Skip to main content
Log in

Electrical and magnetic properties of GdCrxMn1−xO3 (x = 0.0, 0.1) multiferroic nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Gadolinium manganate (GdMnO3) and chromium doped gadolinium manganate (GdCr0.1Mn0.9O3) nanoparticles have been prepared using co-precipitation method. The effects of chromium (10% Cr+3) doping on structural, vibrational, optical, electrical and room temperature magnetic properties of GdMnO3 have been carried out. The structural characterization analysed through X-ray diffraction (XRD) shows the formation of orthorhombic structure with Pbnm space group. The morphology was examined by scanning electron microscopy (SEM). Raman and Fourier transform infrared spectroscopy has been employed for the vibrational investigations of GdMnO3 and doped GdMnO3. The Jahn–Teller modes observed at ~482 cm−1 (Ag) and 610 cm−1 (B1g) in Raman spectrum of GdMnO3 have not shifted with Cr3+ ions doping, which shows that the Cr3+ ions are not active to Jahn–Teller distortions. The UV–Vis absorption peak at 461 nm attributed to Mn (d-d) transition has shifted ~10 nm in GdCr0.1Mn0.9O3. The weaker absorption band at 725 nm (1.7 eV) is attributed to the dipole forbidden 5Eg–5T2g transition of the Mn3+ ion. The detailed investigation on the dielectric properties like dielectric constant, dissipation factor, ac conductivity has been carried out in the temperature range of 20–400 °C and in the frequency range of 1 kHz–1 MHz. The temperature dependent dielectric constant shows two dielectric anomalies which get shifted towards high temperature side with increase in frequency, thereby indicating relaxor type behaviour of the material. The dissipation curves also show the similar trend, suggesting the temperature dependent dielectric relaxation. The Cr doping enhances the dielectric properties of GdMnO3. The room temperature magnetic behaviour analyzed from the magnetic field dependent magnetization curves suggests paramagnetic behavior for both the composition; however Cr doping does enhance the magnetization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    Article  Google Scholar 

  2. A.N. Hill, J. Phys. Chem. B 104, 6694 (2000)

    Article  Google Scholar 

  3. M. Fiebig, Th. Lottermoser, D. Fro¨hlich, A.V. Goltsev, R.V. Pisarev, Nature 419, 818 (2002)

    Article  Google Scholar 

  4. K. Praveena, P. Bharathi, H.L. Liu, K.B.R. Varma, Ceramic Int. 42, 13572–13585 (2016)

    Article  Google Scholar 

  5. R. Choithrani, M.N. Rao, S.L. Chaplot, N.K. Gaur, R.K. Singh, New J. Phys. 11, 073041 (2009)

    Article  Google Scholar 

  6. L. Martin-Carron, de A. Andres, J. Alloys Compd. 417, 323–324 (2001)

    Google Scholar 

  7. Y. Su, Y. Sui, X. Wang, Y. Wang, X. Liu, X. Wang, F. Pan, J. Alloys Compd. 667, 1–5 (2016)

    Article  Google Scholar 

  8. N.A. Hill, K.M. Rabe, Phys. Rev. B 59, 8759 (1999)

    Article  Google Scholar 

  9. B. Lorenz, Y.-Q. Wang, C.-W. Chu, Phys. Rev. B 76, 104405 (2007)

    Article  Google Scholar 

  10. D.W. Bruce, D.O. Hare, R.I. Walton (eds.), Functional Oxides (John Wiley and Sons, Inc., 2010)

  11. T. Kimura, G. Lawes, T. Goto, Y. Tokura, A.P. Ramirez, Phys. Rev. B 71, 224425 (2005)

    Article  Google Scholar 

  12. S.W. Cheong, M. Mostovoy, Nat. Mater. 6, 13–20 (2007)

    Article  Google Scholar 

  13. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature (London) 426 55–58 (2003)

    Article  Google Scholar 

  14. W.S. Ferreira, J.A. Moreira, A. Almeida, M.R. Chaves, J.P. Araujo, J.B. Oliveira, J.M.M.D. Silva, M.A. Sa, T.M. Mendonca, P.S. Carvalho, J. Kreisel, J.L. Ribeiro, L.G. Vieira, P.B. Tavares, S. Mendonca, Phys. Rev. B 79, 054303 (2009)

