Skip to main content

Advertisement

Log in

Effect of Carbonate Contents on the Thermal Stability and Mechanical Properties of Carbonated Apatite Artificial Bone Substitute

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Carbonated apatite is the inorganic component of natural bone while the carbonate ion in the structure influences biological activities and osteoconductivity. However, thermal stability of carbonate apatite is a major importance since thermal stability of carbonate apatite is a function of carbonate content presented in the structure and heat treatment atmosphere. This research work investigates the effects of different carbonate contents on carbonate substitution, thermal stability, physical and mechanical properties of carbonate apatite synthesized by a precipitation method. The results indicated that the carbonate content influenced the properties of carbonated apatite powders. High carbonate substitution (10-11 wt.%) promoted the decomposition of carbonated apatite after heat treatment at 900 °C while a low amount of carbonate substitution (approx. 2 wt.%) resulted in the relocation of carbonate group from phosphate site to hydroxyl site without decomposition. It also demonstrated that a high carbonate amount resulted in a superior mechanical performance. Dense carbonated apatite with high carbonate content has achieved a relative density of 97% and a maximum fracture toughness of 1.4 MPa•m1/2. In the contrary, low carbonate content resulted in a compact with high porosity of about 40% and a low toughness value of 0.35 MPa·m1/2 when treatment at 900 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Vallet-Regi and J.M. González-Calbet, Calcium Phosphates as Substitution of Bone Tissues, Prog. Solid State Chem., 2004, 32(1–2), p 1–31. https://doi.org/10.1016/j.progsolidstchem.2004.07.001

    Article  CAS  Google Scholar 

  2. K. Fujisawa, K. Akita, N. Fukuda, K. Kamada, T. Kudoh, G. Ohe and Y. Miyamoto, Compositional and Histological Comparison of Carbonate Apatite Fabricated by Dissolution-Precipitation Reaction and Bio-Oss®, J. Mater. Sci. Mater. Med., 2018, 29(8), p 1–11. https://doi.org/10.1007/s10856-018-6129-2

    Article  CAS  Google Scholar 

  3. K. Kuroda and M. Okido, Hydroxyapatite Coating of Titanium Implants Using Hydroprocessing and Evaluation of Their Osteoconductivity, Bioinorganic Chem. Appl., 2012, 2012, p 1–7. https://doi.org/10.1155/2012/730693

    Article  CAS  Google Scholar 

  4. Y. Doi, H. Iwanaga, T. Shibutani, Y. Moriwaki and Y. Iwayama, Osteoclastic Responses to Various Calcium Phosphates in Cell Cultures, J. Biomed. Mater. Res., 1999, 47(3), p 424–433. https://doi.org/10.1002/(SICI)1097-4636(19991205)47:3%3c424::AID-JBM19%3e3.0.CO;2-0

    Article  CAS  Google Scholar 

  5. E. Landi, G. Celotti, G. Logroscino and A. Tampieri, Carbonated Hydroxyapatite as Bone Substitute, J. Eur. Ceram. Soc., 2003, 23(15), p 2931–2937. https://doi.org/10.1016/S0955-2219(03)00304-2

    Article  CAS  Google Scholar 

  6. K. Ishikawa, Bone Substitute Fabrication Based on Dissolution-Precipitation Reactions, Materials, 2010, 3(2), p 1138–1155. https://doi.org/10.3390/ma3021138

    Article  CAS  Google Scholar 

  7. H Nagai, M Kobayashi-Fujioka, K Fujisawa, G Ohe, N Takamaru, K Hara, D Uchida, T Tamatani, K Ishikawa, Y Miyamoto, Effects of Low Crystalline Carbonate Apatite on Proliferation and Osteoblastic Differentiation of Human Bone Marrow Cells J. Mater. Sci. Mater. Med. 26 2 (2015) https://doi.org/10.1007/s10856-015-5431-5

  8. G. Spence, N. Patel, R. Brooks, W. Bonfield and N. Rushton, Osteoclastogenesis on Hydroxyapatite Ceramics: The Effect of Carbonate Substitution, J Biomed. Mater. Res. A, 2010, 92(4), p 1292–300.

