Skip to main content

Advertisement

Log in

Phase transformation behavior of Ca-doped zirconia sintered at different temperatures

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

The phase evolution studies of 16 mol% calcium-doped zirconia have been carried out after sintering the samples at 800 °C, 1000 °C, 1200 °C, and 1400 °C. The X-ray diffraction (XRD), Raman spectroscopic along FTIR studies confirmed that the pure zirconia exists only in the monoclinic phase. However, the XRD analysis of calcium-doped zirconia and its Rietveld refinement studies revealed the stabilization of zirconia in the monoclinic and cubic phases both. With increasing sintering temperature, the development of cubic phase in zirconia is seen and at 1400 °C, an almost fully stabilized cubic phase of zirconia is achieved. The traces of CaZrO3 (perovskite phase) are observed in XRD and Raman studies when samples are sintered at 800 °C and 1000 °C. The results of FESEM suggest that grains are uniformly distributed and closely packed. Further, EDS mapping suggests that the calcium is uniformly distributed in samples. The thermal stability analysis confirms that calcium-stabilized zirconia is stable at high temperatures and analysis of the Vickers hardness test confirms that it is harder as compared to pure zirconia. Results reported here indicate that the sintering of 16 mol% calcium-doped zirconia at 1400 °C leads to the complete transformation of m-ZrO2 to c-ZrO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Sommers, Q. Wang, X. Han, C. T’Joen, Y. Park, A. Jacobi, Ceramics and ceramic matrix composites for heat exchangers in advanced thermal systems—a review. Appl. Therm. Eng. 30(11–12), 1277–1291 (2010). https://doi.org/10.1016/j.applthermaleng.2010.02.018

    Article  CAS  Google Scholar 

  2. R.C. Belin, P.M. Martin, P.J. Valenza, A.C. Scheinost, Experimental insight into the radiation resistance of zirconia-based americium ceramics. Inorg. Chem. 48(12), 5376–5381 (2009). https://doi.org/10.1021/ic900369b

    Article  CAS  Google Scholar 

  3. M. Abdelgawad, S.M.A. El-Gamal, E.M. Ewais, S. Li, Effect of magnesia rich spinel on densification and stabilization behavior of monoclinic zirconia. J. Korean Ceram. Soc. 58(3), 276–286 (2021)

    Article  CAS  Google Scholar 

  4. A.A. El-Amir, S. Li, M. Abdelgawad, E.M. Ewais, MgAl2O4-reinforced c-ZrO2 ceramics prepared by spark plasma sintering. J. Korean Ceram. Soc. 58, 574–582 (2021)

    Article  CAS  Google Scholar 

  5. A. Kumar, P. Kumar, A.S. Dhaliwal. Structural, morphological properties and phase stabilisation criteria of the calcia-zirconia system. Adv. Appl. Ceram. 120(5-8), 307-318 (2021). https://doi.org/10.1080/17436753.2021.1978266

    Article  CAS  Google Scholar 

  6. P.K. Wright, A.G. Evans, Mechanisms governing the performance of thermal barrier coatings. Curr. Opin. Solid State Mater. Sci. 4(3), 255–265 (1999). https://doi.org/10.1016/S1359-0286(99)00024-8

    Article  CAS  Google Scholar 

  7. M.M.S. Wahsh, A.A. Gaber, A.G.M. Othman, Sintering behavior and technological properties of nano-cubic zirconia/calcium zirconate ceramic composites. J. Korean Ceram. Soc. 57(2), 161–166 (2020)

    Article  CAS  Google Scholar 

  8. P.F. Manicone, P.R. Iommetti, L. Raffaelli, An overview of zirconia ceramics: basic properties and clinical applications. J. Dent. 35(11), 819–826 (2007). https://doi.org/10.1016/j.jdent.2007.07.008

    Article  CAS  Google Scholar 

  9. D. Marrero-López, J.C. Ruiz-Morales, J. Peña-Martínez, J. Canales-Vázquez, P. Núñez, Preparation of thin layer materials with macroporous microstructure for SOFC applications. J. Solid-State Chem. 181(4), 685–692 (2008). https://doi.org/10.1016/j.jssc.2008.01.008

    Article  CAS  Google Scholar 

  10. B. Sathyaseelan, E. Manikandan, I. Baskaran, K. Senthilnathan, K. Sivakumar, M.K. Moodley, M. Maaza, Studies on structural and optical properties of ZrO2 nanopowder for opto-electronic applications. J. Alloys Compd. 694, 556–559 (2017). https://doi.org/10.1016/j.jallcom.2016.10.002