    Article  Google Scholar 

  15. P. Negi, G. Dixit, H.M. Agrawal, R.C. Srivastav, J. Supercond. Nov. Magn. 26 1611–1615 (2013)

    Article  Google Scholar 

  16. Y.G. Wang, G. Xu, Z.H. Ren, X. Wei, W.J. Weng, P.Y. Du, G. Shen, G.R. Han, J. Am. Ceram. Soc. 90, 2615–2617 (2007)

    Article  Google Scholar 

  17. S.M. Babiniec, E.N. Coker, J.E. Miller, A. Ambrosini, Int. J. Energy Res. 40, 280–284 (2016)

    Article  Google Scholar 

  18. A. Sakka, R. Mnassri, N. Chniba-Boudjada, M. Ommezzine, A. Cheikhrouhou, Appl. Phys. A 122 603 (2016)

    Article  Google Scholar 

  19. X.Z. Zuo, X.C. Kan, X.B. Zhu, J.M. Dai, W.H. Song, Y.P. Sun, J. Alloys Compd. 656, 830–834 (2016)

    Article  Google Scholar 

  20. S. Samantaray, B.K. Roul, J. Mater Sci. Mater. Electron. 24, 3387 (2013)

    Article  Google Scholar 

  21. P.P. Rout, B.K. Roul, J. Mater. Sci. Mater. Electron. 24, 2493 (2013)

    Article  Google Scholar 

  22. F. Wan, X. Lin, X. Bai et al., J. Mater. Sci. Mater. Electron. 27, 3082 (2016)

    Article  Google Scholar 

  23. T. Goto, T. Kimura, G. Lawes, A.P. Ramirez, Y. Tokura, Phys. Rev. Lett. 92, 257201 (2004)

    Article  Google Scholar 

  24. T. Kimura, S. Ishihara, H. Shintani, T. Arima, K.T. Takahashi, K. Ishizaka, Y. Tokura, Phys. Rev. B. 68 060403 (2003)

    Article  Google Scholar 

  25. S. Issing, A. Pimenov, Y.Vu. Ivanov, A.A. Mukhin, J. Geurts, Eur. Phys. J. B 78, 367–372 (2010)

    Article  Google Scholar 

  26. S. Biswas, M.H. Khan, S. Pal, E. Bose, J. Magn. Magn. Mat. 328, 31–34 (2013)

    Article  Google Scholar 

  27. Y. Romaguera-Barcelaya, J. Agostinho Moreiraa, A. Almeidaa, P.B. Tavaresb, de la J. Perez Cruz, Thin Solid Films 564, 419–425 (2014)

    Article  Google Scholar 

  28. X.L. Wang, D. Li, T.Y. Cui, P. Kharel, W. Liu, Z.D. Zhang, J. Appl. Phys. 107, 09B510 (2010)

    Article  Google Scholar 

  29. Puneet Negi, Hemaunt Kumar, H.M. Agrawal, R.C. Srivastava, Solid state physics: Proceedings of the 57th DAE Solid State Physics Symposium 1512 (2012)

  30. J. Agostinho Moreira, A. Almeida, M.R. Chaves, J. Kreisel, J. Oliveira, F. Carpinteiro, P.B. Tavares, J. Phys. Condens. Matter. 24, 436002 (2012)

    Article  Google Scholar 

  31. J. Oliveira, J. Agostinho Moreira, A. Almeida, V.H. Rodrigues, M.M.R. Costa, P.B. Tavares, P. Bouvier, M. Guennou, J. Kreisel, Phys. Rev. B 85, 052101 (2012)

    Article  Google Scholar 

  32. S. Samantara, D.K. Mishra, S.K. Pradhan, P. Mishra, B.R. Sekhar, D. Behera, P.P. Rout, S.K. Das, D.R. Sahu, B.K. Roul, J. Magn. Magn. Mater. 339, 168 (2013)

    Article  Google Scholar 

  33. S.Z. Li, T.T. Wang, H.Q. Han, X.Z. Wang, H. Li, J. Liu, J.-M. Liu, J. Phys. D Appl. Phys. 45, 055003 (2012)

    Article  Google Scholar 

  34. B. Rajeswaran, D.I. Khomskii, A.K. Zvezdin, C.N.R. Rao, A. Sundaresan. Phys. Rev. B 86, 214409 (2012)

    Article  Google Scholar 

  35. T.F. Murray, R.H. Dungan, Ceram. Int. 82(6) 74 (1964)

    Google Scholar 

  36. Y.B. Kannan, R. Saravanan, N. Srinivasan, K. Praveena, K. Sadhana, J. Mater. Sci. Mater. Electron. 27, 12000–12008 (2016)

