Skip to main content

Advertisement

Log in

Effect of hydrothermal temperature on phase transformation and mechanical property of non-sintered hydroxyapatite and its in vitro solubility

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Sintered Hydroxyapatite (HA) has been used as bone graft for years. Nevertheless, its slow resorbability is the main drawbacks. This study aims to evaluate the effect of temperature on phase transformation and mechanical property of non-sintered HA obtained from gypsum block under hydrothermal and its solubility compared to commercially available sintered HA. HA block was fabricated from gypsum block in Na3PO4.12H2O solution at 100 °C, 140 °C, and 180 °C for 24 h under hydrothermal. It was found that pure HA block could be obtained at 180 °C. The diametral tensile strength (DTS) of the obtained HA block decreased considerably compared to set gypsum block. The obtained HA has higher solubility in acetate buffer compared to commercial sintered HA, which predicts its higher osteoclastic resorption. In Tris–HCl buffer, the obtained HA has lower solubility compared to the commercial sintered HA. In conclusion, non-sintered HA block could be obtained via hydrothermal at 180 °C for 24 h. The DTS values of the obtained blocks decreased with the increase of hydrothermal temperature. The current non-sintered HA block showed better solubility in acetate buffer compared to sintered HA, which simulated its resorbability in osteoclastic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.K. Odusote, Y. Danyuo, A.D. Baruwa, A.A. Azeez, Synthesis and characterization of hydroxyapatite from bovine bone for production of dental implants. J. Appl. Biomate. Functio. Mater (2019). https://doi.org/10.1177/2280800019836829

    Article  Google Scholar 

  2. D.S. Gomes, A.M.C. Santos, G.A. Neves, R.R. Menezes, A brief review on hydroxyapatite production and use in biomedicine. Ceramica (2019). https://doi.org/10.1590/0366-69132019653742706

    Article  Google Scholar 

  3. A. Szcześ, L. Hołysz, E. Chibowski, Synthesis of hydroxyapatite for biomedical applications. Adv. Coll. Interf. Sci (2017). https://doi.org/10.1016/j.cis.2017.04.007

    Article  Google Scholar 

  4. V.P. Orlovskii, V.S. Komlev, S.M. Barinov, Hydroxyapatite and hydroxyapatite-based ceramics. Inorganic Mater (2002). https://doi.org/10.1023/A:1020585800572

    Article  Google Scholar 

  5. K. Ishikawa, Y. Miyamoto, A. Tsuchiya, K. Hayashi, K. Tsuru, G. Ohe, Physical and histological comparison of hydroxyapatite carbonate apatite, and β-tricalcium phosphate bone substitutes. Materials (2018). https://doi.org/10.3390/ma11101993

    Article  Google Scholar 

  6. O. Prokopiev, I. Sevostianov, Dependence of the mechanical properties of sintered hydroxyapatite on the sintering temperature. Mater. Sci. Eng. A (2006). https://doi.org/10.1016/j.msea.2006.05.158

    Article  Google Scholar 

  7. K. Ishikawa, Bone substitute fabrication based on dissolution-precipitation reactions. Materials (2010). https://doi.org/10.3390/ma3021138

    Article  Google Scholar 

  8. K. Ishikawa, Carbonate apatite bone replacement: learn from the bone. J. Ceram. Soc. Japan (2019). https://doi.org/10.2109/jcersj2.19042

    Article  Google Scholar 

  9. M.U. Hassan, M. Akmal, H.J. Ryu, Cold sintering of as-dried nanostructured calcium hydroxyapatite without using additives. J. Mater. Res. Technol (2021). https://doi.org/10.1016/j.jmrt.2021.01.060

    Article  Google Scholar 

  10. H. Guo, A. Baker, J. Guo, C.A. Randall, Cold Sintering Process: a novel technique for low-temperature ceramic processing of ferroelectrics. J. Am. Ceram. Soc. (2016). https://doi.org/10.1111/jace.14554

    Article  Google Scholar 

  11. M. Figueiredo, J. Henriques, G. Martins, F. Guerra, F. Judas, H. Figueiredo, Physicochemical characterization of biomaterials commonly used in dentistry as bone substitutes - comparison with human bone. J. Biomed. Mater. Res (2010). https://doi.org/10.1002/jbm.b.31529

    Article  Google Scholar 

  12. J.T.B. Ratnayake, M.L. Gould, A. Shavandi, M. Mucalo, G.J. Dias, Development and characterization of a xenograft material from New Zealand sourced bovine cancellous bone. J. Biomedi. Mater. Res - Part B Appl. Biomater. (2017). https://doi.org/10.1002/jbm.b.33644

    Article  Google Scholar 

  13. B. Brković, M. Radulović, V. Danilović, Preimplant preparation of the extraction alveolus with the deproteinized bovine bone and calcium-sulphate Vojnosanitetski Pregled Military-Medical and Pharmaceutical Review. . (2006). https://doi.org/10.2298/VSP0602181B

    Article  Google Scholar 

  14. N. Ahmad, K. Tsuru, M.L. Munar, S. Matsuya, K. Ishikawa, Effect of Precursor Solubility on the Mechanical Strength of HAP Block, in: 2012. https://doi.org/10.1002/9781118217504.ch1.