    Google Scholar 

  9. A.A. Baig, J.L. Fox, J. Hsu, Z. Wang, M. Otsuka, W.I. Higuchi and R. Z. LeGeros, Effect of Carbonate Content and Crystallinity on the Metastable Equilibrium Solubility Behavior of Carbonated Apatites, J. Coll. Interface Sci., 1996, 179(2), p 608–617. https://doi.org/10.1006/jcis.1996.0255

    Article  CAS  Google Scholar 

  10. Z. Zyman and M. Tkachenko, CO2 Gas-Activated Sintering of Carbonated Hydroxyapatites, J. Eur. Ceram. Soc., 2011, 31(3), p 241–248. https://doi.org/10.1016/j.jeurceramsoc.2010.09.005

    Article  CAS  Google Scholar 

  11. Q. Liu, J.P. Matinlinna, Z. Chen, C. Ning, G. Ni, H. Pan and B.W. Darvell, Effect of Thermal Treatment on Carbonated Hydroxyapatite: Morphology, Composition, Crystal Characteristics and Solubility, Ceram. Int., 2015, 41(5), p 6149–6157. https://doi.org/10.1016/j.ceramint.2014.11.062

    Article  CAS  Google Scholar 

  12. A. Ślósarczyk, Z. Paszkiewicz and A. Zima, The Effect of Phosphate Source on the Sintering of Carbonate Substituted Hydroxyapatite, Ceram. Int., 2010, 36(2), p 577–582. https://doi.org/10.1016/j.ceramint.2009.09.032

    Article  CAS  Google Scholar 

  13. E. Landi, A. Tampieri, G. Celotti, L. Vichi and M. Sandri, Influence of Synthesis and Sintering Parameters on the Characteristics of Carbonate Apatite, Biomaterials, 2004, 25(10), p 1763–1770. https://doi.org/10.1016/j.biomaterials.2003.08.026

    Article  CAS  Google Scholar 

  14. J. Barralet, J.C. Knowles, S. Best and W. Bonfield, Thermal Decomposition of Synthesised Carbonate Hydroxyapatite, J. Mater. Sci. Mater. Med., 2002, 13(6), p 529–533.

    Article  CAS  Google Scholar 

  15. M. Safarzadeh, Chin Fei Chee, S. Ramesh and M.N. Ahmad Fauzi, Effect of Sintering Temperature on the Morphology, Crystallinity and Mechanical Properties of Carbonated Hydroxyapatite (CHA), Ceram. Int., 2020, 46(17), p 26784–26789. https://doi.org/10.1016/j.ceramint.2020.07.153

    Article  CAS  Google Scholar 

  16. I.R. Gibson and W. Bonfield, Novel Synthesis and Characterization of an AB-Type Carbonate-Substituted Hydroxyapatite, J. Biomed. Mater. Res., 2002, 59(4), p 697–708. https://doi.org/10.1002/jbm.10044

    Article  CAS  Google Scholar 

  17. J. Barralet, J.C. Knowles, S. Best and W. Bonfield, Thermal Decomposition of Synthesised Carbonate Hydroxyapatite, J. Mater. Sci. Mater. Med., 2002, 13(6), p 529–533. https://doi.org/10.1023/a:1015175108668

    Article  CAS  Google Scholar 

  18. A.G. Evans and E.A. Charles, Fracture Toughness Determinations by Indentation, J. Am. Ceram. Soc., 1976, 59(7–8), p 371–372. https://doi.org/10.1111/j.1151-2916.1976.tb10991.x

