microstructure, dielectric properties, electric field induced phase transition, associated with the energy-storage performance and pyroelectric energy harvesting behavior (by Olsen cycle) were studied systemically. The PNZSTT thin film showed a diffused field-induced antiferroelectric–ferroelectric (AFE–FE) phase switching with a slim double hysteresis loop, while the PNZSTO film demonstrated an AFE–FE phase switching with a square double hysteresis loop. A maximum recoverable energy-storage density of 16.4 and 12.4 J/cm3 were obtained in the PNZSTT and PNZSTO film, respectively. Moreover, a huge harvested energy density per cycle of W = 7.35 and 5.35 J/cm3 was also predicted in the PNZSTT and PNZSTO film at 1 kHz, respectively. The good energy-storage performance and giant thermal-electrical energy harvesting effect of the PNZST antiferroelectric thin films maybe make a great impact on the modern energy-storage technology and the thermal-electrical energy harvesting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. X. Wang, J. Shen, T. Yang, Y. Dong, Y. Liu, High energy-storage performance and dielectric properties of antiferroelectric (Pb0.97La0.02)(Zr0.5Sn0.5xTix)O3 Ceramic. J. Alloys Compd. 655, 309–313 (2016)

    Article  Google Scholar 

  2. D. Zheng, R. Zuo, D. Zhang, Y. Li, Novel BiFeO3-BaTiO3-Ba(Mg1/3Nb2/3)O3 lead-free relaxor ferroelectric ceramics for energy-storage capacitors. J. Am. Ceram. Soc. 98, 2692–2695 (2015)

    Article  Google Scholar 

  3. X. Wang, L.M. Zhang, X. Hao, S. An, High energy-storage performance of 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 relaxor ferroelectric thin films prepared by rf magnetron sputtering. Mater. Res. Bull. 65, 73–79 (2015)

    Article  Google Scholar 

  4. Q. Xu, H. Liu, Z. Song, X. Huang, A. Ullah, L. Zhang, J. Xie, H. Hao, M. Cao, Z. Yao, A new energy-storage ceramic system based on Bi0.5Na0.5TiO3 ternary solid solution. J. Mater. Sci.: Mater. Electron. 27, 322–329 (2016)

    Google Scholar 

  5. H. Wang, J. Liu, J. Zhai, B. Shen, Ultra high energy-storage density in the barium potassium niobate-based glass-ceramics for energy-storage applications. doi:10.1111/jace.14446

  6. X. Wang, T. Yang, J. Shen, High-energy storage performance in (Pb0.98La0.02)(Zr0.45Sn0.55)0.995O3 AFE thick films fabricated via a rolling process. Applications. doi:10.1111/jace.14406

  7. X. Wei, C. Jia, K. Roleder, N. Setter, Polarity of translation boundaries in antiferroelectric PbZrO3. Mater. Res. Bull. 62, 101–105 (2015)

    Article  Google Scholar 

  8. N. Vittayakorn, B. Boonchom, Effect of BiAlO3 modification on the stability of antiferroelectric phase in PbZrO3 ceramics prepared by conventional solid state reaction. J. Alloys Compd. 509, 2304–2310 (2011)

    Article  Google Scholar 

  9. Z. Liu, X. Chen, W. Peng, C. Xu, X. Dong, F. Cao, G. Wang, Temperature-dependent stability of energy storage properties of Pb0.97La0.02(Zr0.58Sn0.335Ti0.085)O3 antiferroelectric ceramics for pulse power capacitors. Appl. Phys. Lett. 106, 262901-1–262901-4 (2015)

    Google Scholar 

  10. L. Zhang, S. Jiang, Y. Zeng, M. Fu, K. Han, Q. Li, Q. Wang, G. Zhang, Y doping and grain size co-effects on the electrical energy storage performance of (Pb0.87Ba0.1La0.02)(Zr0.65Sn0.3Ti0.05)O3 anti-ferroelectric ceramics. Ceram. Int. 40, 5455–5460 (2014)

    Article  Google Scholar 

  11. Q. Zhang, X. Liu, Y. Zhang, X. Song, J. Zhu, I. Baturin, J. Chen, Effect of barium content on dielectric and energy storage properties of (Pb, La, Ba)(Zr, Sn, Ti)O3 Ceramics. Ceram. Int. 41, 3030–3035 (2015)

    Article  Google Scholar 

  12. X. Hao, Y. Wang, L. Zhang, L. Zhang, S. An, Composition-dependent dielectric and energy-storage properties of (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric thick films. Appl. Phys. Lett. 102, 163903-1-4 (2013)

