Skip to main content
Log in

Facile and low-temperature synthesis approach to fabricate Sm0.5Sr0.5CoO3−δ cathode material for solid oxide fuel cell

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Herein, we report a facilely synthesized Sm0.5Sr0.5CoO3 (SSC) nano-catalyst as a cathode material for the solid oxide fuel cell (SOFC). The SSC nano-catalyst was synthesized by a sol–gel process using citric acid and metal nitrates and calcination was performed at a relatively low temperature of 1250 ℃. The crystallinity and morphology of the catalyst were observed by the X-ray diffraction and scanning electron microscope. The average particle size of the SSC powder was 100 nm after calcination at 1250 °C. The resulting SSC material was employed as a cathode for the SOFC. The SOFC cell with highly active SSC showed a peak power density of 900 mWcm−2 at 700 °C. The single cell with an SSC cathode showed excellent stability under the accelerated operating conditions of 0.5A/cm2 and 650 °C for 1250 min. The cell performance was enhanced during the initial hours of the long-term operation which is attributed to the cathode activation process and improved cathode/buffer layer interface contact. This work features a cost-effective, scalable, and reproducible method for the production of highly robust SSC cathode material for the SOFC under relatively low calcination temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.C. Singhal, Solid oxide fuel cells for stationary, mobile, and military applications. Solid State Ion. 152–153, 405–410 (2002). https://doi.org/10.1016/S0167-2738(02)00349-1

    Article  Google Scholar 

  2. M.Z. Khan, M.T. Mehran, R.-H. Song, J.-W. Lee, S.-B. Lee, T.-H. Lim, A simplified approach to predict performance degradation of a solid oxide fuel cell anode. J. Power Sources. 391, 94–105 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.080

    Article  CAS  Google Scholar 

  3. S. Kim, D. Woo Joh, D.-Y. Lee, J. Lee, H. Sung Kim, M. Zubair Khan, J. Eun Hong, S.-B. Lee, S. Joo Park, R.-H. Song, M. Taqi Mehran, C. Kyun Rhee, T.-H. Lim, Microstructure tailoring of solid oxide electrolysis cell air electrode to boost performance and long-term durability. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.128318

    Article  Google Scholar 

  4. M.Z. Khan, A. Iltaf, H.A. Ishfaq, F.N. Khan, W.H. Tanveer, R.-H. Song, M.T. Mehran, M. Saleem, A. Hussain, Z. Masaud, Flat-tubular solid oxide fuel cells and stacks: a review. J. Asian Ceram. Soc. 9, 745–770 (2021). https://doi.org/10.1080/21870764.2021.1920135

    Article  Google Scholar 

  5. M.Z. Khan, R.-H. Song, S.-B. Lee, T.-H. Lim, Lifetime prediction of anode-supported solid oxide fuel cell on the basis of individual components degradation. ECS Trans. 91, 621–627 (2019). https://doi.org/10.1149/09101.0621ecst

    Article  CAS  Google Scholar 

  6. H. Yokokawa, N. Sakai, T. Horita, K. Yamaji, M.E. Brito, H. Kishimoto, Thermodynamic and kinetic considerations on degradations in solid oxide fuel cell cathodes. J. Alloys Compd. 452, 41–47 (2008). https://doi.org/10.1016/j.jallcom.2006.12.150

    Article  CAS  Google Scholar 

  7. E.D. Wachsman, K.T. Lee, Lowering the temperature of solid. Science 334(2011), 935–939 (1979). https://doi.org/10.1126/science.1204090

    Article  CAS  Google Scholar 

  8. M.T. Mehran, T. Kim, M.Z. Khan, S. Lee, T. Lim, R. Song, Highly durable nano-oxide dispersed ferritic stainless steel interconnects for intermediate temperature solid oxide fuel cells. J. Power Sources. 439, 227109 (2019). https://doi.org/10.1016/j.jpowsour.2019.227109

    Article  CAS  Google Scholar 

  9. J.H. Park, H.-N. Im, K.T. Lee, Understanding redox cycling behavior of Ni–YSZ anodes at 500 °C in solid oxide fuel cells by electrochemical impedance analysis. J. Korean Ceram. Soc. 58, 606–613 (2021). https://doi.org/10.1007/s43207-021-00136-2

    Article  CAS  Google Scholar 

  10. A. Hussain, R.-H. Song, D.W. Joh, J.-E. Hong, S.-B. Lee, T.-H. Lim, Development of high-performance anode-supported planar SOFC with large area by 4-layer co-firing process. ECS Trans. 103, 73–81 (2021). https://doi.org/10.1149/10301.0073ecst

