Skip to main content

3D ordered nanoelectrodes for energy conversion applications: thermoelectric, piezoelectric, and electrocatalytic applications

Abstract

To date, many methods have been suggested to improve the performance of materials in various applications by applying new physical and chemical properties at the nanometer scale in the form of nanodots, nanowires, and nanofilms. However, most of the proposed methods are difficult to apply to industrial settings due to their size limitations. In that sense, the realization of 3D nanostructured materials is significant for practical use of nanotechnology. The continuous 3D nanostructuring insures the maximum utilization of materials efficiency and improves the stability through well-ordered structures. In this respect, 3D nanostructures of materials can be useful for energy conversion applications such as thermoelectric, piezoelectric, and electrocatalytic applications. Herein, we briefly overview 3D nanofabrication methods to convert the materials in the 3D nanostructures, followed by a review on the advantages of 3D ordered nanoelectrodes for high-performance energy conversion applications.

This is a preview of subscription content, access via your institution.

Scheme 1

Copyright 2019 Elsevier, Reprinted from [144] Copyright (2020) National Academy of Sciences, [42] Reproduced with permission of Wiley.)

Fig. 1

Copyright 2004, The National Academy of Sciences of the USA.)

Fig. 2

Copyright 2013 The Royal Society of Chemistry.) c Schematic illustration of material conversion of 3D nanostructured materials using electrodeposition. d Corresponding cross-sectional scanning electron microscopy (SEM) images of using electrodeposition. (Reprinted from [40]. Copyright 2018 Elsevier.)

Fig. 3

Copyright 2018 The Royal Society of Chemistry.)

Fig. 4

Copyright 2017 The Royal Society of Chemistry.)

Fig. 5

Copyright 2020 Elsevier.)

Fig. 6

Copyright The Royal Society of Chemistry 2018.)

Fig. 7

Copyright 2019 Elsevier.)

Fig. 8

Copyright 2020 American Chemical Society.)

Fig. 9

Copyright 2018 Elsevier.)

Fig. 10

Copyright 2020, The National Academy of Sciences of the USA)

Fig. 11

Copyright 2019, Wiley–VCH)

References

  1. 1.

    J.H. Holtz, S.A. Asher, Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389, 829–832 (1997)

    CAS  Article  Google Scholar 

  2. 2.

    J. Qin, Z. Cui, X. Yang, S. Zhu, Z. Li, Y. Liang, Three-dimensionally ordered macroporous La1−xMgxFeO3 as high performance gas sensor to methanol. J. Alloys Compd. 635, 194–202 (2015)

    CAS  Article  Google Scholar 

  3. 3.

    M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, A.J. Turberfield, Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53–56 (2000)

    CAS  Article  Google Scholar 

  4. 4.

    P.V. Braun, R.W. Zehner, C.A. White, M.K. Weldon, C. Kloc, S.S. Patel, P. Wiltzius, Epitaxial growth of high dielectric contrast three-dimensional photonic crystals. Adv. Mater. 13(10), 721–724 (2001)

    CAS  Article  Google Scholar 

  5. 5.

    D.G. Grier, A revolution in optical manipulation. Nature 424, 810–816 (2003)

    CAS  Article  Google Scholar 

  6. 6.

    G.M. Gratson, F. García-Santamaría, V. Lousse, M. Xu, S. Fan, J.A. Lewis, P.V. Braun, Direct-write assembly of three-dimensional photonic crystals: conversion of polymer scaffolds to silicon hollow-woodpile structures. Adv. Mater. 18(4), 461–465 (2006)

    CAS  Article  Google Scholar 

  7. 7.

    Y. Liu, H. Wang, J. Ho, R.C. Ng, R.J.H. Ng, V.H. Hall-Chen, E.H.H. Koay, Z. Dong, H. Liu, C.-W. Qiu, J.R. Greer, J.K.W. Yang, Structural color three-dimensional printing by shrinking photonic crystals. Nat. Commun. 10, 4340 (2019)

    Article  CAS  Google Scholar 

  8. 8.