    Article  CAS  Google Scholar 

  11. A. Kumar, P. Kumar, A.S. Dhaliwal, Synthesis and Rietveld refinement study of calcium doped zirconia. In: AIP Conference Proceedings, Vol. 2352, No. 1, (AIP Publishing LLC, 2021), p. 020042. https://doi.org/10.1063/5.0052559

  12. F. Lu, J. Wang, M. Lang, M. Toulemonde, F. Namavar, C. Trautmann, J. Lian, Amorphization of nanocrystalline monoclinic ZrO2 by swift heavy ion irradiation. Phys. Chem. Chem. Phys. 14(35), 12295–12300 (2012)

    Article  CAS  Google Scholar 

  13. P. Kalita, S. Ghosh, G. Sattonnay, U.B. Singh, V. Grover, R. Shukla, D.K. Avasthi, Role of temperature in the radiation stability of yttria stabilized zirconia under swift heavy ion irradiation: a study from the perspective of nuclear reactor applications. J. Appl. Phys. 122(2), 025902 (2017)

    Article  Google Scholar 

  14. J.V. Spirig, R. Ramamoorthy, S.A. Akbar, J.L. Routbort, D. Singh, P.K. Dutta, High temperature zirconia oxygen sensor with sealed metal/metal oxide internal reference. Sens. Actuators B Chem. 124(1), 192–201 (2007)

    Article  CAS  Google Scholar 

  15. M. Raza, D. Cornil, J. Cornil, S. Lucas, R. Snyders, S. Konstantinidis, Oxygen vacancy stabilized zirconia (OVSZ); a joint experimental and theoretical study. Scripta Mater. 124, 26–29 (2016). https://doi.org/10.1016/j.scriptamat.2016.06.025

    Article  CAS  Google Scholar 

  16. A.P. Anantharaman, H.P. Dasari, Potential of pyrochlore structure materials in solid oxide fuel cell applications. Ceram. Int. 47(4), 4367–4388 (2021)

    Article  CAS  Google Scholar 

  17. S.J. Hao, C. Wang, T.L. Liu, Z.M. Mao, Z.Q. Mao, J.L. Wang, Fabrication of nanoscale yttria stabilized zirconia for solid oxide fuel cell. Int. J. Hydrogen Energy 42(50), 29949–29959 (2017)

    Article  CAS  Google Scholar 

  18. S. Jo, B. Sharma, D.H. Park, J.H. Myung, Materials and nano-structural processes for use in solid oxide fuel cells: A review. J. Korean Ceram. Soc. 57(2), 135–151 (2020)

    Article  CAS  Google Scholar 

  19. O. Ruff, F. Ebert, E. Stephen, Contributions to the ceramics of highly refractory materials: II. System zirconia-lime. Z AnorgAllgChem 180(1), 215–224 (1929)

    CAS  Google Scholar 

  20. C.W. Kuo, Y.H. Shen, F.L. Yen, H.Z. Cheng, I.M. Hung, S.B. Wen, M. Stack, Phase transformation behavior of 3 mol% yttria partially-stabilized ZrO2 (3Y–PSZ) precursor powder by an isothermal method. Ceram. Int. 40(2), 3243–3251 (2014). https://doi.org/10.1016/j.ceramint.2013.09.112

    Article  CAS  Google Scholar 

  21. D. Nakonieczny, W. Walke, J. Majewska, Z. Paszenda, Characterization of magnesia-doped yttria-stabilized zirconia powders for dental technology applications. Acta Bioeng. Biomech. 16(4), 99-106 (2014)

  22. M. Kunz, H. Kretschmann, W. Assmus, C. Klingshirn, Absorption and emission spectra of yttria-stabilized zirconia and magnesium oxide. J. Lumin. 37(3), 123–131 (1987)

    Article  CAS  Google Scholar 

  23. J. Xue, R. Dieckmann, Variation of the oxygen content in tetragonal, calcium oxide-doped zirconia. Solid State Ionics 73(3–4), 273–282 (1994)

    Article  CAS  Google Scholar 

  24. M.A. Taylor, C. Argirusis, M. Kilo, G. Borchardt, K.D. Luther, W. Assmus, Correlation between ionic radius and cation diffusion in stabilised zirconia. Solid State Ion. 173(1–4), 51–56 (2004)