    Article  CAS  Google Scholar 

  11. T.-H. Kim, M.Z. Khan, R.-H. Song, S.-B. Lee, T.-H. Lim, J.-E. Hong, Development of oxide dispersed ferritic steel as a solid oxide fuel cell interconnect. ECS Trans. 91, 2307–2312 (2019). https://doi.org/10.1149/09101.2307ecst

    Article  CAS  Google Scholar 

  12. H.A. Ishfaq, M.Z. Khan, M.T. Mehran, R. Raza, W.H. Tanveer, S. Bibi, A. Hussain, H.A. Muhammad, R.-H. Song, Boosting performance of the solid oxide fuel cell by facile nano-tailoring of La0.6Sr0.4CoO3-δ cathode. Int. J. Hydrogen Energy (2021). https://doi.org/10.1016/j.ijhydene.2021.11.109

    Article  Google Scholar 

  13. M.Z. Khan, R.-H. Song, M.T. Mehran, S.-B. Lee, T.-H. Lim, Controlling cation migration and inter-diffusion across cathode/interlayer/electrolyte interfaces of solid oxide fuel cells: a review. Ceram. Int. 47, 5839–5869 (2021). https://doi.org/10.1016/j.ceramint.2020.11.002

    Article  CAS  Google Scholar 

  14. J. Seo, H.-W. Kim, J.H. Yu, H.J. Park, Electrochemical properties of Ba0.5Sr0.5Co0.8Fe0.2O3 and BaZr0.65Ce0.20Y0.15O3 composite cathodes on Y-doped barium–cerium–zirconium oxide solid electrolyte. J. Korean Ceram. Soc. 59, 217–223 (2022). https://doi.org/10.1007/s43207-021-00169-7

    Article  CAS  Google Scholar 

  15. Y. Li, W. Zhang, Y. Zheng, J. Chen, B. Yu, Y. Chen, M. Liu, Controlling cation segregation in perovskite-based electrodes for high electro-catalytic activity and durability. Chem. Soc. Rev. 46, 6345–6378 (2017). https://doi.org/10.1039/C7CS00120G

    Article  CAS  Google Scholar 

  16. Z. Masaud, M. Zubair Khan, A. Hussain, H. Ahmad Ishfaq, R.-H. Song, S.-B. Lee, D.W. Joh, T.-H. Lim, Recent activities of solid oxide fuel cell research in the 3D printing processes. Trans. Korean Hydrogen New Energy Soc. 32, 11–40 (2021). https://doi.org/10.7316/KHNES.2021.32.1.11

    Article  Google Scholar 

  17. M.Z. Khan, R.-H. Song, S.-B. Lee, J.-W. Lee, T.-H. Lim, S.-J. Park, Effect of GDC interlayer on the degradation of solid oxide fuel cell cathode during accelerated current load cycling. Int. J. Hydrogen Energy. 39, 20799–20805 (2014). https://doi.org/10.1016/j.ijhydene.2014.07.022

    Article  CAS  Google Scholar 

  18. Z. Duan, M. Yang, A. Yan, Z. Hou, Y. Dong, Y. Chong, M. Cheng, W. Yang, Ba0.5Sr0.5Co0.8Fe0.2O3−δ as a cathode for IT-SOFCs with a GDC interlayer. J. Power Sources. 160, 57–64 (2006). https://doi.org/10.1016/j.jpowsour.2006.01.092

    Article  CAS  Google Scholar 

  19. D. Kim, I. Jeong, K.J. Kim, K.T. Bae, D. Kim, J. Koo, H. Yu, K.T. Lee, A brief review of heterostructure electrolytes for high-performance solid oxide fuel cells at reduced temperatures. J. Korean Ceram. Soc. 59, 131–152 (2022). https://doi.org/10.1007/s43207-021-00175-9

    Article  CAS  Google Scholar 

  20. S. Jo, B. Sharma, D.-H. Park, J. Myung, Materials and nano-structural processes for use in solid oxide fuel cells: a review. J. Korean Ceram. Soc. 57, 135–151 (2020). https://doi.org/10.1007/s43207-020-00022-3

    Article  CAS  Google Scholar 

  21. S.F. Mohammad, S. Ahmad, H.A. Rahman, A. Muchtar, Effect of SSC loading and calcination temperature on the phase and microstructure formation of SSC-SDCC cathode. Int. J. Integr. Eng. 11, 161–168 (2019). https://doi.org/10.30880/ijie.2019.11.07.021

    Article  Google Scholar 

  22. R. Liu, D. Xu, S. Li, Z. Lü, Y. Xue, D. Wang, W. Su, Solid-state synthesis and properties of SmCoO3. Front. Chem. China 1, 398–401 (2006). https://doi.org/10.1007/s11458-006-0065-2