  13. J. Ge, D. Remiens, X. Dong, Y. Chen, J, Costecalde, F. Gao, F. Cao, G. Wang, Enhancement of energy storage in epitaxial PbZrO3 antiferroelectric films using strain engineering. Appl. Phys. Lett. 105, 112908-1-5 (2014)

  14. S. Chen, X. Wang, T. Yang, J. Wang, Composition-dependent dielectric properties and energy storage performance of (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric ceramics. J. Electroceram. 32, 307–310 (2014)

    Article  Google Scholar 

  15. J. Wang, T. Yang, S. Chen, X. Yao, Small hysteresis and high energy storage power of antiferroelectric ceramics. Funct. Mater. Lett. 07, 1350064-1-4 (2014)

  16. J. Yi, L. Zhang, B. Xie, S. Jiang, The influence of temperature induced phase transition on the energy storage density of anti-ferroelectric ceramics. J. Appl. Phys. 118, 124107-1-6 (2015)

  17. Y. Zhao, X. Hao, Q. Zhang, Energy-storage properties and electrocaloric effect of Pb(1−3x/2)LaxZr0.85Ti0.15O3 antiferroelectric thick films. ACS Appl. Mater. Interfaces 6, 11633–11639 (2014)

    Article  Google Scholar 

  18. B. Peng, Q. Zhang, X. Li, T. Sun, H. Fan, S. Ke, M. Ye, Y. Wang, W. Lu, H. Niu, J.F. Scott, X. Zeng, H. Huang, Giant electric energy density in epitaxial lead-free thin films with coexistence of ferroelectrics and antiferroelectrics. Adv. Electron. Mater. 1, 1500052-1-7 (2015)

  19. G. Sebald, D. Guyomar, A. Agbossou, On thermoelectric and pyroelectric energy harvesting. Smart Mater. Struct. 18, 125006-1-7 (2009)

  20. W.H. Clingman, R.G. Moore Jr., Application of ferroelectricity to energy conversion processes. J. Appl. Phys. 32, 675–681 (1961)

    Article  Google Scholar 

  21. E. Fatuzzo, H. Kiess, R. Nitsche, Theoretical efficiency of pyroelectric power converters. J. Appl. Phys. 37, 510–516 (1966)

    Article  Google Scholar 

  22. R.B. Olsen, D.A. Bruno, J. Merv Briscoe, Pyroelectric conversion cycles. J. Appl. Phys. 58, 4709–4716 (1985)

    Article  Google Scholar 

  23. R. Olsen, D. Evans, Pyroelectric energy conversion: hysteresis loss and temperature sensitivity of a ferroelectric material. J. Appl. Phys. 54, 5941–5944 (1983)

    Article  Google Scholar 

  24. R. Olsen, D. Bruno, J. Briscoe, E. Jacobs, Pyroelectric conversion cycle of vinylidene fluoride-trifluoroethylene copolymer. J. Appl. Phys. 57, 5036–5042 (1985)

    Article  Google Scholar 

  25. F.Y. Lee, S. Goljahi, I.M. McKinley, C.S. Lynch, L. Pilon, Pyroelectric waste heat energy harvesting using relaxor ferroelectric 8/65/35 PLZT and the olsen cycle. Smart Mater. Struct. 21, 25021-1-12 (2012)

  26. A. Navid, C.S. Lynch, L. Pilon, Purified and porous poly(vinylidene fluoride-trifluoroethylene) thin films for pyroelectric infrared sensing and energy harvesting. Smart Mater. Struct. 19, 55001–55006 (2010)

    Article  Google Scholar 

  27. H. Zhu, S. Pruvost, D. Guyomar, A. Khodayari, Thermal energy harvesting from Pb(Zn1/3Nb2/3)0.955Ti0.045O3 single crystals phase transitions. J. Appl. Phys. 106, 124102-1-7 (2009)

  28. G. Vats, R. Vaish, C. Bowen, An analysis of lead-free (Bi0.5Na0.5)0.915-(Bi0.5K0.5)0.05Ba0.02Sr0.015TiO3 ceramic for efficient refrigeration and thermal energy harvesting. J. Appl. Phys. 115, 13505-1-5 (2014)

  29. X. Hao, Y. Zhao, S. An, Giant thermal-electrical energy harvesting effect of Pb0.97La0.02(Zr0.75Sn0.18Ti0.07)O3 antiferroelectric thick film. J. Am. Ceram. Soc. 98, 361–365 (2015)

    Article  Google Scholar 

  30. X. Hao, Y. Zhao, Q. Zhang, Phase structure tuned electrocaloric effect and pyroelectric energy harvesting performance of (Pb0.97La0.02)(Zr, Sn, Ti)O3 antiferroelectric thick films. J. Phys. Chem. C 119, 18877–18885 (2015)