  15. R. Lowmunkong, T. Sohmura, J. Takahashi, Y. Suzuki, S. Matsuya, K. Ishikawa, Transformation of 3DP gypsum model to HA by treating in ammonium phosphate solution. J. Biomed. Mater. Res - Part B Appl. Biomater. (2007). https://doi.org/10.1002/jbm.b.30609

    Article  Google Scholar 

  16. Y. Suzuki, S. Matsuya, K.I. Udoh, M. Nakagawa, Y. Tsukiyama, K. Koyano, K. Ishikawa, Fabrication of hydroxyapatite block from gypsum block based on (NH 4)2HPO4 treatment. Dent. Mater. J. (2005). https://doi.org/10.4012/dmj.24.515

    Article  Google Scholar 

  17. Y. Sugiura, K. Ishikawa, Fabrication of pure octacalcium phosphate blocks from dicalcium hydrogen phosphate dihydrate blocks via a dissolution–precipitation reaction in a basic solution. Mater. Lett (2019). https://doi.org/10.1016/j.matlet.2018.12.093

    Article  Google Scholar 

  18. Y. Sugiura, K. Ishikawa, Effect of calcium and phosphate on compositional conversion from dicalcium hydrogen phosphate dihydrate blocks to octacalcium phosphate blocks. Curr. Comput.-Aided Drug Des. (2018). https://doi.org/10.3390/cryst8050222

    Article  Google Scholar 

  19. K. Tsuru, A. Yoshimoto, M. Kanazawa, Y. Sugiura, Y. Nakashima, K. Ishikawa, Fabrication of carbonate apatite block through a dissolution-precipitation reaction using calcium hydrogen phosphate dihydrate block as a precursor. Materials (2017). https://doi.org/10.3390/ma10040374

    Article  Google Scholar 

  20. S. Nomura, K. Tsuru, A. Valanezhad, S. Matsuya, I. Takahashi, K. Ishikawa, Fabrication of carbonate apatite block from calcium sulfate by hydrothermal treatment. Key. Eng. Mater. (2012). https://doi.org/10.4028/www.scientific.net/KEM.493-494.139

    Article  Google Scholar 

  21. I.D. Ana, S. Matsuya, K. Ishikawa, Engineering of carbonate apatite bone substitute based on composition-transformation of gypsum and calcium hydroxide. Engineering (2010). https://doi.org/10.4236/eng.2010.25045

    Article  Google Scholar 

  22. G. Kawachi, H. Misumi, H. Fujimori, S. Goto, C. Ohtsuki, M. Kamitakahara, K. Ioku, Fabrication of porous blocks of calcium phosphate through hydrothermal processing under glycine coexistence. J. Ceram. Soc. Jpn. 118, 559–563 (2010). https://doi.org/10.2109/jcersj2.118.559

    Article  CAS  Google Scholar 

  23. Y. Ayukawa, Y. Suzuki, K. Tsuru, K. Koyano, K. Ishikawa, Histological comparison in rats between carbonate apatite fabricated from gypsum and sintered hydroxyapatite on bone remodeling. BioMed. Res. Int (2015). https://doi.org/10.1155/2015/579541

    Article  Google Scholar 

  24. E. Landi, A. Tampieri, G. Celotti, S. Sprio, Densification behaviour and mechanisms of synthetic hydroxyapatites. J Eur. Ceram. Soc (2000). https://doi.org/10.1016/S0955-2219(00)00154-0

    Article  Google Scholar 

  25. J.D.B. Featherstone, S. Pearson, R.Z. LeGeros, An infrared method for quantification of carbonate in carbonated apatites1. Caries. Res (1984). https://doi.org/10.1159/000260749

    Article  Google Scholar 

  26. T. Matsumoto, M. Okazaki, M. Inoue, Y. Hamada, M. Taira, J. Takahashi, Crystallinity and solubility characteristics of hydroxyapatite adsorbed amino acid. Biomaterials (2002). https://doi.org/10.1016/S0142-9612(01)00358-1

    Article  Google Scholar 

  27. M. König, J. Vaes, E. Klemm, D. Pant, Solvents and supporting electrolytes in the electrocatalytic reduction of CO2. IScience (2019). https://doi.org/10.1016/j.isci.2019.07.014

    Article  Google Scholar 

  28. L.H. Thang, L.T. Bang, B.D. Long, N.A. Son, S. Ramesh, Effect of carbonate contents on the thermal stability and mechanical properties of carbonated apatite artificial bone substitute. J. Mater. Eng. Perform. (2022). https://doi.org/10.1007/s11665-022-07169-6

    Article  Google Scholar 

  29. M. Maruta, T. Arahira, K. Tsuru, S. Matsuya, Characterization and thermal decomposition of synthetic carbonate apatite powders prepared using different alkali metal salts. Dent. Mater. J (2019). https://doi.org/10.4012/dmj.2018-213

    Article  Google Scholar 

  30. J.C. Elliott, P.E. Mackie, R.A. Young, Monoclinic hydroxyapatite. Science (1973). https://doi.org/10.1126/science.180.4090.1055

    Article  Google Scholar 

  31. S. Ebrahimi, C.S.S. Mohd Nasri, S.E. Bin Arshad, Hydrothermal synthesis of hydroxyapatite powders using response surface methodology (RSM). PLoS ONE (2021). https://doi.org/10.1371/journal.pone.0251009

    Article  Google Scholar 

  32. S. Nomura, K. Tsuru, M. Maruta, S. Matsuya, I. Takahashi, K. Ishikawa, Fabrication of carbonate apatite blocks from set gypsum based on dissolutionprecipitation reaction in phosphate-carbonate mixed solution. Dent Mater J (2014). https://doi.org/10.4012/dmj.2013-192

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by Hibah PUTI Q3 2020 Universitas Indonesia (Contract No. BA-939/UN2.RST/PPM.00.03.01/2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunarso.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunarso, Rino, Qalbina, T. et al. Effect of hydrothermal temperature on phase transformation and mechanical property of non-sintered hydroxyapatite and its in vitro solubility. J. Korean Ceram. Soc. 60, 215–223 (2023). https://doi.org/10.1007/s43207-022-00257-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00257-2

Keywords

Navigation