    Article  Google Scholar 

  23. R. Pelosato, G. Cordaro, D. Stucchi, C. Cristiani, G. Dotelli, Cobalt based layered perovskites as cathode material for intermediate temperature solid oxide fuel cells: a brief review. J. Power Sources. 298, 46–67 (2015). https://doi.org/10.1016/j.jpowsour.2015.08.034

    Article  CAS  Google Scholar 

  24. S.J. Skinner, Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes. Int. J. Inorg. Mater. 3, 113–121 (2001). https://doi.org/10.1016/S1466-6049(01)00004-6

    Article  CAS  Google Scholar 

  25. Y. Cao, M.J. Gadre, A.T. Ngo, S.B. Adler, D.D. Morgan, Factors controlling surface oxygen exchange in oxides. Nat. Commun. 10, 1346 (2019). https://doi.org/10.1038/s41467-019-08674-4

    Article  CAS  Google Scholar 

  26. M.T. Mehran, M.Z. Khan, S.-B. Lee, T.-H. Lim, S. Park, R.-H. Song, Improving sulfur tolerance of Ni-YSZ anodes of solid oxide fuel cells by optimization of microstructure and operating conditions. Int. J. Hydrogen Energy. 43, 11202–11213 (2018). https://doi.org/10.1016/j.ijhydene.2018.04.200

    Article  CAS  Google Scholar 

  27. J.M. Vohs, R.J. Gorte, High-performance SOFC cathodes prepared by infiltration. Adv. Mater. 21, 943–956 (2009). https://doi.org/10.1002/adma.200802428

    Article  CAS  Google Scholar 

  28. D. Ding, X. Li, S.Y. Lai, K. Gerdes, M. Liu, Enhancing SOFC cathode performance by surface modification through infiltration. Energy Environ Sci. 7, 552 (2014). https://doi.org/10.1039/c3ee42926a

    Article  CAS  Google Scholar 

  29. Z. Jiang, C. Xia, F. Chen, Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/impregnation technique. Electrochim Acta. 55, 3595–3605 (2010). https://doi.org/10.1016/j.electacta.2010.02.019

    Article  CAS  Google Scholar 

  30. T.E. Burye, J.D. Nicholas, Improving La0.6Sr0.4Co0.8Fe0.2O3−δ infiltrated solid oxide fuel cell cathode performance through precursor solution desiccation. J Power Sources. 276, 54–61 (2015). https://doi.org/10.1016/j.jpowsour.2014.11.082

    Article  CAS  Google Scholar 

  31. T.E. Burye, J.D. Nicholas, Precursor solution additives improve desiccated La0.6Sr0.4Co08Fe0.2O3–x infiltrated solid oxide fuel cell cathode performance. J Power Sources. 301, 287–298 (2016). https://doi.org/10.1016/j.jpowsour.2015.10.012

    Article  CAS  Google Scholar 

  32. Y.-H. Song, S.U. Rehman, H.-S. Kim, H.-S. Song, R.-H. Song, T.-H. Lim, J.-E. Hong, S.-J. Park, J.-Y. Huh, S.-B. Lee, Facile surface modification of LSCF/GDC cathodes by epitaxial deposition of Sm0.5 Sr0.5 CoO 3 via ultrasonic spray infiltration. J. Mater. Chem. A Mater. 8, 3967–3977 (2020). https://doi.org/10.1039/C9TA11704K

    Article  CAS  Google Scholar 

  33. W. Wang, M.D. Gross, J.M. Vohs, R.J. Gorte, The stability of LSF-YSZ electrodes prepared by infiltration. J. Electrochem. Soc. 154, B439 (2007). https://doi.org/10.1149/1.2709510

    Article  CAS  Google Scholar 

  34. S. Ke, Y. Wang, Z. Pan, Effects of precipitant and surfactant on co-precipitation synthesis of Nd2Si2O7 ceramic pigment. Dyes Pigm. 118, 145–151 (2015). https://doi.org/10.1016/j.dyepig.2015.03.016

    Article  CAS  Google Scholar 

  35. C.R. Michel, E. Delgado, G. Santillán, A.H. Martínez, A. Chávez-Chávez, An alternative gas sensor material: synthesis and electrical characterization of SmCoO3. Mater. Res. Bull. 42, 84–93 (2007). https://doi.org/10.1016/j.materresbull.2006.05.008

    Article  CAS  Google Scholar 

  36. H.Y. Tu, Y. Takeda, N. Imanishi, O. Yamamoto, Ln1−Sr CoO3(Ln = Sm, Dy) for the electrode of solid oxide fuel cells. Solid State Ion. 100, 283–288 (1997). https://doi.org/10.1016/S0167-2738(97)00360-3

