Skip to main content

Advertisement

Log in

Effect of magnesia rich spinel on densification and stabilization behavior of monoclinic zirconia

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Fully cubic-stabilized zirconia ceramic composites have been successfully fabricated by conventional sintering technique using commercial monoclinic zirconia, Yttrium oxide and waste-derived magnesia-rich spinel (MMA) powder mixtures. In this study, effect of MMA content and sintering temperature on stabilization and densification properties of zirconia has been duly considered. The obtained results showed that m-ZrO2 in MMA-free Z0 reference specimen is partially stabilized upon temperature rising into tetragonal phase by Y3+ ions diffusion inside zirconia structure. MMA-free Z0 reference specimen sintered at 1600 ºC showed m- and t-ZrO2 dual-phase structure with a relative density of 80.2%. Unlike, upon rising the sintering temperature, Z10–Z50 composites containing 10–50 wt% MMA demonstrated higher relative density of more than 99% and showed variant behavior, where their m-ZrO2 is transformed and stabilized into cubic form by diffusion of Y3+, Mg2+ and Al3+ ions inside zirconia lattice structure. The outcomes indicate that MMA has significantly improved both the densification and stabilization behavior of m-ZrO2 through facilitating Y3+ diffusion inside zirconia lattice structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Manicone, P. Iommetti, L. Raffaelli, An overview of zirconia ceramics: basic properties and clinical applications. J. Dent. 35, 819–826 (2007)

    Article  CAS  Google Scholar 

  2. J. Fergus, Electrolytes for solid oxide fuel cells. J. Power Sources. 162(1), 30–40 (2006)

    Article  CAS  Google Scholar 

  3. R. Ramamoorthy, P. Dutta, S. Akbar, Oxygen sensors: materials, methods, designs and applications. J. Mater. Sci. 38, 4271–4282 (2003)

    Article  CAS  Google Scholar 

  4. Y. Oh, S. Kim, S. Lee, H. Kim, M. Kim, H. Moon, Effect of the raw material and coating process conditions on the densification of 8 wt.% Y2O3-ZrO2 thermal barrier coating by atmospheric plasma spray. J. Korean Ceram. Soc. 53(6), 628–634 (2016)

    Article  CAS  Google Scholar 

  5. U. Pal, A. Powell, the use of solid-oxide-membrane technology for electro metallurgy. JOM 53(5), 44–49 (2007)

    Article  Google Scholar 

  6. H. Scott, Phase relationships in the zirconia-yttria system. J. Mater. Sci. 10, 1527–1535 (1975)

    Article  CAS  Google Scholar 

  7. X. Ren, W. Pan, Mechanical properties of high-temperature-degraded yttria-stabilized zirconia. Acta Mater. 69, 397–406 (2014)

    Article  CAS  Google Scholar 

  8. W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics, 2nd edn. (John Wiley, New York, 1976).

    Google Scholar 

  9. G.A. Helvey, Zirconia and computer-aided design/computer-aided manufacturing (CAD/CAM) dentistry. Funct. Esthet. Restorative Dent. 1, 28–39 (2007)

    Google Scholar 

  10. C.A.M. Volpato, L.G. Garbelotto, M.C. Fredel et al., Application of zirconia in dentistry: Biological, mechanical and optical considerations, in Advances in ceramics: electric and magnetic ceramics, bioceramics, ceramics and environment. ed. by C. Sikalidis (InTech, New York, 2011)

    Google Scholar 

  11. M. Guazzato, L. Quach, M. Albakry, M.V. Swain, Influence of surface and heat treatments on the flexural strength of Y-TZP dental ceramic. J Dent 33, 9–18 (2005)

    Article  CAS  Google Scholar 

  12. S. Saridag, O. Tak, G. Alniacik, Basic properties and types of zirconia: an overview. World J. Stomatol. 20 2(3), 40–47 (2013)

    Article  Google Scholar 

  13. I. Denry, J.R. Kelly, State of the art of zirconia for dental applications. Dent. Mater. 24(3), 299–307 (2008)

    Article  CAS  Google Scholar 

  14. M.E. Roy, L.A. Whiteside, B.J. Katerberg, J.A. Steiger, Phase transformation, roughness and microhardness of artificially aged yttria- and magnesia- stabilized zirconia femoral heads. J. Biomed. Mater. Res. A 83, 1096–1102 (2007)

    Article  CAS  Google Scholar 

  15. J. Chevalier, L. Gremillard, A. Virkar, D.R. Clarke, The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends. J. Am. Ceram. Soc. 92, 1901–1920 (2009)

    Article  CAS  Google Scholar 

  16. M. Cattani-Lorente, S.S. Scherrer, P. Ammann, M. Jobin, H.W. Wiskott, Low-temperature degradation of a Y-TZP dental ceramic. Acta Biomater. 7, 858–865 (2011)

    Article  CAS  Google Scholar 

  17. P. Kohorst, L. Borchers, J. Strempel, M. Stiesch, T. Hassel, F.W. Bach et al., Low-temperature degradation of different zirconia ceramics for dental applications. Acta Biomater. 8, 1213–1220 (2012)

    Article  CAS  Google Scholar 

  18. K. Nakamura, A. Harada, T. Kanno, R. Inagaki, Y. Niwano, P. Milleding et al., The influence of low-temperature degradation and cyclic loading on the fracture resistance of monolithic zirconia molar crowns. J. Mech. Behav. Biomed. Mater. 47, 49–56 (2015)

