Skip to main content
Log in

Photoluminescence and photocatalytic studies of rice water and papaya fruit extract-encapsulated cadmium sulfide nanoparticles

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Natural extracts can act as potential sources for the synthesis of nanoparticles in non-hazardous ways. The stabilization of nanoparticles can be done by any sufficiently large, quasi-polar, organic molecule. In the present study, cadmium sulfide nanoparticles (CdSNPs) encapsulated by natural extract have been synthesized via green chemical reduction route that uses natural stabilizers such as rice water, papaya fruit extracts and precursors such as cadmium chloride, cadmium nitrate, and cadmium sulfate. Different experimental techniques such as X-ray Diffraction (XRD), UV Visible Absorption Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy-Dispersive Spectroscopy (EDS), Small Angle X-ray Spectroscopy (SAXS), and Transmission Electron Microscopy (TEM) are used to confirm that the as-prepared samples contain cubic crystalline CdSNPs with average size less than 20 nm and a thin natural molecule layer developed on their surface. The luminescence properties of as-prepared CdSNPs are studied through photoluminescence measurements. The photoluminescence spectra of the CdSNPs have exhibited one broad peak along with shoulders on either side of it. Cadmium sulfide nanomaterials that belong to the II–VI group are known for their photocatalytic applications due to their efficient physical properties along with wide bandgap energy. Further, the as-prepared CdSNPs have exhibited their potentiality in degrading Methylene Blue (MB), and Rhodamine B (RhB) which can be attributed to their mixed phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

CdS:

Cadmium sulfide

CdSNPs:

Cadmium sulfide nanoparticles

XRD:

X-ray diffraction

FTIR:

Fourier Transform Infrared Spectroscopy

UV:

Ultraviolet

SEM:

Scanning Electron Microscopy

EDS:

Energy-Dispersive Spectroscopy

SAXS:

Small Angle X-ray Spectroscopy

TEM:

Transmission Electron Microscopy

MB:

Methylene blue

RhB:

Rhodamine B

NPs:

Nanoparticles

FWHM:

Full width at half maximum

IRENA:

A data manipulations and analysis tool box for SAXS

SAED:

Selected area electron diffraction

References

  1. Tanuja, I. Gaurav, Green biosynthesis of nanoparticles for targeted drug delivery. Int. J. Plant Environ. 6(3), 170–177 (2020)

    Article  Google Scholar 

  2. S. Naranthatta, P. Janardhanan, R. Pilankatta, S.S. Nair, Green synthesis of engineered CdS nanoparticles with reduced cytotoxicity for enhanced bioimaging application. ACS Omega 6, 8646–8655 (2021)

    Article  CAS  Google Scholar 

  3. R. Hepzi, D. Pramila, R. Kiruthika, P. Mahadevi, S. Sagithapriya, Synthesis and characterization of cadmium sulfide nanoparticles. Int. J. Innov. Sci. Eng. Technol. 4, 181–185 (2017)

    Google Scholar 

  4. M. DivyaRao, P. Gautam, Green synthesis and characterization of cadmium sulfide nanoparticles from chlamydomonas reinhardtii and their application as photocatalysts. Mater. Res. Bull. 85, 64–73 (2017)

    Article  Google Scholar 

  5. R. Grinyte, J. Barroso, L. Saa, V. Pavlov, Modulating the growth of cysteine-capped cadmium sulfide quantum dots with enzymatically produced hydrogen peroxide. Nano Res. 10(6), 1932–1941 (2017)

    Article  CAS  Google Scholar 

  6. C.S. Sousa, K.C.M.S. Lima, C.N. Botelho, N.M. Pereira, R.N. Fernandes, G.G. Silva, F.S. Damos, R.C.S. Luz, Photo electro chemical sensor for determination of naringin at low oxidation potential using a modified FTO electrode with cadmium sulfide and titanium dioxide sensitized with chloroprotoporphyrin IX iron(III). J. Solid State Electrochem. 24, 1715–1726 (2020)

    Article  CAS  Google Scholar 

  7. A.K. Shukla, S. Iravani, Metallic nanoparticles: green synthesis and spectroscopic characterization. Environ. Chem. Lett. 15, 223–231 (2017)

    Article  CAS  Google Scholar 

  8. L. Arunraja, P. Thirumoorthy, Effect of cadmium sulfide and zinc oxide nanoparticles for oxygen sensor applications. Int. J. Eng. Sci. Invent. pp 53–58 (2017)

