Skip to main content
Log in

Photosensors-based on cadmium sulfide (CdS) nanostructures: a review

  • Review
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Cadmium sulfide (CdS) is an IIVI semiconductor with a direct bandgap of 2.4 eV; it has been used for various applications, such as nonlinear optical devices, flat-panel displays, light-emitting diodes, lasers, logic gates, transistors, photoresistors, solar cells, infrared waveguides, and splitters. CdS nanostructures have been synthesized through two different routes: (1) vapor-phase growth and (2) liquid-phase growth. The vapor-phase growth system can yield highly pure single-crystal nanostructures, and liquid-phase growth has been carried out through chemical or electrochemical reactions in solution with templates. The fabricated nanostructures of CdS showed a relatively low work function, high refractive index, excellent transport properties, good chemical capability, thermal stability, high electronic mobility, and piezoelectric properties. For these reasons, CdS photosensors have been produced using various nanostructures of CdS, such as nanorods, nanoribbons, and nanowires. For the fabrication of CdS nanowire photosensors, many different approaches have been demonstrated to connect nanostructures in devices and circuits using various techniques, such as dry transfer, wet transfer, and contact printing. Each method has practical advantages and drawbacks in the implementation of nanostructures in devices. In this article, the synthesis of CdS nanostructures and the fabrication of photosensors based on the CdS nanostructures are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reprinted with permission from [12]. Copyright © 2008 Elsevier

Fig. 3

Reprinted with permission from [12]. Copyright © 2008 Elsevier

Fig. 4

Reprinted with permission from [80]. Copyright © 2009 John Wiley & Sons, Inc

Fig. 5

Reprinted with permission from [12]. Copyright © 2008 Elsevier

Fig. 6

Reprinted with permission from [65]. Copyright © 2015 Elsevier

Fig. 7
Fig. 8
Fig. 9

Reprinted with permission from [105]. Copyright 2015 American Chemical Society

Fig. 10
Fig. 11

Reprinted with permission from [65]. Copyright © 2015 Elsevier

Fig. 12

Reprinted with permission from [122]. Copyright 2010 American Chemical Society

Fig. 13

Reprinted with permission from [119]. Copyright 2016 American Chemical Society

Fig. 14

Reprinted with permission from [125]. Copyright © 2016 Springer Nature

Similar content being viewed by others

References

  1. H. Li, X. Wang, J. Xu, Q. Zhang, Y. Bando, D. Golberg, Y. Ma, T. Zhai, One-dimensional CdS nanostructures: a promising candidate for optoelectronics. Adv. Mater. 25, 3017–3037 (2013)

    Article  CAS  Google Scholar 

  2. N. Hullavarad, S. Hullavarad, P. Karulkar, Cadmium sulphide (CdS) nanotechnology: synthesis and applications. J. Nanosci. Nanotechnol. 8, 3272–3299 (2008)

    Article  CAS  Google Scholar 

  3. M.I.B. Utama, J. Zhang, R. Chen, X. Xu, D. Li, H. Sun, Q. Xiong, Synthesis and optical properties of II–VI 1D nanostructures. Nanoscale 4, 1422–1435 (2012)

    Article  CAS  Google Scholar 

  4. L. Li, P. Wu, X. Fang, T. Zhai, L. Dai, M. Liao, Y. Koide, H. Wang, Y. Bando, D. Golberg, Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors. Adv. Mater. 22, 3161–3165 (2010)

    Article  CAS  Google Scholar 

  5. J. Jang, G.-T. Hwang, Y. Min, J.-W. Kim, C.-W. Ahn, J.-J. Choi, B.-D. Hahn, J.-H. Choi, D.-S. Park, Y. Jung, Fatigue study and durability improvement of piezoelectric single crystal macro-fiber composite energy harvester. J. Korean Ceram. Soc. 57, 645–650 (2020)

    Article  CAS  Google Scholar 

  6. Y.-J. Choi, I.-S. Hwang, J.-H. Park, S. Nahm, J.-G. Park, Band gap modulation in CdSxSe1−x nanowires synthesized by a pulsed laser ablation with the Au catalyst. Nanotechnology 17, 3775 (2006)

    Article  CAS  Google Scholar 

  7. J. Jie, W. Zhang, I. Bello, C.-S. Lee, S.-T. Lee, One-dimensional II–VI nanostructures: synthesis, properties and optoelectronic applications. Nano Today 5, 313–336 (2010)