    Article  CAS  Google Scholar 

  19. M. Roy, O. Noel, L. Whiteside, Phase transformation and roughening in artificially aged and retrieved zirconia-toughened alumina femoral heads. J. of Arthroplasty 34, 772–780 (2019)

    Article  Google Scholar 

  20. T. Mariduraia, D. Balajib, S. Sagadevan, Synthesis and characterization of yttrium stabilized zirconia nanoparticles. Mate. Res. 19(4), 812–816 (2016)

    Article  Google Scholar 

  21. C. Emrullaho, L. Abi, E. Yazici, Effects of magnesium chloride addition on stabilization of zirconia. Acad. J. Sci. 03(02), 177–185 (2014)

    Google Scholar 

  22. I. Denrya, J. Kelly, State of the art of zirconia for dental applications. Dent. Mater. 2(4), 299–307 (2008)

    Article  Google Scholar 

  23. H. Pulgarin, M. Albano, Sintering, microstrusture and hardness of different alumina–zirconia composites. Ceram. Int. 40, 5289–5298 (2014)

    Article  Google Scholar 

  24. K. Wisniewska, D. Madej, J. Szczerba, The corrosion of Mg-partially stabilized zirconia during service in continuous casting tundish. Ceram. Sci. Technol. 09(3), 301–308 (2018)

    Google Scholar 

  25. L. Jiang, S. Guo, M. Qiao, M. Zhang, W. Ding, Study on the structure and mechanical properties of magnesia partially stabilized zirconia during cyclic heating and cooling. Mater. Lett. 194, 26–29 (2017)

    Article  CAS  Google Scholar 

  26. A. Sutorik, G. Gilde, J. Swab, C. Cooper, R. Gamble, E. Shanholtz, transparent solid solution magnesium aluminate spinel polycrystalline ceramic with the alumina-rich composition MgO1.2Al2O3. J. Am. Ceram. Soc. 95(2), 636–643 (2012)

    Article  CAS  Google Scholar 

  27. E. Ewais, A. El-Amir, D. Besisa, M. Esmat, B. El-Anadouli, Synthesis of nanocrystalline MgO/MgAl2O4 spinel powders from industrial wastes. J. Alloy. Compd. 691, 822–833 (2017)

    Article  CAS  Google Scholar 

  28. E. Apel, C. Ritzberger, N. Courtois, H. Reveron, J. Chevalier, M. Schweiger, F. Rothbrust, V. Rheinberger, W. Holand, Introduction to a tough, strong and stable Ce-TZP/MgAl2O4 composite for biomedical applications. J. Eur. Ceramic Soc. 32, 2697–2703 (2012)

    Article  CAS  Google Scholar 

  29. K. Morita, K. Hiraga, B. Kim, H. Yoshida, Y. Sakka, Synthesis of dense nanocrystalline ZrO2–MgAl2O4 spinel composite. Scripta Mater. 53, 1007–1012 (2005)

    Article  CAS  Google Scholar 

  30. E. Ewais, D. Besisa, A. El-Amir, S. El-Sheikh, D. Rayan, Optical properties of nanocrystalline magnesium aluminate spinel synthesized from industrial wastes. J. Alloys Compd. 649, 159–166 (2015)

    Article  CAS  Google Scholar 

  31. K. Hwang, M. Shin, M. Lee, H. Lee, M. Oh, T. Shin, Investigation on the phase stability of yttria-stabilized zirconia electrolytes for high-temperature electrochemical application. Ceram. Int. 45, 9462–9467 (2019)

    Article  CAS  Google Scholar 

  32. L. Jiang, S. Guo, Y. Bian, M. Zhang, W. Ding, Effect of sintering temperature on mechanical properties of magnesia partially stabilized zirconia refractory. Ceram. Int. 42, 10593–10598 (2016)

    Article  CAS  Google Scholar 

  33. S. Sinhamahapatra, H. Tripathi, A. Ghosh, Densification and properties of magnesia-rich magnesium-aluminate spinel derived from natural and synthetic raw materials. Ceram. Int. 42, 5148–5152 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the financial of the National Natural Science Foundation of China [Grant numbers 51571160 and 51871180]; Natural Science Basic Research Plan in Shaanxi Province of China [Grant number 2015JM5233].

Author information

Authors and Affiliations

Authors

Contributions

MA: processed the experimental part and measurements, performed the analysis, drafted the manuscript and designed the figures. EMME: designed and directed the project and were involved in planning and supervised the work, aided in interpreting the results and worked on the manuscript. SMAE-G and SL: contributed to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript. All authors discussed the results and commented on the manuscript, provided critical feedback and helped in research analysis as well as manuscript writing.

Corresponding author

Correspondence to Emad M. M. Ewais.

Ethics declarations

Conflict of interest

On behalf of all the co-authors, and myself: We state that this manuscript is our original work and it is not under publication elsewhere. All authors have checked the manuscript and have agreed to the submission. We also have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelgawad, M., El-Gamal, S.M.A., Ewais, E.M.M. et al. Effect of magnesia rich spinel on densification and stabilization behavior of monoclinic zirconia. J. Korean Ceram. Soc. 58, 276–286 (2021). https://doi.org/10.1007/s43207-020-00095-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-020-00095-0

Keywords

Navigation