    Article  CAS  Google Scholar 

  37. M. Thommes, K. Kaneko, Av. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chemi. 87, 1051–1069 (2015). https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  38. V. Mariyappan, M. Keerthi, S.-M. Chen, G. Boopathy, Facile synthesis of α -Sm2S3/MoS 2 bimetallic sulfide as a high-performance electrochemical sensor for the detection of antineoplastic drug 5-fluorouracil in a biological samples. J Electrochem Soc. 167, 117506 (2020). https://doi.org/10.1149/1945-7111/aba1a5

    Article  CAS  Google Scholar 

  39. F.-H. Chen, J.-L. Her, S. Mondal, M.-N. Hung, T.-M. Pan, Impact of Ti doping in Sm2 O3 dielectric on electrical characteristics of a-InGaZnO thin-film transistors. Appl. Phys. Lett. 102, 193515 (2013). https://doi.org/10.1063/1.4807014

    Article  CAS  Google Scholar 

  40. P.A.W. van der Heide, Systematic x-ray photoelectron spectroscopic study of La1?xSrx-based perovskite-type oxides. Surf. Interface Anal. 33, 414–425 (2002). https://doi.org/10.1002/sia.1227

    Article  CAS  Google Scholar 

  41. D. Kim, J.W. Park, B.-H. Yun, J.H. Park, K.T. Lee, Correlation of time-dependent oxygen surface exchange kinetics with surface chemistry of La0.6 Sr0.4 Co0.2 Fe08 O 3−δ catalysts. ACS Appl. Mater. Interfaces. 11, 31786–31792 (2019). https://doi.org/10.1021/acsami.9b06569

    Article  CAS  Google Scholar 

  42. A. Nenning, A.K. Opitz, C. Rameshan, R. Rameshan, R. Blume, M. Hävecker, A. Knop-Gericke, G. Rupprechter, B. Klötzer, J. Fleig, Ambient pressure XPS study of mixed conducting perovskite-type SOFC cathode and anode materials under well-defined electrochemical polarization. J. Phys. Chem. C. 120, 1461–1471 (2016). https://doi.org/10.1021/acs.jpcc.5b08596

    Article  CAS  Google Scholar 

  43. X. Ge, Z. Li, L. Yin, Metal-organic frameworks derived porous core/shellCoP@C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery. Nano Energy 32, 117–124 (2017). https://doi.org/10.1016/j.nanoen.2016.11.055

    Article  CAS  Google Scholar 

  44. M.Z. Khan, M.T. Mehran, R.-H. Song, J.-W. Lee, S.-B. Lee, T.-H. Lim, S.-J. Park, Effect of GDC interlayer thickness on durability of solid oxide fuel cell cathode. Ceram. Int. 42, 6978–6984 (2016). https://doi.org/10.1016/j.ceramint.2016.01.085

    Article  CAS  Google Scholar 

  45. M.Z. Khan, M.T. Mehran, R.H. Song, S.B. Lee, T.H. Lim, Effects of applied current density and thermal cycling on the degradation of a solid oxide fuel cell cathode. Int. J. Hydrogen Energy. 43, 12346–12357 (2018). https://doi.org/10.1016/j.ijhydene.2018.04.175

    Article  CAS  Google Scholar 

  46. M.Z. Khan, R.H. Song, A. Hussain, S.B. Lee, T.H. Lim, J.E. Hong, Effect of applied current density on the degradation behavior of anode-supported flat-tubular solid oxide fuel cells. J. Eur. Ceram. Soc. 40, 1407–1417 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.11.017

    Article  CAS  Google Scholar 

  47. C. Xia, Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs. Solid State Ion. 149, 11–19 (2002). https://doi.org/10.1016/S0167-2738(02)00131-5

    Article  CAS  Google Scholar 

  48. J. Chen, X. Yang, D. Wan, B. Li, L. Lei, T. Tian, B. Chi, F. Chen, Novel structured Sm0.5Sr0.5CoO3-δ cathode for intermediate and low temperature solid oxide fuel cells. Electrochim Acta. 341, 136031 (2020). https://doi.org/10.1016/j.electacta.2020.136031

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the technical resources and lab facilities from the Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Haripur, Pakistan, and Sungkyunkwan University, Suwon, South Korea. The authors are thankful to Dr. Rizwan Raza and Muhammad Measam Ali for their support and valuable suggestions in this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Zubair Khan or Muhammad Kashif Khan.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S., Kazmi, W.W., Hussain, A. et al. Facile and low-temperature synthesis approach to fabricate Sm0.5Sr0.5CoO3−δ cathode material for solid oxide fuel cell. J. Korean Ceram. Soc. 60, 272–282 (2023). https://doi.org/10.1007/s43207-022-00261-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00261-6

Keywords

Navigation