    S. Jeon, V. Malyarchuk, J.O. White, J.A. Rogers, Optically fabricated three dimensional nanofluidic mixers for microfluidic devices. Nano Lett. 5(7), 1351–1356 (2005)

    CAS  Article  Google Scholar 

  9. 9.

    J.W. Long, B. Dunn, D.R. Rolison, H.S. White, Three-dimensional battery architectures. Chem. Rev. 104(10), 4463–4492 (2004)

    CAS  Article  Google Scholar 

  10. 10.

    H. Zhang, X. Yu, P.V. Braun, Three-dimensional bicontinuous ultrafast-charge and-discharge bulk battery electrodes. Nat. Nanootechnol. 6(5), 277–281 (2011)

    CAS  Article  Google Scholar 

  11. 11.

    J. Park, S. Wang, M. Li, C. Ahn, J.K. Hyun, D.S. Kim, D.K. Kim, J.A. Rogers, Y. Huang, S. Jeon, Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors. Nat. Commun. 3, 916 (2012)

    Article  CAS  Google Scholar 

  12. 12.

    J.H. Pikul, H.G. Zhang, J. Cho, P.V. Braun, W.P. King, High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 4, 1732 (2013)

    Article  CAS  Google Scholar 

  13. 13.

    C. Ahn, J. Park, D. Kim, S. Jeon, Monolithic 3D titania with ultrathin nanoshell structures for enhanced photocatalytic activity and recyclability. Nanoscale 5(21), 10384–10389 (2013)

    CAS  Article  Google Scholar 

  14. 14.

    C. Kern, M. Wegener, Three-dimensional metamaterial hall-bar devices. Phys. Rev. Mater. 3(1), 015204 (2019)

    CAS  Article  Google Scholar 

  15. 15.

    C. Crook, J. Bauer, A.G. Izard, C.S. de Oliveira, J.M. de e Silva, J.B. Berger, L. Valdevit, Plate-nanolattices at the theoretical limit of stiffness and strength. Nat. Commun. 11, 1579 (2020)

    CAS  Article  Google Scholar 

  16. 16.

    H.-F. Wang, C. Tang, Q. Chang, A review of graphene-based 3D van der waals hybrids and their energy applications. Nano Today 25, 27–37 (2019)

    CAS  Article  Google Scholar 

  17. 17.

    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    CAS  Article  Google Scholar 

  18. 18.

    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. PNAS 102(30), 10451–10453 (2005)

    CAS  Article  Google Scholar 

  19. 19.

    A.P. Tiwari, H.J. Yoo, J.T. Lee, D. Kim, J.H. Park, H. Lee, Prevention of sulfur diffusion using MoS2-intercalated 3D-nanostructured graphite for high-performance lithium-ion batteries. Nanoscale 7, 11928–11933 (2015)

    CAS  Article  Google Scholar 

  20. 20.

    Y. Yoon, A.P. Tiwari, M. Choi, T.G. Novak, W. Song, H. Chang, T. Zyung, S.S. Lee, S. Jeon, K.-S. An, Precious-metal-free electrocatalysts for activation of hydrogen evolution with nonmetallic electron donor: chemical composition controllable phosphorous doped vanadium carbide MXene. Adv. Funct. Mater. 29(30), 1903443 (2019)

    Article  CAS  Google Scholar 

  21. 21.

    B.D. Gates, Q. Xu, M. Stewart, D. Ryan, C.G. Willson, G.M. Whitesides, New approaches to nanofabrication: molding, printing, and other techniques. Chem. Rev. 105(4), 1171–1196 (2005)

    CAS  Article  Google Scholar 

  22. 22.