    Article  Google Scholar 

  31. B. Xu, Y. Ye, L. Cross, Dielectric properties and field-induced phase switching of lead zirconate titanate stannate antiferroelectric thick films on silicon substrates. J. Appl. Phys. 87, 2507–2515 (2000)

    Article  Google Scholar 

  32. As Mischenko, Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science 311, 1270–1271 (2006)

    Article  Google Scholar 

  33. S.S. Sengupta, D. Roberts, J.F. Li, M.C. Kim, D.A. Payne, Field-induced phase switching and electrically driven strains in sol-gel derived antiferroelectric (Pb, Nb)(Zr, Sn, Ti)O3 thin layers. J. Appl. Phys. 78, 1171–1177 (1995)

    Article  Google Scholar 

  34. X. Hao, J. Zhai, F. Shang, J. Zhou, S. An, Orientation-dependent phase switching process and strains of Pb0.97La0.02(Zr0.85Sn0.13Ti0.02)O3 antiferroelectric thin films. J. Appl. Phys. 107, 116101-1-3 (2010)

  35. X. Tang, J. Wang, X. Wang, H. Chan, Electrical properties of highly (111)-oriented lead zirconate thin filMS. Solid State Commun. 130, 373–377 (2004)

    Article  Google Scholar 

  36. M.-J. Pan, K.A. Markowski, S.-E. Park, S.Yoshikawa, L.E. Cross, Antiferroelectric-to-ferroelectric phase switching PLSnZT ceramics. I. Structure, compositional modification and electrical properties, in Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics, vol, 1, pp 267–270 (1996)

  37. W.-H. Chan, Z. Xu, T.F. Hung, H. Chen, Effect of La substitution on phase transitions in lead zirconate stannate titanate (55/35/10) ceramics. J. Appl. Phys. 96, 6606–6610 (2004)

    Article  Google Scholar 

  38. Q. Zhang, Y. Zhang, T. Yang, S. Jiang, J. Wang, S. Chen, G. Li, X. Yao, Effect of compositional variations on phase transition and electric field-induced strain of (Pb, Ba) (Nb, Zr, Sn, Ti)O3 ceramics. Ceram. Int. 39, 5403–5406 (2013)

    Article  Google Scholar 

  39. X. Wang, L. Zhang, X. Hao, S. An, B. Song, Dielectric properties and energy-storage performances of (1−x)Pb(Mg1/3Nb2/3)O3−xPbTiO3 relaxor ferroelectric thin films. J. Mater. Sci. Mater. Electron. 26, 9583–9590 (2015)

    Article  Google Scholar 

  40. J. Wang, T. Yang, S. Chen, X. Yao, A. Peláiz-Barranco, DC electric field dependence for the dielectric permittivity in antiferroelectric and ferroelectric states. J. Alloys Compd. 587, 827–829 (2014)

    Article  Google Scholar 

  41. X. Hao, J. Zhai, Composition-dependent electrical properties of (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric thin films grown on platinum-buffered silicon substrates. J. Phys. D Appl. Phys. 40, 7447–7453 (2007)

    Article  Google Scholar 

  42. B. Ma, D-k Kwon, M. Narayanan, U. Balu Balachandran, Dielectric properties and energy storage capability of antiferroelectric Pb0.92La0.08Zr0.95Ti0.05O3 film-on-foil capacitors. J. Mater. Res. 24, 2993–2996 (2009)

    Article  Google Scholar 

  43. X. Hao, J. Zhai, X. Yao, Metal-organic chemical liquid deposited (110)-preferred LaNiO3 buffer layer for Pb0.97La0.02(Zr0.85Sn0.13Ti0.02)O3 antiferroelectric films. Ceram. Int. 34, 1007–1010 (2008)

    Article  Google Scholar 

  44. X. Hao, J. Zhai, L. Kong, Z. Xu, A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Prog. Mater Sci. 63, 1–57 (2014)

    Article  Google Scholar 

  45. G. Samara, T. Sakudo, K. Yoshimitsu, Important generalization concerning the role of competing forces in displacive phase transitions. Phys. Rev. Lett. 35, 1767–1769 (1975)

    Article  Google Scholar 

  46. X Li, J Zhai, H Chen, (Pb, La)(Zr, Sn, Ti)O3 Antiferroelectric thin films grown on LaNiO3-buffered and Pt-buffered silicon substrates by sol-gel processing. J. Appl. Phys. 97, 24102-1-7 (2005)

  47. T. Chen, J. Wang, X. Zhong, F. Wang, B. Li, Y. Zhou, High energy density capacitors based on 0.88BaTiO3-0.12Bi(Mg0.5, Ti0.5)O3/PbZrO3 multilayered thin films. Ceram. Int. 40, 5327–5332 (2014)