  9. S. Lee, J. Kim, S. Lee, H.J. Cha, C.S. Son, Y.G. Son, D. Hwang, Variation in the physical properties of RF-sputtered CdS thin films observed at substrate temperatures ranging from 25 0C - 500 0C. Nanomaterials 12(10), 1–9 (2022)

    Article  Google Scholar 

  10. D.I. Sandoval-Cardenas, M. Gomez-Ramirez, N.G. Rojas-Aveliazapa, M. Vidales-Hurtado, Synthesis of cadmium sulfide nanoparticles by biomass of fusarium oxysporum f. sp. Lycopersici. J. Nano Res. 46, 179–191 (2017)

    Article  CAS  Google Scholar 

  11. S.H. Raziya, B. Durga, R. Sathoshi Ganesh, B. Govind, N. Annapurna, Synthesis and characterization of CdS nanoparticles from mimosa pudica plant extract. Res. J. Pharm., Biol. Chem. Sci. 8(2), 2196–2203 (2017)

    CAS  Google Scholar 

  12. A. Alipour, M. Mansour Lakouraj, H. Tashakkorian, Study of the effect of band gap and photoluminescence on biological properties of polyaniline/CdS QD nanocomposites based on natural polymer. Sci. Rep. 11, 1913 (2021)

    Article  CAS  Google Scholar 

  13. M. Singh, M. Goyal, K. Devlal, Size and shape effects on the band gap of semiconductor compound nanomaterials. J. Taibah Univ. Sci. 12(4), 470–475 (2018)

    Article  Google Scholar 

  14. M. Bhanu, M. Venkata Sai Sriram, M. Hussen, M. Syam Sundar, B. Chandu, Photocatalytic activity of heavy metal doped CdS nanoparticles synthesized by using ocimum sanctum leaf extract. Biointerface Res. Appl. Chem. 11(5), 12547–12559 (2021)

    Article  Google Scholar 

  15. H.L. Lee, A.M. Issam, M. Belmahi, M.B. Assouar, H. Rinnert, M. Alnot, Synthesis and characterizations of bare CdS nanocrystals using chemical precipitation method for photoluminescence application. J. Nanomater. 2009, 914501–914509 (2009)

    Article  Google Scholar 

  16. L. Hong, T.L. Cheung, N. Rao, Q. Ouyang, Y. Wang, S. Zeng, C. Yang, D. Cuong, P. Han Joo Chong, L. Liu, W.C. Law, K.T. Yong, Millifluidic synthesis of cadmium sulfide nanoparticles and their application in bioimaging. RSC Adv. 7, 36819–36832 (2017)

    Article  CAS  Google Scholar 

  17. J.H. Park, L. Go, G. Maltzahn, E. Ruoslahti, S.N. Bhatia, M.J. Sailer, Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 8(4), 331–336 (2009)

    Article  CAS  Google Scholar 

  18. A. Varmazyaria, A. Taghizadehghalehjoughia, C. Sevimb, O. Barisa, G. Eserc, S. Yildirimd, A. Hacimuftuoglue, A. Buhaf, D.R. Wallaceg, A. Tsatsakish, M. Aschneri, Y. Mezhuevj, Cadmium sulfide-induced toxicity in the cortex and cerebellum: In vitro and in vivo studies. Toxicol. Rep. 7, 637–648 (2020)

    Article  Google Scholar 

  19. U.S. Patle, Photoluminescence studies of nano crystalline films of cadmium sulfide. Int. J. Nanotechnol. Appl. 11, 9–15 (2017)

    Google Scholar 

  20. M.M. Kamble, S.R. Rondiya, B.R. Bade et al., Optical, structural and morphological study of CdS nanoparticles: role of sulfur source. Nanomater. Energy. 9(1), 72–81 (2020)

    Article  Google Scholar 

  21. S. Munyai, N.C. Hintsho-Mbita, Green derived metal sulphides as photo catalysts for waste water treatment: a review. Curr. Res. Green Sustain. Chem. 4, 100163 (2021)

    Article  CAS  Google Scholar 

  22. S. Kumar, J.K. Sharma, Stable phase CdS nanoparticles for optoelectronics: a study on surface morphology, structural and optical characterization. Mater. Sci.-Pol. 34(2), 368–373 (2016)

    Article  CAS  Google Scholar 

  23. M.M. Rose, R.S. Christy, T.A. Benitta, J. ThampiThanka Kumaran, Phase transitions in cadmium sulfide nanoparticles. AIP Adv. 11, 085129 (2021)

    Article  CAS  Google Scholar 

  24. N. Sreelekha, K. Subramanyam, D. Amaranatha Reddy, Structural, optical, magnetic and photocatalytic properties of Co doped CuS diluted magnetic semiconductor nanoparticles. Appl. Surf. Sci. 38, 330–340 (2016)

    Article  Google Scholar 

  25. S. Koppoju, A multi-functional dual-energy laboratory Mo-Cr-SAXS System. J. Appl. Crystallogr. 48, 2040–2043 (2015)

    Article  CAS  Google Scholar 

  26. R.R. Alani, O.A. Ibrahim, Effect of point defects on the structural and optical properties of CdS nanoparticles synthesized by chemical method. Int. J. Mech. Eng. 7, 5156–5165 (2022)

    Google Scholar 

  27. M.R. Hosseini, M.N. Sarvi, Recent achievements in the microbial synthesis of semiconductor metal sulfide nanoparticles. Mater. Sci. Semicond. Process. 40, 293–301 (2015)

    Article  Google Scholar 

  28. G. Chen, B. Yi, G. Zeng, Q. Niu, M. Yan, A. Chen, J. Du, J. Huang, Q. Zhang, Facile green extracellular biosynthesis of CdS quantum dots by white rot fungus phanerochaete chrysosporium. Colloids Surf. B: Biointerfaces 117, 199–205 (2014)

    Article  CAS  Google Scholar 

  29. Y. Zhang, L. Han, C. Wang, W. Wang, T. Ling, J. Yang, C. Dong, F. Lin, X.W. Du, Zinc-blende CdS nanocubes with coordinated facets for photocatalytic water splitting. ACS Catal. 7(2), 1470–1477 (2017)

    Article  CAS  Google Scholar 

  30. N. Qutub, S. Sabir, Optical, Thermal and structural properties of CdS quantum dots synthesized by a simple chemical route. Int. J. Nanosci. Nanotechnol. 8(2), 111–120 (2012)

    Google Scholar 

  31. F. Davar, M.R.L. Estarki, M.S. Niasari, R. Ashiri, Synthesis of volcano-like CdS/Organic nanocomposite. Int. J. Appl. Ceram. Technol. 11(4), 637–644 (2014)

    Article  CAS  Google Scholar 

  32. Z. Chang, J. Zhang, W. Dong, X. Meng, H. Wang, D. Wei, Y. Ren, Cadmium sulfide net framework nanoparticles for photo-catalyzed cell redox. RSC Adv. 10, 37820–37825 (2020)

    Article  CAS  Google Scholar 

  33. Y. Yu, Y. Ding, S. Zuo, J. Liu, Photocatalytic activity of nanosized cadmium sulfides synthesized by complex compound thermolysis. Int. J. Photoenergy 2011, 762929–762933 (2011)

    Article  Google Scholar 

  34. H. Park, Y.K. Kim, W. Choi, Reversing CdS preparation order and its effects on photocatalytic hydrogen production of CdS/Pt-TiO2 hybrids under visible light. J. Phys. Chem. C. 115, 6141–6148 (2011)

    Article  CAS  Google Scholar 

  35. G. Li, J. Li, H. Peng, B. Zhang, Self-assembled CdS microspheres from nanorods and their optical properties. Mater. Lett. 62, 1881–1883 (2008)

    Article  CAS  Google Scholar 

  36. J. Chrysochoos, Recombination luminescence quenching of nonstoichiometric cadmium sulfide clusters by ZnTPP. J. Phys. Chem. 96, 2868–2873 (1992)

    Article  CAS  Google Scholar 

  37. J. Mazher, S. Badwe, R. Sengar, D. Gupta, R.K. Pandey, Investigation of size dependent optical and morphological properties of nanocrystalline ZnSe films. Physica E. 16, 209–213 (2003)

    Article  CAS  Google Scholar 

  38. P.K. Khanna, N. Singh, Light emitting CdS quantum dots in PMMA: synthesis and optical studies. J. Lumin. 127, 474–482 (2007)

    Article  CAS  Google Scholar 

  39. K.K. Nanda, S.N. Sarangi, S.N. Sahu, Visible light emission from CdS nanocrystals. J. Phys. D. 32, 2306–2310 (1999)

    Article  CAS  Google Scholar 

  40. D. Nesheva, C. Raptis, Z. Levi, Z. Popovic, I. Hinic, Photoluminescence of CdSe nanocrystals embedded in a SiO2thin film matrix. J. Lumin. 82, 233–240 (1999)

    Article  CAS  Google Scholar 

  41. A.M. Weli, S. Al-Salmi, H. Al-Hoqani, M.A. Hossain, Biological and phytochemical studies of different leaves extracts of pteropyrumscoparium. Beni-Suef Univ. J. Basic Appl. Sci. 7, 481–486 (2018)

    Google Scholar 

  42. T. Zhang, T. Oyama, S. Horikoshi, H. Hidaka, J. Jhao, N. Serpone, Photocatalyzed N-demethylation and degradation of methylene blue in titania dispersions exposed to concentrated sun light. Sol. Energy Matter. Sol. Cells. 73, 287–303 (2002)

    Article  CAS  Google Scholar 

  43. L. Wu, J.C. Yu, X. Fu, Characterization and photocatalytic mechanism of nanosizedCdS coupled TiO2 nanocrystals under visible light irradiation. J. Mol. Catal. A: Chem. 244, 25–32 (2006)

    Article  CAS  Google Scholar 

  44. F. Chen, J. Jhao, H. Hidaka, Highly selective deethylation of rhodamine B: Adsorption and photo oxydation pathways of the dye on the TiO2/SiO2 composite photocatalyst. Int. J. Photoenergy. 5, 209–217 (2003)

    Article  Google Scholar 

  45. K. Prasad, A.K. Jha, Biosynthesis of CdS nanoparticles: an improved green and rapid procedure. J. Colloid Interface Sci. 342(1), 68–72 (2010)

    Article  CAS  Google Scholar 

  46. M. Sekkal, V. Dincq, P. Legrand, J.P. Huvenne, Investigation of the glycosidic linkages in several oligo saccharides using FT-IR and FT Raman Spectroscopies. J. Mol. Struct. 349, 349–352 (1995)

    Article  CAS  Google Scholar 

  47. S. Khushboo, N. Mehta, C.H. Rama Krishna, S.K. Mehta, Electrochemical detection of TNT using CdS nanoparticles via cyclic voltammetry and amperometry. Curr. Res. Green Sustain. Chem. 4, 100166 (2021)

    Article  Google Scholar 

  48. H.S. Han, W. Park, S.W. Hwang, H. Kim, Y. Sim, S. Surendran, U. Sim, I.S. Cho, Textured tungsten trioxide nanostructure with enhanced photoelectrochemical activity. J. Catal. 389, 328–336 (2020)

    Article  CAS  Google Scholar 

  49. Y. Sim, J. Jhon, S. Surendran, B. Moon, U. Sim, Efficient photoelectrochemical water splitting reaction using electrodeposited Co3Se4 catalyst. Appl. Sci. 9(16), 1–12 (2019)

    Google Scholar 

  50. S.K. Tammina, B.K. Mandal, N.K. Kadiyala, Photocatalytic degradation of methylene blue dye by nonconventional synthesized SnO2 nanoparticles. Environ. Nanotechnol. Monitor. Manage. 10, 339–350 (2018)

    Article  Google Scholar 

  51. H.S. Han, W. Park, A. Sivanantham, S.W. Hwang, S. Surendran, U. Sim, I.S. Cho, Facile fabrication of nanotubular hetero structure for enhanced photoelectrochemical performance. Ceram. Int. 47(3), 3972–3977 (2021)

    Article  CAS  Google Scholar 

  52. M.S. Yu, S.C. Jesudass, S. Surendran, J.Y. Kim, U. Sim, M.K. Han, Synergistic interaction of MoS2nanoflakes on La2Zr2O7nanofibers for improving photoelectrochemical nitrogen reduction. ACS Appl. Matter. Interfaces. 14(28), 31889–31899 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are extremely grateful to the Head, Department of Physics, Osmania University, Hyderabad and Director, DMRL, Hyderabad for extending co-operation and allowing using experimental facilities. The authors thank the SAIF, IIT Madras for providing the photoluminescence characterization facility

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasa Goud Bandaru.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandaru, S.G., Yathapu, S., Sathiraju, A. et al. Photoluminescence and photocatalytic studies of rice water and papaya fruit extract-encapsulated cadmium sulfide nanoparticles. J. Korean Ceram. Soc. 60, 183–202 (2023). https://doi.org/10.1007/s43207-022-00253-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00253-6

Keywords

Navigation