    Article  CAS  Google Scholar 

  19. I.Y. Pieters, N.M.F. Van den Vreken, H.A. Declercq, M.J. Cornelissen and R.M.H. Verbeeck, Carbonated Apatites Obtained by the Hydrolysis of Monetite: Influence of Carbonate Content on Adhesion and Proliferation of MC3T3-E1 Osteoblastic Cells, Acta Biomater., 2010, 6(4), p 1561–1568. https://doi.org/10.1016/j.actbio.2009.11.002

    Article  CAS  Google Scholar 

  20. J.P. Lafon, E. Champion and D. Bernache-Assollant, Processing of AB-Type Carbonated Hydroxyapatite Ca10−x(PO4)6−x(CO3)x(OH)2−x−2y(CO3)y Ceramics with Controlled Composition, J. Eur. Ceram. Soc., 2008, 28(1), p 139–147. https://doi.org/10.1016/j.jeurceramsoc.2007.06.009

    Article  CAS  Google Scholar 

  21. Y.D.T. Koda, N. Wakamatsu, T. Goto, H. Kamemizu, Y. Moriwaki, M. Adachi and Y. Suwa, Influence of Carbonate on Sintering of Apatites, J. Dent. Res., 1993, 72(9), p 1279–1284.

    Article  Google Scholar 

  22. J.C. Merry, I.R. Gibson, S.M. Best and W. Bonfield, Synthesis and Characterization of Carbonate Hydroxyapatite, J. Mater Sci. Mater. Med., 1998, 9(12), p 779–783.

    Article  CAS  Google Scholar 

  23. I.R. Gibson, S.M. Best and W. Bonfield, Chemical Characterization of Silicon-Substituted Hydroxyapatite, J. Biomed. Mater. Res., 1999, 44(4), p 422–428. https://doi.org/10.1002/(sici)1097-4636(19990315)44:4%3c422::aid-jbm8%3e3.0.co;2-#

    Article  CAS  Google Scholar 

  24. M. Veiderma, K. Tõnsuaadu, R. Knubovets and M. Peld, Impact of Anionic Substitutions on Apatite Structure and Properties, J. Organometall. Chem., 2005, 690(10), p 2638–2643. https://doi.org/10.1016/j.jorganchem.2004.11.022

    Article  CAS  Google Scholar 

  25. LeGeros RZ and JP LeGeros, Calcim Phosphate Bioceramic: Past, Present and Future, in Bioceramic 15, B. Ben-Nissan, D. Sher, and W. Walsh, Editors. 2003, Trans Tech Publication, Sydney. 3–10.

  26. R.Z. LeGeros and J.P. LeGeros, Dense Hydroxyapatite, An Introduction to Bioceramics. L.L. Hench, J. Wilson Ed., WORLD SCIENTIFIC, 1993, p 139–180. https://doi.org/10.1142/9789814317351_0009

    Chapter  Google Scholar 

  27. X.L. Tang, X.F. Xiao and R.F. Liu, Structural Characterization of Silicon-Substituted Hydroxyapatite Synthesized by a Hydrothermal Method, Mater. Lett., 2005, 59(29–30), p 3841–3846. https://doi.org/10.1016/j.matlet.2005.06.060

    Article  CAS  Google Scholar 

  28. T. Tian, D. Jiang, J. Zhang and Q. Lin, Synthesis of Si-Substituted Hydroxyapatite by a Wet Mechanochemical Method, Mater. Sci. Eng. C, 2008, 28(1), p 57–63. https://doi.org/10.1016/j.msec.2007.10.049

    Article  CAS  Google Scholar 

  29. J.L. Xu and K.A. Khor, Chemical Analysis of Silica Doped Hydroxyapatite Biomaterials Consolidated by a Spark Plasma Sintering Method, J. Inorg. Biochem., 2007, 101(2), p 187–195. https://doi.org/10.1016/j.jinorgbio.2006.09.030