    Article  CAS  Google Scholar 

  25. J.W. Drazin, R.H. Castro, Phase stability in nanocrystals: a predictive diagram for yttria–zirconia. J. Am. Ceram. Soc. 98(4), 1377–1384 (2015). https://doi.org/10.1111/jace.13504

    Article  CAS  Google Scholar 

  26. H.G. Scott, Phase relationships in the zirconia-yttria system. J. Mater. Sci. 10(9), 1527–1535 (1975). https://doi.org/10.1007/BF01031853

    Article  CAS  Google Scholar 

  27. S.A. Nightingale, H.K. Worner, D.P. Dunne, Microstructural development during the microwave sintering of yttria—zirconia ceramics. J. Am. Ceram. Soc. 80(2), 394–400 (1997). https://doi.org/10.1111/j.1151-2916.1997.tb02843.x

    Article  CAS  Google Scholar 

  28. X.J. Chen, K.A. Khor, S.H. Chan, L.G. Yu, Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte. Mater. Sci. Eng. A 335(1–2), 246–252 (2002). https://doi.org/10.1016/S0921-5093(01)01935-9

    Article  Google Scholar 

  29. A. Kumar, P. Kumar, A.S. Dhaliwal, Structural studies of zirconia and yttria doped zirconia for analysing it phase stabilization criteria. in: IOP Conference Series: Materials Science and Engineering Vol. 1033, No. 1, (IOP Publishing, 2021), p. 012052. https://doi.org/10.1088/1757-899X/1033/1/012052

  30. M. Gaudon, C. Laberty-Robert, F. Ansart, P. Stevens, A. Rousset, New chemical process for the preparation of fine powders and thin films of LSMx-YSZ composite oxides. Solid State Sci. 5(10), 1377–1383 (2003). https://doi.org/10.1016/S1293-2558(03)00181-X

    Article  CAS  Google Scholar 

  31. J.W. Drazin, R.H. Castro, Phase stability in calcia-doped zirconia nanocrystals. J. Am. Ceram. Soc. 99(5), 1778–1785 (2016). https://doi.org/10.1111/jace.14151

    Article  CAS  Google Scholar 

  32. L.A. Simpson, R.E. Carter, Oxygen exchange and diffusion in calcia-stabilized zirconia. J. Am. Ceram. Soc. 49(3), 139–144 (1966). https://doi.org/10.1111/j.1151-2916.1966.tb15391.x

    Article  CAS  Google Scholar 

  33. B. Cales, J.F. Baumard, Oxygen semi permeability and electronic conductivity in calcia-stabilized zirconia. J. Mater. Sci. 17(11), 3243–3248 (1982). https://doi.org/10.1007/BF01203490

    Article  CAS  Google Scholar 

  34. A. Nakamura, J.B. Wagner Jr., Defect structure, ionic conductivity, and diffusion in calcia-stabilized zirconia. J. Electrochem. Soc. 127(11), 2325 (1980). https://doi.org/10.1149/1.2129406

    Article  CAS  Google Scholar 

  35. J. Chevalier, L. Gremillard, A.V. Virkar, D.R. Clarke, The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends. J. Am. Ceram. Soc. 92(9), 1901–1920 (2009). https://doi.org/10.1111/j.1551-2916.2009.03278.x

    Article  CAS  Google Scholar 

  36. J.R. Kelly, I. Denry, Stabilized zirconia as a structural ceramic: an overview. Dent. Mater. 24(3), 289–298 (2008). https://doi.org/10.1016/j.dental.2007.05.005

    Article  CAS  Google Scholar 

  37. S.X. Wu, R.J. Brook, Kinetics of densification in stabilized zirconia. Solid State Ion. 14(2), 123–130 (1984). https://doi.org/10.1016/0167-2738(84)90086-9

    Article  CAS  Google Scholar 

  38. V.S. Stubican, S.P. Ray, Phase equilibria and ordering in the system ZrO2-CaO. J. Am. Ceram. Soc. 60(11–12), 534–537 (1977)

    Article  CAS  Google Scholar 

  39. J.R. Hellmann, V.S. Stubican, Stable and metastable phase relations in the system ZrO2-CaO. J. Am. Ceram. Soc. 66(4), 260–264 (1983)

    Article  CAS  Google Scholar 

  40. T. Noguchi, M. Mizuno, W.M. Conn, Fundamental research in refractory system with a solar furnace—ZrO2-CaO system. Sol. Energy 11(3–4), 145–152 (1967)