    Article  Google Scholar 

  37. P. Kuruva, S. Matteppanavar, S. Srinath, T. Thomas, IEEE T. Magn. 50(1), 5200108 (8) (2014)

    Article  Google Scholar 

  38. K. Praveena, K. Sadhana, S. Srinath, S.R. Murthy, Mat. Res. Innov. 18(1), 69 (2014)

    Article  Google Scholar 

  39. R. Ubic, G. Subodha, J. Alloys Compd. 488, 374 (2010)

    Article  Google Scholar 

  40. M.N. Iliev, M.V. Abrashev, J. Laverdiere, S. Jandl, M.M. Gospodinov, Y.-Q. Wang, Y.-Y. Sun, Phys. Rev. B 73, 064302 (2006)

    Article  Google Scholar 

  41. M.D. Fontana, G. Metrat, J.L. Servoin, F. Gervais, J. Phys. C 17, 483 (1984)

    Article  Google Scholar 

  42. F. Gao, R.A. Lewis, X.L. Wang, S.X. Dou, J. Alloys Compd. 347, 314 (2002)

    Article  Google Scholar 

  43. B.J. Aronson, A.K. Kinser, S. Passerini, W.H. Smyrl, A. Stein, Chem. Mater. 11, 949 (1999)

    Article  Google Scholar 

  44. M.W. Kim, P. Murugavel, S. Parashar, J.S. Lee, T.W. Noh, New J. Phys. 6, 156 (2004)

    Article  Google Scholar 

  45. J.M.D. Coey, M. Virat, von S. Molnair, Adv. Phys. 48 167 (1999)

    Article  Google Scholar 

  46. A.E. Davis, N.F. Mott, Philos. Phenomenol. 22, 903 (1970)

    Google Scholar 

  47. D.K. Mahato, A. Dutta, T.P. Sinha, Physica B Condensed Matter, 406(13) 2703 (2011)

    Article  Google Scholar 

  48. V. Gupta, K.K. Bamzai, P.N. Kotru, B.M. Wanklyn, Mater, Sci. Eng. B 13 163 (2006)

    Article  Google Scholar 

  49. Xu Yuhuan, In: Ferroelectric Materials and their Applications North Holland, p. 101 (1991)

  50. C.C. Wang, S.X. Dou, Solid State Commun. 149 2017 (2009)

    Article  Google Scholar 

  51. C. Ang, Z. Yu, L.E. Cross, Phys. Rev. B 62, 228 (2000)

    Article  Google Scholar 

  52. R. Gupta, S. Verma, D. Singh, K. Singh, K.K. Bamzai, Process. Appl. Ceram. 9(1) 1–9 (2015)

    Article  Google Scholar 

  53. A.G. Hunt, Philos. Mag. B 81 875 (2001)

    Article  Google Scholar 

  54. R. Long, Hopping Transport in Solid, (North-Holland, Amsterdam) 207 (1991)

    Book  Google Scholar 

  55. A. Ebnalwaled, Mater. Sci. Eng. B 174, 285 (2010)

    Article  Google Scholar 

  56. N.A. Hegab, M.A. Afifi, H.E. Atyia, A.S. Farid, J. Alloys Compd. 477, 925 (2009)

    Article  Google Scholar 

  57. Y. Sun, W. Tong, X. Xu, Y. Zhang, Phys. Rev. B 63, 174438 (2001)

    Article  Google Scholar 

  58. F. Studer, O. Toulemonde, J.B. Goedkoop, A. Barnabe, B. Raveau, J. Appl. Phy. Part 1(38), 377 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

One of the author, Dr. Deepa Singh is thankful to Department of Science & Technology, Government of India for awarding Women Scientist vide No.: SR/WOS-A/PS-59/2012 (G). The authors would like to acknowledge Sophisticated Test and Instrumentation Centre (STIC) Cochin University for providing XRD and SEM facilities. The authors would also like to acknowledge SAIIF-IIT Madras for providing VSM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Bamzai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Gupta, R. & Bamzai, K.K. Electrical and magnetic properties of GdCrxMn1−xO3 (x = 0.0, 0.1) multiferroic nanoparticles. J Mater Sci: Mater Electron 28, 5295–5307 (2017). https://doi.org/10.1007/s10854-016-6187-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6187-5

Keywords

Navigation