Skip to main content
Log in

Studies of structural, microstructural, optical and dielectric properties of GdMnO3

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

GdMnO3 has been synthesized by modified solid state reaction route followed by reaction sintering at 950 °C. Characterizations such as XRD, Raman, SEM, EDAX, FTIR, UV–Visible and dielectric have been carried out for the structural, microstructural, optical and dielectric studies. Orthorhombic structure with pbnm space group of GdMnO3 sample has been confirmed from XRD analysis. Uniform distribution with small amount of porosity has been confirmed from SEM analysis. John–Teller mode is observed at 616 cm−1 (B1g) in the Raman spectrum of GdMnO3 sample. The optical band gap value of the synthesized GdMnO3 sample is found to be 3.22 eV which indicates the insulating behavior of the sample. An elevated dielectric constant value with increase in temperature and a very negligible dielectric loss is observed for the synthesized sample which makes its applications in memory storage devices. The room temperature dielectric constant value of GdMnO3 is found to be 649 with dielectric loss factor of 1.73 at 1 kHz frequency which is comparatively higher that of the dielectric constant values already reported. The dielectric constant value at 500 °C is found to be 44,112 with loss factor 1.04 at 1 kHz frequency that it has more significant high temperature applications. Complex impedance and modulus studies confirm the relaxation mechanism as Non-Debye type relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003)

    Article  CAS  Google Scholar 

  2. A.K. Zvezdin, A.S. Logginov, G.A. Meshkov, A.P. Pyatakov, Multiferroics: promising materials for microelectronics, spintronics, and sensor technique. Bull. Russ. Acad. Sci. Phys. 71, 1561–1562 (2007)

    Article  Google Scholar 

  3. A. Lahmar, S. Habouti, C.-H. Solterbeck, M. Dietze, M. Es-Souni, Multiferroic properties of Bi0.9Gd0.1Fe0.9Mn0.1O3. J. Appl. Phys. 107, 024104 (2010)

    Article  Google Scholar 

  4. C. Chappert, A. Fert, F.N. Van Dau, The emergence of spin electronic in data storage. Nat. Mater. 6, 813–823 (2007)

    Article  CAS  Google Scholar 

  5. J. Hu, Microscopic origin of magnetoelectric coupling in noncollinear multiferroics. Phys. Rev. Lett. 100, 077202 (2008)

    Article  Google Scholar 

  6. K. Cao, G.-C. Guo, L. He, Molecular-spin dynamics study of electromagnons in multiferroic RMn2O5. J. Phys. C Cond. Mater. 24, 206001 (2012)

    Article  Google Scholar 

  7. J.F. Scott, Data storage: multiferroic memories. Nat. Mater. 6, 256–257 (2007)

    Article  CAS  Google Scholar 

  8. A. Roy, R. Gupta, A. Garg, Multiferroic memories. Adv. Condens. Matter Phys. 2012, 926290 (2012)

    Article  Google Scholar 

  9. V. Malakhovskii, A.L. Sukhachev, A.D. Vasilev, A.A. Leontev, A.V. Kartashev, V.L. Temerov, I.A. Gudim, Nature of optical properties of GdFe3(BO3)4 and GdFe2.1Ga0.9(BO3)4 crystals and other 3d5 antiferromagnets. Eur. Phys. J. B. 85, 80 (2012)

    Article  Google Scholar 

  10. M. Fiebig, Th. Lottermoser, D. Frohlich, A.V. Goltsev, R.V. Pisarev, Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002)

    Article  CAS  Google Scholar 

  11. K. Praveena, P. Bharathi, H.L. Liu, K.B.R. Varma, Structural, multiferroic properties and enhanced magnetoelectric coupling in Sm1-xCaxFeO3. Ceram. Int. 42, 13572–13585 (2016)

    Article  CAS  Google Scholar 

  12. S. Samantaray, D.K. Mishra, S.K. Pradhan, P. Mishra, B.R. Sekhar, D. Behera, P.P. Rout, S.K. Das, D.R. Sahu, B.K. Roul, Correlation between structural, electrical and magnetic properties of GdMnO3 bulk ceramics. J. Magn. Magn. Mater. 339, 168–174 (2013)

    Article  CAS  Google Scholar 

  13. L. Lin, L. Li, Z.B. Yan, Y.M. Tao, S. Dong, J.M. Liu, Ferroelectricity of polycrystalline GdMnO3 and multifold magnetoelectric responses. Appl. Phys. A 112, 947–954 (2013)