    Article  CAS  Google Scholar 

  30. M. Chandrasekhar Kothapalli, A. Wei and M.T.S. Vasiliev, Influence of Temperature and Concentration on the Sintering Behavior and Mechanical Properties of Hydroxyapatite, Acta Mater., 2004, 52(19), p 5655–5663. https://doi.org/10.1016/j.actamat.2004.08.027

    Article  CAS  Google Scholar 

  31. M.R. Saeri, A. Afshar, M. Ghorbani, N. Ehsani and C.C. Sorrell, The Wet Precipitation Process of Hydroxyapatite, Mater. Lett., 2003, 57(24–25), p 4064–4069. https://doi.org/10.1016/s0167-577x(03)00266-0

    Article  CAS  Google Scholar 

  32. S.C. Cox, P. Jamshidi, L.M. Grover and K.K. Mallick, Low Temperature Aqueous Precipitation of Needle-like Nanophase Hydroxyapatite, J Mater Sci Mater Med, 2014, 25(1), p 37–46.

    Article  CAS  Google Scholar 

  33. J. Lafon, E. Champion, D. Bernache-Assollant, R. Gibert and A. Danna, Thermal Decomposition of Carbonated Calcium Phosphate Apatites, J. Therm. Anal. Calorim., 2003, 72(3), p 1127–1134. https://doi.org/10.1023/a:1025036214044

    Article  CAS  Google Scholar 

  34. A. Ślósarczyk, Z. Paszkiewicz and C. Paluszkiewicz, FTIR and XRD Evaluation of Carbonated Hydroxyapatite Powders Synthesised by Wet Methods, J. Mol. Struct., 2005, 744–747, p 657–661.

    Article  Google Scholar 

  35. M. Vignoles, G. Bonel, D. Holcomb and R. Young, Influence of Preparation Conditions on the Composition of Type B Carbonated Hydroxyapatite and on the Localization of the Carbonate Ions, Calcif. Tissue Int., 1988, 43(1), p 33–40. https://doi.org/10.1007/bf02555165

    Article  CAS  Google Scholar 

  36. R.Z. LeGeros, Effect of Carbonate on the Lattice Parameters of Apatite, Nature, 1965, 206(4982), p 403–404.

    Article  Google Scholar 

  37. J. Barralet, S. Best and W. Bonfield, Carbonate Substitution in Precipitated Hydroxyapatite: An Investigation Into the Effects of Reaction Temperature and Bicarbonate Ion Concentration, J. Biomed. Mater. Res., 1998, 41(1), p 79–86. https://doi.org/10.1002/(sici)1097-4636(199807)41:1%3c79::aid-jbm10%3e3.0.co;2-c

    Article  CAS  Google Scholar 

  38. LeGeros R.Z and J.P LeGeros, Calcium Phosphate Biomaterials Medical Application, in Bioceramics ed by T. Kobuko, T. Nakamura, and F. Miyaji, (Elviser Science: Otsu, Japan, 1996)

  39. S.M. Barinov, J.V. Rau, S.N. Cesaro, J. Ďurišin, I.V. Fadeeva, D. Ferro, L. Medvecky and G. Trionfetti, Carbonate Release from Carbonated Hydroxyapatite in the Wide Temperature Rage, J. Mater. Sci. Mater. Med., 2006, 17(7), p 597–604. https://doi.org/10.1007/s10856-006-9221-y

    Article  CAS  Google Scholar 

  40. S. Matsuya, X. Lin, K.-i Udoh, M. Nakagawa, R. Shimogoryo, Y. Terada and K. Ishikawa, Fabrication of Porous Low Crystalline Calcite Block By Carbonation of Calcium Hydroxide Compact, J. Mater. Sci. Mater. Med., 2007, 18(7), p 1361–1367. https://doi.org/10.1007/s10856-007-0123-4

    Article  CAS  Google Scholar 

  41. X. Lin, S. Matsuya, M. Nakagawa, Y. Terada and K. Ishikawa, Effect of molding pressure on fabrication of low-crystalline calcite block, J. Mater. Sci. - Mater. Med., 2008, 19(2), p 479–484. https://doi.org/10.1007/s10856-006-0028-7