    Article  CAS  Google Scholar 

  41. P. Durán, P. Recio, J.M. Rodriguez, R. Dickerson, A. Heuer, Comment on the calcia-zirconia phase diagram revisited: stability of the ordered phase Ø1 and Ø2. Author’s replies. J. Am. Ceram. Soc. 75(3), 731–733 (1992)

    Article  Google Scholar 

  42. R.C. Garvie, The cubic field in the system CaO-ZrO2. J. Am. Ceram. Soc. 51(10), 553–556 (1968)

    Article  CAS  Google Scholar 

  43. M. Zhang, L. Gao, J. Kang, J. Pu, J. Peng, M. Omran, G. Chen, Stability optimisation of CaO-doped partially stabilised zirconia by microwave sintering. Ceram. Int. 45(17), 23278–23282 (2019). https://doi.org/10.1016/j.ceramint.2019.08.024

    Article  CAS  Google Scholar 

  44. M. Bhagwat, A.V. Ramaswamy, A.K. Tyagi, V. Ramaswamy, Rietveld refinement study of nanocrystalline copper doped zirconia. Mater. Res. Bull. 38(13), 1713–1724 (2003). https://doi.org/10.1016/S0025-5408(03)00201-0

    Article  CAS  Google Scholar 

  45. C.S. Prasanth, H.P. Kumar, R. Pazhani, S. Solomon, J.K. Thomas, Synthesis, characterization and microwave dielectric properties of nanocrystalline CaZrO3 ceramics. J. Alloy. Compd. 464(1–2), 306–309 (2008)

    Article  CAS  Google Scholar 

  46. D. Sukhotanang, Phase transformations in the system ZrO2-CaO. (1972) Masters Theses. 6716. https://scholarsmine.mst.edu/masters_theses/6716/

  47. S. Vasanthavel, S. Kannan, Structural investigations on the tetragonal to cubic phase transformations in zirconia induced by progressive yttrium additions. J. Phys. Chem. Solids 112, 100–105 (2018)

    Article  CAS  Google Scholar 

  48. Y. Ling, Q. Li, H. Zheng, M. Omran, L. Gao, J. Chen, G. Chen, Optimisation on the stability of CaO-doped partially stabilised zirconia by microwave heating. Ceram. Int. 47(6), 8067–8074 (2021)

    Article  CAS  Google Scholar 

  49. J.X. Wen, T.B. Zhu, Z.P. Xie, W.B. Cao, W. Liu, A strategy to obtain a high-density and high-strength zirconia ceramic via ceramic injection molding by the modification of oleic acid. Int. J. Miner. Metall. Mater. 24(6), 718–725 (2017). https://doi.org/10.1007/s12613-017-1455-9

    Article  CAS  Google Scholar 

  50. P.S.P. Anand, N. Arunachalam, L. Vijayaraghavan, Effect of grinding on subsurface modifications of pre-sintered zirconia under different cooling and lubrication conditions. J. Mech. Behav. Biomed. Mater. 86, 122–130 (2018). https://doi.org/10.1016/j.jmbbm.2018.06.026

    Article  CAS  Google Scholar 

  51. C.T. Rueden, J. Schindelin, M.C. Hiner, B.E. DeZonia, A.E. Walter, E.T. Arena, K.W. Eliceiri, Image J2: ImageJ for the next generation of scientific image data. BMC Bioinform. 18(1), 1–26 (2017). https://doi.org/10.1186/s12859-017-1934-z

    Article  Google Scholar 

  52. J. Porcayo-Calderon, J.J. Ramos-Hernandez, C.D. Arrieta-Gonzalez, J.G. Chacon-Nava, J.G. Gonzalez-Rodriguez, E. Porcayo-Palafox, L. Martinez-Gomez, Synthesis by hydrothermal treatment of ZnO-based varistors doped with rare earth oxides and their characterization by impedance spectroscopy. Curr. Comput.-Aided Drug Des. 10(12), 1134 (2020)

    CAS  Google Scholar 

  53. C. Li, M. Li, UV Raman spectroscopic study on the phase transformation of ZrO2, Y2O3–ZrO2 and SO42−/ZrO2. J. Raman Spectrosc. 33(5), 301–308 (2002). https://doi.org/10.1002/jrs.863