    Article  CAS  Google Scholar 

  14. Y. Romaguera-Barcelay, J.A. Moreira, A. Almeida, J.P. Araujo, J. Perez de la Cruz, Dimensional effects on the structure and magnetic properties of GdMnO3 thin films. Mater. Lett. 70, 167–170 (2012)

    Article  CAS  Google Scholar 

  15. T. Kimura, G. Lawes, T. Goto, Y. Tokura, A.P. Ramirez, Magnetoelectric phase diagrams of orthorhombic RMnO3 (R = Gd, Tb, and Dy). Phys. Rev. B 71, 224425 (2005)

    Article  Google Scholar 

  16. H. Kuwahara, M. Akaki, J. Tozawa, M. Hitomi, K. Noda, D. Akahoshi, Persistent and reversible phase control in GdMnO3 near the phase boundary. J. Phys. C Conf. Ser. 150, 042106 (2009)

    Article  Google Scholar 

  17. T. Goto, T. Kimura, G. Lawes, A.P. Ramirez, Y. Tokura, Ferroelectricity and giant magnetocapacitance in perovskite rare-earth manganites. Phys. Rev. Lett. 92, 257201 (2004)

    Article  CAS  Google Scholar 

  18. F. Ye, H. Dai, M. Wang, J. Chen, T. Li, Z. Chen, The structural, dielectric, and magnetic properties of GdMnO3 multiferroic ceramics. J. Mater. Sci. Mater. Electron. 31, 3590–3597 (2020)

    Article  CAS  Google Scholar 

  19. D. Singh, R. Gupta, K.K. Bamzai, Electrical and magnetic properties of GdCrxMn1−xO3 (x = 0.0, 0.1) multiferroic nanoparticles. J. Mater. Sci. Mater Electron 28, 5295–5307 (2017)

    Article  CAS  Google Scholar 

  20. S. Hajra, M. Sahu, V. Purohit, R.N.P. Choudhary, Dielectric, conductivity and ferroelectric properties of lead-free electronic ceramic: 0.6Bi (Fe0.98Ga0.02)O3–0.4BaTiO3. Heliyon 5, 1–7 (2019)

    Article  Google Scholar 

  21. J. Oliveira, J.A. Moreira, A. Almeida, V.H. Rodrigues, M.M.R. Costa, P.B. Tavares, P. Bouvier, M. Guennou, J. Kreisel, Structural and insulator-to-metal phase transition at 50 GPa in GdMnO3. Phys. Rev. B 85, 052101 (2012)

    Article  Google Scholar 

  22. S. Samantaray, D.K. Mishra, B.K. Roul, Raman and dielectric studies of GdMnO3 bulk ceramics synthesized from nano powders. AIP Conf. Proc. 1832, 140043 (2017)

    Article  Google Scholar 

  23. W.S. Ferreira, J.A. Moreira, A. Almeida, M.R. Chaves, J.P. Araujo, J.B. Oliveira, J.M. Machado Da Silva, M.A. Sa, T.M. Mendonca, P.S. Carvalho, Spin-phonon coupling and magnetoelectric properties: EuMnO3 versus GdMnO3. Phys. Rev. B 79, 054303 (2009)

    Article  Google Scholar 

  24. L. Kang, M. Zhang, Z.-H. Liu, K. Ooi, IR spectra of manganese oxides with either layered or tunnel structure. Spectrochim. Acta A 67, 864–869 (2007)

    Article  Google Scholar 

  25. J. Prakash, K.N. Kumar, S. Buddhudu, Thermal, magnetic and electrical properties of multiferroic GdMnO3 nano particles by a co-precipitation method. Ferroelectr. Lett. 39, 104–116 (2012)

    Article  CAS  Google Scholar 

  26. B.M. Pradeep Kumar, K.H. Shivaprasad, R.S. Raveendra, R. Hari Krishna, B.M. Nagabhushana, Adsorption of hazardous methylene blue from aqueous solution using combustion derived CaAl2O4 nanoparticles. J. Mater. Sci. Surf. Eng. 4, 492–495 (2016)

    Google Scholar 

  27. K.W. Wagner, The distribution of relaxation times in typical dielectrics. Ann. Phys. 40, 817–819 (1973)

    Google Scholar 

  28. J. Shukla, A. Mishra, Study of structural, dielectric, and modulus behaviour of barium modified YMnO3 manganite. Mater. Today 46, 2189–2192 (2021)