    Article  CAS  Google Scholar 

  8. D. Moore, Z.L. Wang, Growth of anisotropic one-dimensional ZnS nanostructures. J. Mater. Chem. 16, 3898–3905 (2006)

    Article  CAS  Google Scholar 

  9. L. Li, S. Yang, X. Zhang, L. Wang, Z. Jiang, Q. Lin, C. Wang, F. Han, N. Peng, Single CdS nanowire photodetector fabricated by FIB. Microelectron. Eng. 126, 27–30 (2014)

    Article  CAS  Google Scholar 

  10. H.-Y. Kim, H.-K. Park, Y.-W. Ju, Fabrication of the novel Fe2+ α O3+ α–CoFe2O4 composite fibers and their magnetic properties. J. Korean Ceram. Soc. 57, 423–431 (2020)

    Article  CAS  Google Scholar 

  11. M.-H. Yi, J.-E. Lee, C.-B. Kim, K.-W. Lee, K.-H. Lee, Locally controlled diffusive release of bone morphogenetic protein-2 using micropatterned gelatin methacrylate hydrogel carriers. Biochip J. 14, 405–420 (2020)

    Article  CAS  Google Scholar 

  12. N. Wang, Y. Cai, R. Zhang, Growth of nanowires. Mater. Sci. Eng. R-Rep. 60, 1–51 (2008)

    Article  CAS  Google Scholar 

  13. G.-H. Kwon, T.W. Kim, H.I. Lee, W.C. Cho, H. Kim, G.-H. Kwon, T.W. Kim, H.I. Lee, W.C. Cho, H. Kim, Synthesis of ZrO2 nanorods and their application as membrane materials. J. Korean Ceram. Soc. 56, 541–548 (2019)

    Article  CAS  Google Scholar 

  14. J. Bae, D.-S. Shin, J.-H. Ha, Y. Hwang, C.-S. Lee, H.J. Kim, A. Jang, S.-H. Park, Flexible chemical sensors using signal generation from cyclodextrin-analyte interactions on polymer composites. Biochip J. 14, 251–257 (2020)

    Article  CAS  Google Scholar 

  15. R. Agarwal, C. Lieber, Semiconductor nanowires: optics and optoelectronics. Appl. Phys. A 85, 209–215 (2006)

    Article  CAS  Google Scholar 

  16. F. Patolsky, G. Zheng, C.M. Lieber, Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protoc. 1, 1711 (2006)

    Article  CAS  Google Scholar 

  17. R.S. Chen, S.W. Wang, Z.H. Lan, J.T.H. Tsai, C.T. Wu, L.C. Chen, K.H. Chen, Y.S. Huang, C.C. Chen, On-chip fabrication of well-aligned and contact-barrier-free GaN nanobridge devices with ultrahigh photocurrent responsivity. Small 4, 925–929 (2008)

    Article  CAS  Google Scholar 

  18. Y.-J. Choi, K.-S. Park, J.-G. Park, Network-bridge structure of CdSxSe1−x nanowire-based optical sensors. Nanotechnology 21, 505605 (2010)

    Article  Google Scholar 

  19. H. Dedong, L. Ying-Kai, D.-P. Yu, Multicolor photodetector of a single Er3+-doped CdS nanoribbon. Nanoscale Res. Lett. 10, 1–10 (2015)

    Article  Google Scholar 

  20. Z. Fan, J.C. Ho, Z.A. Jacobson, H. Razavi, A. Javey, Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry. Proc. Natl. Acad. Sci. U. S. A. 105, 11066–11070 (2008)

    Article  CAS  Google Scholar 

  21. B. Ghosh, Electrical contacts for II–VI semiconducting devices. Microelectron. Eng. 86, 2187–2206 (2009)

    Article  CAS  Google Scholar 

  22. D. Li, J. Zhang, X. Wang, B. Huang, Q. Xiong, Solid-state semiconductor optical cryocooler based on CdS nanobelts. Nano Lett. 14, 4724–4728 (2014)

    Article  CAS  Google Scholar 

  23. Y. Li, F. Qian, J. Xiang, C.M. Lieber, Nanowire electronic and optoelectronic devices. Mater. Today 9, 18–27 (2006)

    Article  CAS  Google Scholar 

  24. Y.J. Li, X. Xiong, C.L. Zou, X.F. Ren, Y.S. Zhao, One-dimensional dielectric/metallic hybrid materials for photonic applications. Small 11, 3728–3743 (2015)

    Article  CAS  Google Scholar 

  25. K.-T. Lin, H.-L. Chen, Y.-S. Lai, Y.-L. Liu, Y.-C. Tseng, C.-H. Lin, Nanocrystallized CdS beneath the surface of a photoconductor for detection of UV light with picowatt sensitivity. ACS Appl. Mater. Interfaces 6, 19866–19875 (2014)