    Article  CAS  Google Scholar 

  54. O.H. Kwon, C. Jang, J. Lee, H.Y. Jeong, Y.I. Kwon, J.H. Joo, H. Kim, Investigation of the electrical conductivity of sintered monoclinic zirconia (ZrO2). Ceram. Int. 43(11), 8236–8245 (2017). https://doi.org/10.1016/j.ceramint.2017.03.152

    Article  CAS  Google Scholar 

  55. V.M. Orera, C. Pecharroman, J.I. Peña, R.I. Merino, C.J. Serna, Vibrational spectroscopy of single crystals. J. Phys.: Condens. Matter 10(33), 7501 (1998)

    CAS  Google Scholar 

  56. M. Tarrida, H. Larguem, M. Madon, Structural investigations of (Ca, Sr) ZrO 3 and Ca (Sn, Zr) O 3 perovskite compounds. Phys. Chem. Miner. 36(7), 403–413 (2009)

    Article  CAS  Google Scholar 

  57. W.D. Macedo Jr., A.E. Souza, G.T. Santos, S.R. Teixeira, E. Longo, Microwave-assisted hydrothermal synthesis followed by heat treatment: a new route to obtain CaZrO3. Ceram. Int. 44(1), 953–958 (2018)

    Article  CAS  Google Scholar 

  58. G. Morell, R.S. Katiyar, D. Torres, S.E. Paje, J. Llopis, Raman scattering study of thermally reduced stabilized cubic zirconia. J. Appl. Phys. 81(6), 2830–2834 (1997). https://doi.org/10.1063/1.363941

    Article  CAS  Google Scholar 

  59. S. Xu, X. Tan, F. Liu, L. Zhang, Y. Huang, B.A. Goodman, W. Deng, Growth and optical properties of thulia-doped cubic yttria stabilized zirconia single crystals. Ceram. Int. 45(13), 15974–15979 (2019). https://doi.org/10.1016/j.ceramint.2019.05.106

    Article  CAS  Google Scholar 

  60. M. Yashima, K. Ohtake, M. Kakihana, H. Arashi, M. Yoshimura, Determination of tetragonal-cubic phase boundary of Zr1− XRXO2− X2 (R= Nd, Sm, Y, Er and Yb) by Raman scattering. J. Phys. Chem. Solids 57(1), 17–24 (1996). https://doi.org/10.1016/0022-3697(95)00085-2

    Article  Google Scholar 

  61. Y. Hemberger, N. Wichtner, C. Berthold, K.G. Nickel, Quantification of yttria in stabilized zirconia by Raman spectroscopy. Int. J. Appl. Ceram. Technol. 13(1), 116–124 (2016). https://doi.org/10.1111/ijac.12434

    Article  CAS  Google Scholar 

  62. R.A. Youness, M.A. Taha, M.A. Ibrahim, In vitro bioactivity, molecular structure and mechanical properties of zirconia-carbonated hydroxyapatite nanobiocomposites sintered at different temperatures. Mater. Chem. Phys. 239, 122011 (2020)

    Article  CAS  Google Scholar 

  63. A.K. Singh, U.T. Nakate, Microwave synthesis, characterization, and photoluminescence properties of nanocrystalline zirconia. Sci. World J. 2014, 349457. https://doi.org/10.1155/2014/349457

  64. C.H. Perry, D.J. McCarthy, G. Rupprecht, Dielectric dispersion of some perovskite zirconates. Phys. Rev. 138(5A), A1537 (1965)

    Article  Google Scholar 

  65. X. Wang, G. Wu, B. Zhou, J. Shen, Effect of crystal structure on optical properties of sol–gel derived zirconia thin films. J. Alloy. Compd. 556, 182–187 (2013)

    Article  Google Scholar 

  66. Z. Mei, Y. Lu, Y. Lou, P. Yu, M. Sun, X. Tan, H. Yu, Determination of hardness and fracture toughness of Y-TZP manufactured by digital light processing through the indentation technique. BioMed Res. Int. 2021, 6612840 (2021). https://doi.org/10.1155/2021/6612840

Download references

Acknowledgements

One of the authors, Ankit Kumar is thankful to the Council of Scientific and Industrial Research (CSIR) for providing the Senior Research fellowship under file no. 09/797(0017)/2018-EMR-I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Dhaliwal.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kumar, P. & Dhaliwal, A.S. Phase transformation behavior of Ca-doped zirconia sintered at different temperatures. J. Korean Ceram. Soc. 59, 370–382 (2022). https://doi.org/10.1007/s43207-021-00183-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-021-00183-9

Keywords

Navigation