    CAS  Google Scholar 

  29. T. Fahmy, M.T. Ahmed, Dielectric relaxation spectroscopy and AC conductivity of doped poly (vinyl alcohol). Int. J. Mater. Phys. 6, 7–20 (2015)

    Google Scholar 

  30. Z. Anwar, M.A. Khan, I. Ali, M. Asghar, M. Sher, I. Shakir, M. Sarfraz, M.F. Warsi, Investigation of dielectric behavior of new Tb3+ doped BiFeO3 nanocrystals synthesized via micro-emuslion route. J. Ovonic Res. 10, 265–273 (2014)

    Google Scholar 

  31. R. Bahloul, S. Sayouri, T. Lamcharfi, Dielectric and ac conductivity of ilmenite-type CdTiO3 ceramic. Med. J. Chem. 8, 255–260 (2019)

    CAS  Google Scholar 

  32. G.R. Gajula, K.N.C. Kumar, L.R. Buddiga, G.P. Nethala, Dielectric and impedance properties of Li0.5Fe2.5O4 doped BaTiO3 composite ceramics. Results Phys. 11, 899–904 (2018)

    Article  Google Scholar 

  33. C. Ang, Z. Yu, L.E. Cross, Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi:SrTiO3. Phys. Rev. B 62, 228–236 (2000)

    Article  Google Scholar 

  34. S.N. Mathad, R.N. Jadhav, R.P. Pawar, V. Puri, Dielectric spectroscopy and microwave conductivity of bismuth strontium manganites at high frequencies. Electron. Mater. Lett. 9, 87–93 (2013)

    Article  CAS  Google Scholar 

  35. B. Biswal, D.K. Mishra, S.N. Das, S. Bhuyan, Structural, micro-structural, optical and dielectric behavior of mullite ceramics. Ceram. Int. 47, 32252–32263 (2021)

    Article  CAS  Google Scholar 

  36. N.A. Hegab, M.A. Aii, H.E. Atyia, A.S. Farid, ac conductivity and dielectric properties of amorphous Se80Te20−xGex chalcogenide glass film compositions. J. Alloys Compd. 477, 925–930 (2009)

    Article  CAS  Google Scholar 

  37. M. Sahu, S. Hajra, K. Mohanta, V. Purohit, R.N.P. Choudhary, Dielectric and impedance spectroscopy of aluminium oxide substituted fused silica samples. SN Appl. Sci. 1, 1254 (2019)

    Article  Google Scholar 

  38. S. Sarangi, T. Badapanda, B. Behera, S. Anwar, Frequency and temperature dependence dielectric behavior of barium zirconate titanate nanocrystalline powder obtained by mechanochemical synthesis. J. Mater. Sci. Mater. Electron. 24, 4033–4042 (2013)

    Article  CAS  Google Scholar 

  39. M. Sahu, S.K. Pradhan, S. Hajra, B.K. Panigrahi, R.N.P. Choudhary, Studies of structural, electrical, and excitation performance of electronic material: europium substituted 0.9 (Bi0.5Na0.5TiO3)–0.1 (PbZr0.48Ti0.52O3). Appl. Phys. A 125, 183 (2019)

    Article  CAS  Google Scholar 

  40. H. Da Ko, C.C. Lin, K.C. Chiu, Effect of zirconia content on electrical conductivities of mullite/zirconia composites measured by impedance spectroscopy. J. Mater. Res. 23, 2125–2132 (2008)

    Article  CAS  Google Scholar 

  41. F. Rehman, J.B. Li, J.S. Zhang, M. Rizwan, C. Niu, H.B. Jin, Grains and grain boundaries contribution to dielectric relaxations and conduction of Bi5Ti3FeO15 ceramics. J. Appl. Phys. 118, 214101 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Prof. R. N. P. Choudhary, Department of Physics, Siksha ‘O’ Anusandhan Deemed to be university for providing LCR measurement facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjita Mahapatra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyadarshinee, S., Pati, J., Mahapatra, R. et al. Studies of structural, microstructural, optical and dielectric properties of GdMnO3. J. Korean Ceram. Soc. 60, 203–214 (2023). https://doi.org/10.1007/s43207-022-00256-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00256-3

Keywords

Navigation