    Article  CAS  Google Scholar 

  26. Z. Liu, J. Xu, D. Chen, G. Shen, Flexible electronics based on inorganic nanowires. Chem. Soc. Rev. 44, 161–192 (2015)

    Article  CAS  Google Scholar 

  27. R. Ma, L. Dai, H. Huo, W. Yang, G. Qin, P. Tan, C. Huang, J. Zheng, Synthesis of high quality n-type CdS nanobelts and their applications in nanodevices. Appl. Phys. Lett. 89, 203120 (2006)

    Article  Google Scholar 

  28. O. Hayden, R. Agarwal, W. Lu, Semiconductor nanowire devices. Nano Today 3, 12–22 (2008)

    Article  CAS  Google Scholar 

  29. B. Rizal, J.M. Merlo, M.J. Burns, T.C. Chiles, M.J. Naughton, Nanocoaxes for optical and electronic devices. Analyst 140, 39–58 (2015)

    Article  CAS  Google Scholar 

  30. T. Zhai, X. Fang, L. Li, Y. Bando, D. Golberg, One-dimensional CdS nanostructures: synthesis, properties, and applications. Nanoscale 2, 168–187 (2010)

    Article  CAS  Google Scholar 

  31. L. Zhao, L. Hu, X. Fang, Growth and device application of CdSe nanostructures. Adv. Funct. Mater. 22, 1551–1566 (2012)

    Article  CAS  Google Scholar 

  32. T. Blank, Y.A. Gol’dberg, Semiconductor photoelectric converters for the ultraviolet region of the spectrum. Semiconductors 37, 999–1030 (2003)

    Article  CAS  Google Scholar 

  33. J. Jie, W. Zhang, Y. Jiang, X. Meng, Y. Li, S. Lee, Photoconductive characteristics of single-crystal CdS nanoribbons. Nano Lett. 6, 1887–1892 (2006)

    Article  CAS  Google Scholar 

  34. T. Gao, Q. Li, T. Wang, CdS nanobelts as photoconductors. Appl. Phys. Lett. 86, 173105 (2005)

    Article  Google Scholar 

  35. Q. Li, T. Gao, T. Wang, Optoelectronic characteristics of single CdS nanobelts. Appl. Phys. Lett. 86, 193109 (2005)

    Article  Google Scholar 

  36. R. Ma, X. Wei, L. Dai, H. Huo, G. Qin, Synthesis of CdS nanowire networks and their optical and electrical properties. Nanotechnology 18, 205605 (2007)

    Article  Google Scholar 

  37. M.C. McAlpine, H. Ahmad, D. Wang, J.R. Heath, Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat. Mater. 6, 379–384 (2007)

    Article  CAS  Google Scholar 

  38. Y.-K. Chang, F.C.-N. Hong, The fabrication of ZnO nanowire field-effect transistors by roll-transfer printing. Nanotechnology 20, 195302 (2009)

    Article  Google Scholar 

  39. J.-H. Ahn, H.-S. Kim, E. Menard, K.J. Lee, Z. Zhu, D.-H. Kim, R.G. Nuzzo, J.A. Rogers, I. Amlani, V. Kushner, Bendable integrated circuits on plastic substrates by use of printed ribbons of single-crystalline silicon. Appl. Phys. Lett. 90, 213501 (2007)

    Article  Google Scholar 

  40. A. Kawahara, H. Katsuki, M. Egashira, Fabrication of semiconductor oxide thick films by slide-off transfer printing and their NO2-sensing properties. Sens. Actuator B-Chem. 49, 273–278 (1998)

    Article  CAS  Google Scholar 

  41. H.-C. Yuan, J. Shin, G. Qin, L. Sun, P. Bhattacharya, M.G. Lagally, G.K. Celler, Z. Ma, Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes. Appl. Phys. Lett. 94, 013102 (2009)

    Article  Google Scholar 

  42. Y. Cui, C.M. Lieber, Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851–853 (2001)

    Article  CAS  Google Scholar 

  43. A. Javey, S. Nam, R.S. Friedman, H. Yan, C.M. Lieber, Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 7, 773–777 (2007)

    Article  CAS  Google Scholar 

  44. K.J. Lee, M.J. Motala, M.A. Meitl, W.R. Childs, E. Menard, A.K. Shim, J.A. Rogers, R.G. Nuzzo, Large-area, selective transfer of microstructured silicon: a printing-based approach to high-performance thin-film transistors supported on flexible substrates. Adv. Mater. 17, 2332–2336 (2005)

    Article  CAS  Google Scholar 

  45. S.A. Stauth, B.A. Parviz, Self-assembled single-crystal silicon circuits on plastic. Proc. Natl. Acad. Sci. U. S. A. 103, 13922–13927 (2006)

    Article  CAS  Google Scholar 

  46. A. Dorn, P.M. Allen, M.G. Bawendi, Electrically controlling and monitoring InP nanowire growth from solution. ACS Nano 3, 3260–3265 (2009)

    Article  CAS  Google Scholar 

  47. M.-G. Kang, J.-H. Ahn, J. Lee, D.-H. Hwang, H.-T. Kim, J.-S. Rieh, D. Whang, M.-H. Son, D. Ahn, Y.-S. Yu, Microwave characterization of a field effect transistor with dielectrophoretically-aligned single silicon nanowire. Jpn. J. Appl. Phys. 49, 06GG12 (2010)

    Article  Google Scholar 

  48. A.J. Baca, J.H. Ahn, Y. Sun, M.A. Meitl, E. Menard, H.S. Kim, W.M. Choi, D.H. Kim, Y. Huang, J.A. Rogers, Semiconductor wires and ribbons for high-performance flexible electronics. Angew. Chem. Int. Ed. 47, 5524–5542 (2008)

    Article  CAS  Google Scholar 

  49. Z. Fan, J.C. Ho, Z.A. Jacobson, R. Yerushalmi, R.L. Alley, H. Razavi, A. Javey, Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett. 8, 20–25 (2008)

    Article  CAS  Google Scholar 

  50. D.H. Kim, J.A. Rogers, Stretchable electronics: materials strategies and devices. Adv. Mater. 20, 4887–4892 (2008)

    Article  CAS  Google Scholar 

  51. J. Yoon, A.J. Baca, S.-I. Park, P. Elvikis, J.B. Geddes III, L. Li, R.H. Kim, J. Xiao, S. Wang, T.-H. Kim, Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs, in Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group. (Nature, 2011), pp. 38–46

    Google Scholar 

  52. E. Menard, K. Lee, D.-Y. Khang, R. Nuzzo, J. Rogers, A printable form of silicon for high performance thin film transistors on plastic substrates. Appl. Phys. Lett. 84, 5398–5400 (2004)

    Article  CAS  Google Scholar 

  53. D. Yu, C. Lee, I. Bello, X. Sun, Y. Tang, G. Zhou, Z. Bai, Z. Zhang, S. Feng, Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature. Solid State Commun. 105, 403–407 (1998)

    Article  CAS  Google Scholar 

  54. A.M. Morales, C.M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208–211 (1998)

    Article  CAS  Google Scholar 

  55. J. Zhan, X. Yang, S. Li, D. Wang, Y. Xie, Y. Qian, A chemical solution transport mechanism for one-dimensional growth of CdS nanowires. J. Cryst. Growth 220, 231–234 (2000)

    Article  CAS  Google Scholar 

  56. L. Xi, W.X.W. Tan, K.S. Chua, C. Boothroyd, Y.M. Lam, Synthesis of monodisperse CdS nanowires and their photovoltaic applications. Thin Solid Films 517, 6430–6434 (2009)

    Article  CAS  Google Scholar 

  57. B.H. Hong, S.C. Bae, C.-W. Lee, S. Jeong, K.S. Kim, Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase. Science 294, 348–351 (2001)

    Article  CAS  Google Scholar 

  58. Y. Sun, B. Gates, B. Mayers, Y. Xia, Crystalline silver nanowires by soft solution processing. Nano Lett. 2, 165–168 (2002)

    Article  CAS  Google Scholar 

  59. L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 15, 464–466 (2003)

    Article  CAS  Google Scholar 

  60. Y. Wang, X. Jiang, Y. Xia, A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. J. Am. Chem. Soc. 125, 16176–16177 (2003)

    Article  CAS  Google Scholar 

  61. W.T. Yao, S.H. Yu, Synthesis of semiconducting functional materials in solution: from II–VI semiconductor to inorganic–organic hybrid semiconductor nanomaterials. Adv. Funct. Mater. 18, 3357–3366 (2008)

    Article  CAS  Google Scholar 

  62. Y.-F. Lin, Y.-J. Hsu, S.-Y. Lu, S.-C. Kung, Non-catalytic and template-free growth of aligned CdS nanowires exhibiting high field emission current densities. Chem. Commun. 22, 2391–2393 (2006)

    Article  Google Scholar 

  63. T. Zhai, Z. Gu, H. Zhong, Y. Dong, Y. Ma, H. Fu, Y. Li, J. Yao, Design and fabrication of rocketlike tetrapodal CdS nanorods by seed-epitaxial metal—organic chemical vapor deposition. Cryst. Growth Des. 7, 488–491 (2007)

    Article  CAS  Google Scholar 

  64. T. Zhai, X. Fang, Y. Bando, Q. Liao, X. Xu, H. Zeng, Y. Ma, J. Yao, D. Golberg, Morphology-dependent stimulated emission and field emission of ordered CdS nanostructure arrays. ACS Nano 3, 949–959 (2009)

    Article  CAS  Google Scholar 

  65. B.-G. An, Y.W. Chang, H.-R. Kim, G. Lee, M.-J. Kang, J.-K. Park, J.-C. Pyun, Highly sensitive photosensor based on in situ synthesized CdS nanowires. Sens. Actuator B-Chem. 221, 884–890 (2015)

    Article  CAS  Google Scholar 

  66. J.-H. Im, H.-R. Kim, B.-G. An, Y.W. Chang, M.-J. Kang, T.-G. Lee, J.G. Son, J.-G. Park, J.-C. Pyun, In situ-synthesized cadmium sulfide nanowire photosensor with a parylene passivation layer for chemiluminescent immunoassays. Biosens. Bioelectron. 92, 221–228 (2017)

    Article  CAS  Google Scholar 

  67. X. Duan, C.M. Lieber, General synthesis of compound semiconductor nanowires. Adv. Mater. 12, 298–302 (2000)

    Article  CAS  Google Scholar 

  68. M. Lei, L. Qian, Q. Hu, S. Wang, W. Tang, Fabrication of CdS/Cd–Sn heterostructure nanowires and their photoluminescence property. J. Alloy. Compd. 487, 568–571 (2009)

    Article  CAS  Google Scholar 

  69. D. Routkevitch, T. Bigioni, M. Moskovits, J.M. Xu, Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates. J. Phys. Chem. 100, 14037–14047 (1996)

    Article  CAS  Google Scholar 

  70. X. Ji, H. Li, S. Cheng, Z. Wu, Y. Xie, X. Dong, P. Yan, Growth and photoluminescence of CdS and CdS: Mn nanoribbons. Mater. Lett. 65, 2776–2778 (2011)

    Article  CAS  Google Scholar 

  71. D. Xu, Y. Xu, D. Chen, G. Guo, L. Gui, Y. Tang, Preparation of CdS single-crystal nanowires by electrochemically induced deposition. Adv. Mater. 12, 520–522 (2000)

    Article  CAS  Google Scholar 

  72. M. Yan, G. Dai, S. Hu, Q. Zhang, B. Zou, Synthesis and growth mechanism of triangular Mn doped CdS nanowires. Mater. Lett. 65, 2522–2525 (2011)

    Article  CAS  Google Scholar 

  73. S. Yan, L. Sun, P. Qu, N. Huang, Y. Song, Z. Xiao, Synthesis of uniform CdS nanowires in high yield and its single nanowire electrical property. J. Solid State Chem. 182, 2941–2945 (2009)

    Article  CAS  Google Scholar 

  74. T. Takahashi, P. Nichols, K. Takei, A.C. Ford, A. Jamshidi, M.C. Wu, C.-Z. Ning, A. Javey, Contact printing of compositionally graded CdSxSe1−x nanowire parallel arrays for tunable photodetectors. Nanotechnology 23, 045201 (2012)

    Article  Google Scholar 

  75. S. Liu, H. Li, L. Yan, Synthesis and photocatalytic activity of three-dimensional ZnS/CdS composites. Mater. Res. Bull. 48, 3328–3334 (2013)

    Article  CAS  Google Scholar 

  76. A.R. Wagner, S.W. Ellis, Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964)

    Article  CAS  Google Scholar 

  77. C. Rao, F.L. Deepak, G. Gundiah, A. Govindaraj, Inorganic nanowires. Prog. Solid State Chem. 31, 5–147 (2003)

    Article  CAS  Google Scholar 

  78. W. Lu, C.M. Lieber, Semiconductor nanowires. J. Phys. D: Appl. Phys. 39, R387 (2006)

    Article  CAS  Google Scholar 

  79. Z.R. Dai, Z.W. Pan, Z. Wang, Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater. 13, 9–24 (2003)

    Article  Google Scholar 

  80. T. Zhai, X. Fang, Y. Bando, B. Dierre, B. Liu, H. Zeng, X. Xu, Y. Huang, X. Yuan, T. Sekiguchi, Characterization, cathodoluminescence, and field-emission properties of morphology-tunable CdS micro/nanostructures. Adv. Funct. Mater. 19, 2423–2430 (2009)

    Article  CAS  Google Scholar 

  81. T. Jia, H. Chen, M. Huang, X. Wu, F. Zhao, M. Baba, M. Suzuki, H. Kuroda, J. Qiu, R. Li, ZnSe nanowires grown on the crystal surface by femtosecond laser ablation in air. Appl. Phys. Lett. 89, 101116 (2006)

    Article  Google Scholar 

  82. Y. Zhang, Y. Tang, H. Peng, N. Wang, C. Lee, I. Bello, S. Lee, Diameter modification of silicon nanowires by ambient gas. Appl. Phys. Lett. 75, 1842–1844 (1999)

    Article  CAS  Google Scholar 

  83. B.-G. An, H.-R. Kim, M.-J. Kang, J.-G. Park, Y.W. Chang, J.-C. Pyun, Chemiluminescent lateral-flow immunoassays by using in-situ synthesis of CdS NW photosensor. Anal. Chim. Acta 927, 99–106 (2016)

    Article  CAS  Google Scholar 

  84. H.-R. Kim, B.-G. An, Y.W. Chang, M.-J. Kang, J.-G. Park, J.-C. Pyun, Highly sensitive in situ-synthesized cadmium sulfide (CdS) nanowire photosensor for chemiluminescent immunoassays. Enzyme Microb. Technol. 133, 109457 (2020)

    Article  CAS  Google Scholar 

  85. H.-R. Kim, J.-H. Bong, J. Jung, J.S. Sung, M.-J. Kang, J.-G. Park, J.-C. Pyun, An On-chip chemiluminescent immunoassay for bacterial detection using in situ-synthesized cadmium sulfide nanowires with passivation layers. Biochip J. 14, 268–278 (2020)

    Article  CAS  Google Scholar 

  86. J.-H. Bong, T.-H. Kim, J. Jung, S.J. Lee, J.S. Sung, C.K. Lee, M.-J. Kang, H.O. Kim, J.-C. Pyun, Pig sera-derived anti-SARS-CoV-2 antibodies in surface plasmon resonance biosensors. Biochip J. 14, 358–368 (2020)

    Article  CAS  Google Scholar 

  87. Y.J. Hsu, S.Y. Lu, Y.F. Lin, One-step preparation of coaxial CdS–ZnS and Cd1–xZnxS–ZnS nanowires. Adv. Funct. Mater. 15, 1350–1357 (2005)

    Article  CAS  Google Scholar 

  88. J. Liu, S. Cai, G. Jin, S. Thomas, K. Wang, Growth of Si whiskers on Au/Si (1 1 1) substrate by gas source molecular beam epitaxy (MBE). J. Cryst. Growth 200, 106–111 (1999)

    Article  CAS  Google Scholar 

  89. R. Calarco, M. Marso, T. Richter, A.I. Aykanat, R. Meijers, A. vd Hart, T. Stoica, H. Lüth, Size-dependent photoconductivity in MBE-grown GaN—nanowires. Nano Lett. 5, 981–984 (2005)

    Article  CAS  Google Scholar 

  90. C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, T. Li, Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B 109, 13857–13870 (2005)

    Article  CAS  Google Scholar 

  91. Y.W. Jun, J.S. Choi, J. Cheon, Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew. Chem. Int. Ed. 45, 3414–3439 (2006)

    Article  CAS  Google Scholar 

  92. T. Whitney, P. Searson, J. Jiang, C. Chien, Fabrication and magnetic properties of arrays of metallic nanowires. Science 261, 1316–1319 (1993)

    Article  CAS  Google Scholar 

  93. G. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin, Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393, 346–349 (1998)

    Article  CAS  Google Scholar 

  94. K.-K. Lew, C. Reuther, A.H. Carim, J.M. Redwing, B.R. Martin, Template-directed vapor–liquid–solid growth of silicon nanowires. J. Vac. Sci. Technol. B 20, 389–392 (2002)

    Article  CAS  Google Scholar 

  95. K.-K. Lew, J.M. Redwing, Growth characteristics of silicon nanowires synthesized by vapor–liquid–solid growth in nanoporous alumina templates. J. Cryst. Growth 254, 14–22 (2003)

    Article  CAS  Google Scholar 

  96. E.C. Greyson, Y. Babayan, T.W. Odom, Directed growth of ordered arrays of small-diameter ZnO nanowires. Adv. Mater. 16, 1348–1352 (2004)

    Article  CAS  Google Scholar 

  97. G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. Wehrspohn, J. Choi, H. Hofmeister, U. Gösele, Highly ordered monocrystalline silver nanowire arrays. J. Appl. Phys. 91, 3243–3247 (2002)

    Article  CAS  Google Scholar 

  98. C. Schönenberger, B. Van der Zande, L. Fokkink, M. Henny, C. Schmid, M. Krüger, A. Bachtold, R. Huber, H. Birk, U. Staufer, Template synthesis of nanowires in porous polycarbonate membranes: electrochemistry and morphology. J. Phys. Chem. B 101, 5497–5505 (1997)

    Article  Google Scholar 

  99. B. Gates, B. Mayers, B. Cattle, Y. Xia, Synthesis and characterization of uniform nanowires of trigonal selenium. Adv. Funct. Mater. 12, 219–227 (2002)

    Article  CAS  Google Scholar 

  100. X.Y. Zhang, G. Wen, Y. Chan, R. Zheng, X. Zhang, N. Wang, Fabrication and magnetic properties of ultrathin Fe nanowire arrays. Appl. Phys. Lett. 83, 3341–3343 (2003)

    Article  CAS  Google Scholar 

  101. J. Miao, Y. Cai, Y. Chan, P. Sheng, N. Wang, A novel carbon nanotube structure formed in ultra-long nanochannels of anodic aluminum oxide templates. J. Phys. Chem. B 110, 2080–2083 (2006)

    Article  CAS  Google Scholar 

  102. Y. Huang, X. Duan, Q. Wei, C.M. Lieber, Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001)

    Article  CAS  Google Scholar 

  103. H.T. Ng, J. Han, T. Yamada, P. Nguyen, Y.P. Chen, M. Meyyappan, Single crystal nanowire vertical surround-gate field-effect transistor. Nano Lett. 4, 1247–1252 (2004)

    Article  CAS  Google Scholar 

  104. C.-C. Huang, B.D. Pelatt, J.F. Conley, Directed integration of ZnO nanobridge sensors using photolithographically patterned carbonized photoresist. Nanotechnology 21, 195307 (2010)

    Article  Google Scholar 

  105. L. Li, Z. Lou, G. Shen, Hierarchical CdS nanowires based rigid and flexible photodetectors with ultrahigh sensitivity. ACS Appl. Mater. Interfaces 7, 23507–23514 (2015)

    Article  CAS  Google Scholar 

  106. A.I. Hochbaum, R. Fan, R. He, P. Yang, Controlled growth of Si nanowire arrays for device integration. Nano Lett. 5, 457–460 (2005)

    Article  CAS  Google Scholar 

  107. B.M. Kayes, M.A. Filler, M.C. Putnam, M.D. Kelzenberg, N.S. Lewis, H.A. Atwater, Growth of vertically aligned Si wire arrays over large areas (> 1 cm2) with Au and Cu catalysts. Appl. Phys. Lett. 91, 103110 (2007)

    Article  Google Scholar 

  108. J.S. Lee, M.S. Islam, S. Kim, Photoresponses of ZnO nanobridge devices fabricated using a single-step thermal evaporation method. Sens. Actuator B-Chem. 126, 73–77 (2007)

    Article  CAS  Google Scholar 

  109. V. Logeeswaran, A. Sarkar, M.S. Islam, N.P. Kobayashi, J. Straznicky, X. Li, W. Wu, S. Mathai, M.R. Tan, S.-Y. Wang, A 14-ps full width at half maximum high-speed photoconductor fabricated with intersecting InP nanowires on an amorphous surface. Appl. Phys. A 91, 1–5 (2008)

    Article  CAS  Google Scholar 

  110. T.-H. Jung, S.-I. Kwon, J.-H. Park, D.-G. Lim, Y.-J. Choi, J.-G. Park, SnO 2 nanowires bridged across trenched electrodes and their gas-sensing characteristics. Appl. Phys. A 91, 707–710 (2008)

    Article  CAS  Google Scholar 

  111. Y.-J. Choi, K.J. Choi, D.-W. Kim, J.-G. Park, Morphological evolution of CdS nanowires to nanosheets. J. Nanosci. Nanotechnol. 9, 4487–4491 (2009)

    Article  CAS  Google Scholar 

  112. Q. An, X. Meng, Aligned arrays of CdS nanotubes for high-performance fully nanostructured photodetector with higher photosensitivity. J. Mater. Sci Mater. Electron. 27, 11952–11960 (2016)

    Article  CAS  Google Scholar 

  113. M. Hadiyan, A. Salehi, H. Mirzanejad, Gas sensing behavior of Cu2O and CuO/Cu2O composite nanowires synthesized by template-assisted electrodeposition. J. Korean Ceram. Soc. 58, 94–105 (2021)

    Article  CAS  Google Scholar 

  114. R. Praharaj, S. Mishra, T.R. Rautray, The structural and bioactive behaviour of strontium-doped titanium dioxide nanorods. J. Korean Ceram. Soc. 57, 271–280 (2020)

    Article  CAS  Google Scholar 

  115. H.-L. Kang, S. Yoon, D.-K. Hong, S. Song, Y.J. Kim, W.-H. Kim, W.-K. Seong, K.-N. Lee, Verification of operating principle of nano field-effect transistor biosensor with an extended gate electrode. Biochip J. 14, 381–389 (2020)

    Article  CAS  Google Scholar 

  116. S. Yoon, Y. Chung, J.W. Lee, J. Chang, J.G. Han, J.H. Lee, Biologically benign multi-functional mesoporous silica encapsulated gold/silver nanorods for anti-bacterial applications by on-demand release of silver ions. Biochip J. 13, 362–369 (2019)

    Article  CAS  Google Scholar 

  117. M. Zhang, T. Zhai, X. Wang, Q. Liao, Y. Ma, J. Yao, Carbon-assisted morphological manipulation of CdS nanostructures and their cathodoluminescence properties. J. Solid State Chem. 182, 3188–3194 (2009)

    Article  CAS  Google Scholar 

  118. H. Lee, K. Heo, A. Maaroof, Y. Park, S. Noh, J. Park, J. Jian, C. Lee, M.J. Seong, S. Hong, High-performance photoconductive channels based on (carbon nanotube)–(CdS nanowire) hybrid nanostructures. Small 8, 1650–1656 (2012)

    Article  CAS  Google Scholar 

  119. P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu, Y. Qiu, J. Xu, Z. Zou, C. Wang, H. Yan, On-nanowire axial heterojunction design for high-performance photodetectors. ACS Nano 10, 8474–8481 (2016)

    Article  CAS  Google Scholar 

  120. Z. Lou, L. Li, G. Shen, Ultraviolet/visible photodetectors with ultrafast, high photosensitivity based on 1D ZnS/CdS heterostructures. Nanoscale 8, 5219–5225 (2016)

    Article  CAS  Google Scholar 

  121. Q. Zhang, H. Liu, P. Guo, D. Li, P. Fan, W. Zheng, X. Zhu, Y. Jiang, H. Zhou, W. Hu, Vapor growth and interfacial carrier dynamics of high-quality CdS–CdSSe–CdS axial nanowire heterostructures. Nano Energy 32, 28–35 (2017)

    Article  CAS  Google Scholar 

  122. Y. Ye, L. Dai, X. Wen, P. Wu, R. Pen, G. Qin, High-performance single CdS nanobelt metal-semiconductor field-effect transistor-based photodetectors. ACS Appl. Mater. Interfaces 2, 2724–2727 (2010)

    Article  CAS  Google Scholar 

  123. Y. Jiang, C. Li, W. Cao, Y. Jiang, S. Shang, C. Xia, Large scale fabrication of well-aligned CdS/p-Si shell/core nanowire arrays for photodetectors using solution methods. Phys. Chem. Chem. Phys. 17, 16784–16790 (2015)

    Article  CAS  Google Scholar 

  124. Q. An, X. Meng, L. Zhang, Y. Zhao, Controllable growth of single crystalline CdS nanotubes by thermal evaporation. Mater. Lett. 136, 55–58 (2014)

    Article  CAS  Google Scholar 

  125. Y. Pei, R. Pei, X. Liang, Y. Wang, L. Liu, H. Chen, J. Liang, CdS-nanowires flexible photo-detector with Ag-nanowires electrode based on non-transfer process. Sci. Rep. 6, 1–10 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea [Grant Nos. NRF-2020R1A2B5B01002187 and NRF-2020R1A5A101913111].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Chul Pyun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, BG., Kim, HR., Chang, Y.W. et al. Photosensors-based on cadmium sulfide (CdS) nanostructures: a review. J. Korean Ceram. Soc. 58, 631–644 (2021). https://doi.org/10.1007/s43207-021-00141-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-021-00141-5

Keywords

Navigation