    G.M. Gratson, M. Xu, J.A. Lewis, Microperiodic structures: direct writing of three-dimensional webs. Nature 428, 386 (2004)

    CAS  Article  Google Scholar 

  23. 23.

    B. Hatton, L. Mishchenko, S. Davis, K.H. Sandhage, J. Aizenberg, Assembly of large-area, highly ordered, crack-free inverse opal films. PNAS 107(23), 10354–10359 (2010)

    CAS  Article  Google Scholar 

  24. 24.

    Y.A. Vlasov, X.-Z. Bo, J.C. Sturm, D.J. Norris, On-chip natural assembly of silicon photonic bandgap crystals. Nature 414, 289–293 (2001)

    CAS  Article  Google Scholar 

  25. 25.

    M. Miyake, M. Suginohara, N. Narahara, T. Hirato, P.V. Braun, Low-temperature hydrothermal synthesis of colloidal crystal templated nanostructured single-crystalline ZnO. Chem. Mater. 29(22), 9734–9741 (2017)

    CAS  Article  Google Scholar 

  26. 26.

    D.-Y. Kang, J.H. Moon, Lithographically defined three-dimensional pore-patterned carbon with nitrogen doping for high-performance ultrathin supercapacitor applications. Sci. Rep. 4, 5392 (2014)

    CAS  Article  Google Scholar 

  27. 27.

    Q. Geng, D. Wang, P. Chen, S.-C. Chen, Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat. Commun. 10, 2179 (2019)

    Article  CAS  Google Scholar 

  28. 28.

    K. Xia, H. Zhan, Y. Gu, Graphene and carbon nanotube hybrid structure: a review. Procedia IUTAM 21, 94–101 (2017)

    Article  Google Scholar 

  29. 29.

    S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C.E. Heitzman, P.V. Braun, P.J. Kenis, J.A. Rogers, Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks. PNAS 101(34), 12428–12433 (2004)

    CAS  Article  Google Scholar 

  30. 30.

    S. Jeon, Y.-S. Nam, D.J. Shir, J.A. Rogers, A. Hamza, Three dimensional nanoporous density graded materials formed by optical exposures through conformable phase masks. Appl. Phys. Lett. 89(25), 253101 (2006)

    Article  CAS  Google Scholar 

  31. 31.

    J.H. Moon, S. Yang, Chemical aspects of three-dimensional photonic crystals. Chem. Rev. 110(1), 547–574 (2009)

    Article  CAS  Google Scholar 

  32. 32.

    D.J. Shir, E. Nelson, Y. Chen, A. Brzezinski, H. Liao, P. Braun, P. Wiltzius, K. Bogart, J. Rogers, Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography. Appl. Phys. Lett. 94(1), 011101 (2009)

    Article  CAS  Google Scholar 

  33. 33.

    J.S. King, E. Graugnard, O.M. Roche, D.N. Sharp, J. Scrimgeour, R.G. Denning, A.J. Turberfield, C.J. Summers, Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition. Adv. Mater. 18(12), 1561–1565 (2006)

    CAS  Article  Google Scholar 

  34. 34.

    R.K. Grubbs, A. Ellis, A. Sanchez, M. Wiwi, I. El-kady, K. Bogart, M. Su, C. Christodoulou, M. Taha, D.J. Shir, Controlled synthesis of 3D nanostructures using proximity-field nanopatterning lithography and graded temperature ALD. ECS Trans. 16(4), 165–171 (2008)

    CAS  Article  Google Scholar 

  35. 35.

    S.-G. Park, T.Y. Jeon, H.C. Jeon, S.-M. Yang, J.-D. Kwon, C.-W. Mun, B. Cho, C.S. Kim, D.-H. Kim, Fabrication of 3D ZnO hollow shell structures by prism holographic lithography and atomic layer deposition. J. Mater. Chem C 2(11), 1957–1961 (2014)

    CAS  Article  Google Scholar 

  36. 36.

    S. Cho, C. Ahn, J. Park, S. