Skip to main content
Log in

Metallic nanoparticles: green synthesis and spectroscopic characterization

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Metallic nanoparticles are finding new applications in medical, pharmaceutical, food and agriculture sectors. Applications include drug delivery, targeted cancer remedies, biomarker mapping, gene delivery and molecular imaging. This article reviews green strategies for the preparation of metallic nanoparticles, using enzymes, vitamins, monosaccharides, polysaccharides and biodegradable polymers. Microwave-assisted synthesis is detailed. Then, we review nanoparticle characterization using UV–visible spectroscopy and Fourier transform infrared spectroscopy. We also present applications for water purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Halim ES, Al-Deyab SS (2011) Utilization of hydroxypropyl cellulose for green and efficient synthesis of silver nanoparticles. Carbohydr Polym 86:1615–1622

    Article  CAS  Google Scholar 

  • Amin M, Anwar F, Janjua MRSA, Iqbal MA, Rashid U (2012) Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. berry extract: characterization, antimicrobial and urease inhibitory activities against Helicobacter pylori. Int J Mol Sci 13:9923–9941. doi:10.3390/ijms13089923

    Article  CAS  Google Scholar 

  • Ankamwar B (2010) Biosynthesis of gold nanoparticles (green-gold) using leaf extract of Terminalia Catappa. E J Chem 7:1334–1339

    Article  CAS  Google Scholar 

  • Awaad AM, Salem NM (2012) Green synthesis of silver nanoparticles by Mulberry leaves extract. Nanosci Nanotechnol 2(4):125–128. doi:10.5923/j.nn.20120204.06

    Article  Google Scholar 

  • Badole MR, Dighe VV (2012) Synthesis of gold nano particles using Putranjiva roxburghii wall. leaves extract. Int J Drug Herbal Res 2:275–278

    Google Scholar 

  • Bai HJ, Zhang ZM (2009) Microbial synthesis of semiconductor lead sulfide nanoparticles using immobilized Rhodobacter sphaeroides. Mater Lett 63(9–10):764–766

    Article  CAS  Google Scholar 

  • Bai HJ, Zhang ZM, Guo Y, Yang GE (2009) Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids Surf B 70:142–146

    Article  CAS  Google Scholar 

  • Banerjee P, Satapathy M, Mukhopahaya A, Das P (2014) Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants:synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour Bioprocess 1:3. doi:10.1186/s40643-014-0003-y

    Article  Google Scholar 

  • Bonsak J, Mayandi J, Thogersen A, Marstein ES, Mahalingam U (2011) Chemical synthesis of silver nanoparticles for solar cell applications. Phys Status Solidi C 8:924–927

    Article  CAS  Google Scholar 

  • Caccavo F Jr, Blakemore RP, Lovley D (1992) A hydrogen-oxidizing, Fe(III)-reducing microorganism from the Great Bay Estuary, New Hampshire. Appl Environ Microbiol 58:3211–3216

    CAS  Google Scholar 

  • Castro L, Blazquez ML, Munoz JA, Gonzalez F, Garcia-Balboa C, Ballester A (2011) Biosynthesis of gold nanowires using sugar beet pulp. Process Biochem 46:1076–1082

    Article  CAS  Google Scholar 

  • Chakraborty N, Banerjee A, Lahiri S, Panda A, Ghosh AN, Pal R (2009) Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation—a novel phenomenon. J Appl Phycol 21:145–152

    Article  CAS  Google Scholar 

  • Chandrasekharan DK, Khanna PK, Kagiya TV, Nair CK (2011) Synthesis of nanosilver using a vitamin C derivative and studies on radiation protection. Cancer Biother Radiopharma 26:249–257

    Article  CAS  Google Scholar 

  • Chen J, Wang K, Xin J, Jin Y (2008) Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate. Mater Chem Phys 108:421–424

    Article  CAS  Google Scholar 

  • Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211–212:112–125. doi:10.1016/j.jhazmat.2011.11.073

    Article  Google Scholar 

  • Das SK, Mandal AB (2015) Green synthesis of nanomaterials with special reference to environmental and biomedical applications. Curr Sci 108(11):1999–2002

    CAS  Google Scholar 

  • Das SK, Marsili E (2011) Bioinspired metal nanoparticle: synthesis, properties and application. In: Rahman M (ed) Nanomaterials. InTech, Croatia, pp 253–278

  • Das RK, Gogoi N, Bora U (2011) Green synthesis of gold nanoparticles using Nyctanthes arbortristis flower extract. Bioprocess Biosyst Eng 34:615–619

    Article  CAS  Google Scholar 

  • Das SK, Khan MMR, Parandhaman T, Laffir F, Guha AK, Sekaran G, Mandal AB (2013) Nano-silica fabricated with silver nanoparticles: antifouling adsorbent for efficient dye removal, effective water disinfection and biofouling control. Nanoscale 5:5549–5560

    Article  CAS  Google Scholar 

  • Dasgupta N, Ranjan S, Rajendran B, Manickam V, Ramalingam C, Avadhani GS, Kumar A (2015a) Thermal co-reduction approach to vary size of silver nanoparticle: its microbial and cellular toxicology. Environ Sci Pollut Res. doi:10.1007/s11356-015-4570-z

    Google Scholar 

  • Dasgupta N, Ranjan S, Mundra S, Ramalingam C, Kumar A (2015b) Fabrication of food grade vitamin E nanoemulsion by low energy approach: characterization and its application. Int J Food Prop. doi:10.1080/10942912.2015.1042587

    Google Scholar 

  • El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5(5):829–834

    Article  CAS  Google Scholar 

  • García-Serrano J, Herrera AM, Ocampo-Fernández M (2011) Synthesis of Ag particles using an ion-exchange polymer with phosphonic acid groups. Mater Sci Forum 691:113–118

    Article  Google Scholar 

  • Gorby YA, Lovley D (1991) Enzymatic uranium precipitation. Environ Sci Technol 26:205–207

    Article  Google Scholar 

  • Govindaraju K, Basha SK, Kumar VG, Singaravelu G (2008) Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Mater Sci 43:5115–5122

    Article  CAS  Google Scholar 

  • Hebeish A, El-Shafei A, Sharaf S, Zaghloul S (2011) Novel precursors for green synthesis and application of silver nanoparticles in the realm of cotton finishing. Carbohydr Polym 84:605–613

    Article  CAS  Google Scholar 

  • Henglein A (1999) Radiolytic preparation of ultrafine colloidal gold particles in aqueous solution: optical spectrum, controlled growth, and some chemical reactions. Langmuir 15:6738–6744

    Article  CAS  Google Scholar 

  • Henglein A, Meisel D (1998) Radiolytic control of the size of colloidal gold nanoparticles. Langmuir 14:7392–7396

    Article  CAS  Google Scholar 

  • Herrera J, Sakulchaicharoen N (2009) Microscopic and spectroscopic characterization of nanoparticles. In: Pathak Y, Thassu D (eds) Nanoparticulate drug delivery systems (NPDDS)-II: formulation and characterization. Informa Healthcare, New York, pp 237–249

    Google Scholar 

  • Imamura K, Ikeda E, Nagayasu T, Sakiyama T, Nakanishi K (2002) Adsorption behavior of methylene blue and its congeners on a stainless steel surface. J Colloid Interface Sci 245:50–57

    Article  CAS  Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–2650

    Article  CAS  Google Scholar 

  • Iravani S, Zolfaghari B (2013) Green synthesis of silver nanoparticles using Pinus eldarica bark extract. Biomed Res Int. doi:10.1155/2013/639725:5

    Google Scholar 

  • Jayaseelan C, Rahuman AA, Roopan SM, Kirthi AV, Venkatesan J, Kim S-K, Iyappan M, Siva C (2013) Biological approach to synthesize TiO2nanoparticles usingAeromonas hydrophila and its antibacterial activity. Spectrochim Acta Part A Mol Biomol Spectrosc 107:82–89

    Article  CAS  Google Scholar 

  • Konishi Y, Tsukiyama T, Ohno K, Saitoh N, Nomura T, Nagamine S (2006) Intracellular recovery of gold by microbial reduction of AuCl4− ions using the anaerobic bacterium Shewanella algae. Hydrometallurgy 81(1):24–29

    Article  CAS  Google Scholar 

  • Konishi Y, Tsukiyama T, Tachimi T, Saitoh N, Nomura T, Nagamine S (2007) Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae. Electrochim Acta 53(1):186–192

    Article  CAS  Google Scholar 

  • Korbekandi H, Iravani S (2013) Biological synthesis of nanoparticles using algae. In: Rai M, Posten C (eds) Green biosynthesis of nanoparticles: mechanisms and applications. CABI, Wallingford, UK, pp 53–60. doi:10.1079/9781780642239.0053

  • Korbekandi H, Iravani S, Abbasi S (2009) Production of nanoparticles using organisms. Crit Rev Biotechnol 29:279–306

    Article  CAS  Google Scholar 

  • Korbekandi H, Iravani S, Abbasi S (2012) Optimization of biological synthesis of silver nanoparticles using Lactobacillus casei subsp. casei. J Chem Technol Biotechnol 87:932–937

    Article  CAS  Google Scholar 

  • Korbekandi H, Ashari Z, Iravani S, Abbasi S (2013) Optimization of biological synthesis of silver nanoparticles using Fusarium oxysporum. Iran J Pharm Res 12(3):289–298

    CAS  Google Scholar 

  • Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100

    Article  CAS  Google Scholar 

  • Kumar SA, Amutha R, Arumugam P, Berchmans S (2011) Synthesis of gold nanoparticles: an ecofriendly approach using Hansenula anomala. ACS Appl Mater Interfaces 3:1418–1425

    Article  Google Scholar 

  • Kumar A, Kaur K, Sharma S (2013) Synthesis, characterization and antibacterial potential of silver nanoparticles by Morus nigra leaf extract. Indian J Pharm Biol Res 1(4):16–24

    CAS  Google Scholar 

  • Lengke M, Fleet ME, Southam G (2006a) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold (I)-thiosulfate and gold (III)-chloride complexes. Langmuir 22:2780–2787

    Article  CAS  Google Scholar 

  • Lengke M, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2006b) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold (III)-chloride complex. Environ Sci Technol 40:6304–6309

    Article  CAS  Google Scholar 

  • Lim HA, Mishra A, Yun SI (2011) Effect of pH on the extra cellular synthesis of gold and silver nanoparticles by Saccharomyces cerevisae. J Nanosci Nanotechnol 11:518–522

    Article  CAS  Google Scholar 

  • Link S, Wang ZL, El-Sayed MA (1999) Alloy formation of gold–silver nanoparticles and the dependence of the plasmon absorption on their composition. J Phys Chem B 103(18):3529–3533

    Article  CAS  Google Scholar 

  • Lovley D (2001) Dissimilatory Fe(III) reduction and Mn(IV) reduction. Microbiol Rev 55:259–287

    Google Scholar 

  • Lungu A, Lungu M, Neculae A and Giugiulan R (2015) Nanoparticle characterization using nanoparticle tracking analysis. In: Lungu et al (eds) Nanoparticle’s promises and risks-characterization, manipulation and potential hazards to humanity and the environment. Springer, Switzerland, pp 245–268

  • Malarkodi C, Chitra K, Rajeshkumar S, Gnanajobitha G, Paulkumar K, Vanaja M, Annadurai G (2013) Novel eco-friendly synthesis of titanium oxide nanoparticles by using Planomicrobium sp. and its antimicrobial evaluation. Der Pharmacia Sinica 4:59–66

    CAS  Google Scholar 

  • Mallikarjuna MN, Varma RS (2007) Microwave-assisted shape-controlled bulk synthesis of noble nanocrystals and their catalytic properties. Cryst Growth Des 7:686–690

    Article  CAS  Google Scholar 

  • Masciangioli T, Zhang WX (2003) Environmental technologies at the nanoscale. Environ Sci Technol 37:102–108

    Article  Google Scholar 

  • Matthias L, Gregory KD, Thomsen-Ebert T, Gilbert B, Welch SA, Kemner KM, Logan GA, Summons RE, De Stasio G, Bond PL, Lai B, Kelly SD, Banfield JF (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290:1744–1747

    Article  Google Scholar 

  • McFarland AD, van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3:1057–1062

    Article  CAS  Google Scholar 

  • Mishra AN, Bhadauria S, Gaur MS, Pasricha R, Kushwah BS (2010) Synthesis of gold nanoparticles by leaves of zero-calorie sweetener herb (Stevia rebaudiana) and their nanoscopic characterization by spectroscopy and microscopy. Int J Green Nanotechnol 1:118–124

    Article  Google Scholar 

  • Mishra A, Tripathy SK, Yun SI (2011) Bio-synthesis of gold and silver nanoparticles from Candida guilliermondii and their antimicrobial effect against pathogenic bacteria. J Nanosci Nanotechnol 11:243–248

    Article  CAS  Google Scholar 

  • Mitra B, Vishnudas D, Sant SB, Annamalai A (2012) Green-synthesis and characterization of silver nanoparticles by aqueous leaf extracts of Cardiospermum helicacabum leaves. Drug Invent Today 4(2):340–344

    CAS  Google Scholar 

  • Mittal AK, Tripathy D, Choudhary A, Aili PK, Chatterjee A, Singh IP, Banerjee UC (2015) Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. exHook. and its therapeutic evaluation as anticancer and antimicrobial agent. Mater Sci Eng C 53:120–127

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan M, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10):515–519

    Article  CAS  Google Scholar 

  • Nadagouda MN, Varma RS (2008) Green synthesis of Ag and Pd nanospheres, nanowires, and nanorods using vitamin B2: catalytic polymerisation of aniline and pyrrole. J Nanomater. doi:10.1155/2008/782358

    Google Scholar 

  • Nadagouda MN, Speth TF, Varma R (2011) Microwave-assisted green synthesis of silver nanostructures. Acc Chem Res 44:469–478

    Article  CAS  Google Scholar 

  • Nellore J, Pauline PC, Amarnath K (2012) Biogenic synthesis by Sphearanthus amaranthoids; towards the efficient production of the biocompatible gold nanoparticles. Digest J Nanomater Biostruct 7:123–133

    Google Scholar 

  • Niu H, Volesky B (2000) Gold-cyanide biosorption with L-cysteine. J Chem Technol Biotechnol 75:436–442

    Article  CAS  Google Scholar 

  • Okafor F, Janen A, Kukhtareva T, Edwards V, Curley M (2013) Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. Int J Environ Res Public Health 10:5221–5238. doi:10.3390/ijerph1010522

    Article  Google Scholar 

  • Pashetti G, Telke A, Kalyani D, Govindwar S (2010) Decoloration and detoxification of sulfonated azo dye methyl orange. J Hazard Mater 176:503–509

    Article  Google Scholar 

  • Petla RK, Vivekanandhan S, Misra M, Mohanty AK, Satyanarayana N (2012) Soybean (Glycine max) leaf extract based green synthesis of palladium nanoparticles. J Biomater Nanobiotechnol 3:14–19

    Article  CAS  Google Scholar 

  • Phillip D (2010) Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf. Spectrochim Acta Part A 77:807–810

    Article  Google Scholar 

  • Pollmann K, Raff J, Merroun M, Fahmy K, Selenska-Pobell S (2006) Metal binding by bacteria from uranium mining waste piles and its technological applications. Biotechnol Adv 24:58–68

    Article  CAS  Google Scholar 

  • Rangnekar A, Sarma TK, Singh AK, Deka J, Ramesh A, Chattopadhyay A (2007) Retention of enzymatic activity of α-amylase in the reductive synthesis of gold nanoparticles. Langmuir 23:5700–5706

    Article  CAS  Google Scholar 

  • Sadeghi B, Gholamhoseinpoor F (2015) A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim Acta Part A Mol Biomol Spectrosc 134:310–315. doi:10.1016/j.saa.2014.06.046

    Article  CAS  Google Scholar 

  • Sathishkumar M, Sneha K, Won SW, Cho C-W, Kim S, Yun YS (2009) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf B 73:332–338

    Article  CAS  Google Scholar 

  • Schneidewind H, Schüler T, Strelau KK, Weber K, Cialla D, Diegel M, Mattheis R, Berger A, Möller R, Popp J (2012) The morphology of silver nanoparticles prepared by enzyme-induced reduction. Beilstein J Nanotechnol 3:404–414

    Article  Google Scholar 

  • Senapati US, Jha DK, Sarkar D (2013) Green synthesis and characterization of ZnS nanoparticles. Res J Phys Sci 1(7):1–6

    Google Scholar 

  • Shahwan T, Sirriah SA, Nairat M, Boyacı E, Eroglu AE, Scott TB, Hallam KR (2011) Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J 172:258–266. doi:10.1016/j.cej.2011.05.103

    Article  CAS  Google Scholar 

  • Shameli K, Ahmad MB, Jazayeri SD, Shabanzadeh P, Sangpour P, Jahangirian H, Gharayebi Y (2012) Investigation of antibacterial properties silver nanoparticles prepared via green method. Chem Cent J 6:73. doi:10.1186/1752-153X-6-73

    Article  CAS  Google Scholar 

  • Shukla AK (2015) Electron magnetic resonance (EMR) technique and nanoparticle characterization. In: Lungu et al (eds.) Nanoparticle’s promises and risks-characterization, manipulation and potential hazards to humanity and the environment. Springer, Switzerland, pp 235–244

  • Shukla AK, Iravani S (2016) Green synthesis and spectroscopic characterization of nanoparticles. In: Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanoscience in food and agriculture 1, Springer International Publishing, Switzerland, pp 65–99. doi:10.1007/978-3-319-39303-2_3

  • Singh PP, Bhakat C (2012) Green synthesis of gold nanoparticles and silver nanoparticles from leaves and bark of Ficus carica for nanotechnological applications. Int J Sci Res Pub 2:1–4

    Google Scholar 

  • Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32:79–84

    Article  Google Scholar 

  • Sundrarajan M, Gowri S (2011) Green synthesis of titanium dioxide nanoparticles by Nyctanthes arbor-tristis leaves extract. Chalcogenide Lett 8:447–451

    CAS  Google Scholar 

  • Upstone SL (2000) Ultraviolet/visible light absorption spectrophotometry in clinical chemistry. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, pp 1699–1714

    Google Scholar 

  • Virkutyte J, Varma RS (2013) Environmentallyfriendly preparation of metal nanoparticles. In: Luque R, Varma RS (eds) Sustainable preparation of metal nanoparticles methods and applications. RSC Green Chemistry, UK

  • Watson JHP, Croudace IW, Warwick PE, James PAB, Charnock JM, Ellwood D (2001) Adsorption of radioactive metals by strongly magnetic iron sulfide nanoparticles produced by sulfate-reducing bacteria. Sep Sci Technol 36:2571–2607

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (AKS) thanks Dr. Mervin Massey for his constant encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siavash Iravani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, A.K., Iravani, S. Metallic nanoparticles: green synthesis and spectroscopic characterization. Environ Chem Lett 15, 223–231 (2017). https://doi.org/10.1007/s10311-017-0618-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-017-0618-2

Keywords

Navigation