    Article  CAS  Google Scholar 

  42. C. Schiller and M. Epple, Carbonated Calcium Phosphates are Suitable pH-Stabilising Fillers for Biodegradable Polyesters, Biomaterials, 2003, 24(12), p 2037–2043. https://doi.org/10.1016/S0142-9612(02)00634-8

    Article  CAS  Google Scholar 

  43. Z. Zyman, D. Rokhmistrov, V. Glushko and I. Ivanov, Thermal Impurity Reactions and Structural Changes in Slightly Carbonated Hydroxyapatite, J. Mater. Sci. Mater. Med., 2009, 20(7), p 1389–1399. https://doi.org/10.1007/s10856-009-3706-4

    Article  CAS  Google Scholar 

  44. L.M. Miller, V. Vairavamurthy, M.R. Chance, R. Mendelsohn, E.P. Paschalis, F. Betts and A.L. Boskey, In Situ Analysis of Mineral Content and Crystallinity in Bone Using Infrared Micro-Spectroscopy of the ν4 PO43-Vibration, Biochimica et Biophysica Acta (BBA) Gen. Subj., 2001, 1527(1–2), p 11–19. https://doi.org/10.1016/S0304-4165(01)00093-9

    Article  CAS  Google Scholar 

  45. C. Ortali, I. Julien, C. Drouet and E. Champion, Influence of Carbonation on the Low-Temperature Consolidation by Spark Plasma Sintering of Carbonated Calcium Phosphate Bioceramics, Ceram. Int., 2020, 46(5), p 5799–5810. https://doi.org/10.1016/j.ceramint.2019.11.030

    Article  CAS  Google Scholar 

  46. J. Wang and L.L. Shaw, Nanocrystalline Hydroxyapatite with Simultaneous Enhancements in Hardness and Toughness, Biomaterials, 2009, 30(34), p 6565–6572. https://doi.org/10.1016/j.biomaterials.2009.08.048

    Article  CAS  Google Scholar 

  47. P. Kamalanathan, S. Ramesh, L.T. Bang, A. Niakan, C.Y. Tan, J. Purbolaksono, H. Chandran and W.D. Teng, Synthesis and Sintering of Hydroxyapatite Derived from Eggshells as a Calcium Precursor, Ceram. Int., 2014, 40(10), p 16349–16359. https://doi.org/10.1016/j.ceramint.2014.07.074

    Article  CAS  Google Scholar 

  48. D. Veljovic, E. Palcevskis, I. Zalite, R. Petrovic and D. Janackovic, Two-Step Microwave Sintering-A Promising Technique for the Processing of Nanostructured Bioceramics, Mater. Lett., 2013, 93, p 251–253. https://doi.org/10.1016/j.matlet.2012.11.095

    Article  CAS  Google Scholar 

  49. S. Ramesh, C.Y. Tan, R. Tolouei, M. Amiriyan, J. Purbolaksono, I. Sopyan and W.D. Teng, Sintering Behavior of Hydroxyapatite Prepared from Different Routes, Mater. Des., 2012, 34, p 148–154. https://doi.org/10.1016/j.matdes.2011.08.011

    Article  CAS  Google Scholar 

  50. M. Rahaman, Sintering of ceramics, CRC Press, Boca Raton, 2008.

    Google Scholar 

Download references

Acknowledgments

This research work is supported by National Foundation for Science and Technology Development (Nafosted), Vietnam [Grant No.104.03-2020.36].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. T. Bang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thang, L.H., Bang, L.T., Long, B.D. et al. Effect of Carbonate Contents on the Thermal Stability and Mechanical Properties of Carbonated Apatite Artificial Bone Substitute. J. of Materi Eng and Perform 32, 1006–1016 (2023). https://doi.org/10.1007/s11665-022-07169-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07169-6

Keywords

Navigation