    Article  Google Scholar 

  48. Y. Zhao, X. Hao, M. Li, Dielectric properties and energy-storage performance of (Na0.5Bi0.5)TiO3 thick films. J. Alloys Compd. 601, 112–115 (2014)

    Article  Google Scholar 

  49. T.M. Correia, M. McMillen, M.K. Rokosz, P.M. Weaver, J.M. Gregg, G. Viola, M.G. Cain, A lead-free and high-energy density ceramic for energy storage applications. J. Am. Ceram. Soc. 96, 2699–2702 (2013)

    Article  Google Scholar 

  50. T.K. Chin, F.Y. Lee, I.M. McKinley, S. Goljahi, C.S. Lynch, L. Pilon, Direct thermal to electrical energy conversion using 9.5/65/35 PLZT ceramics in the ergodic relaxor phase. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 2373–2384 (2012)

    Article  Google Scholar 

  51. F.Y. Lee, H.R Jo, C.S. Lynch, L. Pilon, Pyroelectric energy conversion using PLZT ceramics and the ferroelectric-ergodic relaxor phase transition. Smart Mater. Struct. 22, 025038-1-16 (2013)

  52. R. Kandilian, A. Navid, L. Pilon, The pyroelectric energy harvesting capabilities of PMN-PT near the morphotropic phase boundary. Smart Mater. Struct. 20, 055020-1-10 (2011)

  53. H.R Jo, C.S. Lynch, Phase transformation based pyroelectric waste heat energy harvesting with improved practicality. Smart Mater. Struct. 25, 035009-1-12 (2016)

  54. R.B. Olsen, J.M. Briscoe, D.A. Bruno, W.F. Butler, A pyroelectric energy converter which employs regeneration. Ferroelectrics 38, 975–978 (1981)

    Article  Google Scholar 

  55. R.B. Olsen, D.A. Bruno, J.M. Briscoe, J. Dullea, Cascaded pyroelectric energy converter. Ferroelectrics 59, 205–219 (1984)

    Article  Google Scholar 

  56. Z. Xu, J. Zhai, W. Chan, H. Chen, Phase transformation and electric field tunable pyroelectric behavior of Pb(Nb, Zr, Sn, Ti)O3 and (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric thin films. Appl. Phys. Lett. 88, 132908-1-3 (2006)

  57. Z. Hu, B. Ma, R. Koritala, U. Balachandran, Temperature-dependent energy storage properties of antiferroelectric Pb0.96La0.04Zr0.98Ti0.02O3 thin films. Appl. Phys. Lett. 104, 263902-1-4 (2014)

  58. B. Ma, D.-K. Kwon, M. Narayanan, U, Balu Balachandran, U. Balachandran, Leakage current characteristics and dielectric breakdown of antiferroelectric Pb0.92La0.08Zr0.95Ti0.05O3 film capacitors grown on metal foils. J. Phys. D Appl. Phys. 41, 205003-1-7 (2008)

  59. Y. Zhao, X. Hao, Q. Zhang, A giant electrocaloric effect of a Pb0.97La0.02(Zr0.75Sn0.18Ti0.07)O3 antiferroelectric thick film at room temperature. J. Mater. Chem. 3, 1694–1699 (2015)

    Google Scholar 

  60. B.H. Ma, S. Chao, M. Narayanan, S.S. Liu, S. Tong, R.E. Koritala, U. Balachandran, Dense PLZT films grown on nickel substrates by PVP-modified sol-gel method. J. Mater. Sci. 48, 1180–1185 (2013)

    Article  Google Scholar 

  61. H. Gao, X. Hao, Q. Zhang, S. An, L.B. Kong, Electrocaloric effect and energy-storage performance in grain-size-engineered PBLZT antiferroelectric thick films. J. Mater. Sci. Mater. Electron. doi:10.1007/s10854-016-5114-0

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the Ministry of Sciences and Technology of China through 973-Project (2014CB660811), the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (NMGIRT-A1605), the Natural Science Foundation of Inner Mongolia (2015JQ04), the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region, the Grassland Talent Plan of Inner Mongolia Autonomous Region, the Innovation Guide Fund of Baotou (CX2015-8) and the Innovation Fund of Inner Mongolia University of Science and Technology (2014QNGG01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xihong Hao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Hao, X., Zhang, Q. et al. Energy-storage performance and pyroelectric energy harvesting effect of PNZST antiferroelectric thin films. J Mater Sci: Mater Electron 28, 1438–1448 (2017). https://doi.org/10.1007/s10854-016-5679-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5679-7

Keywords

Navigation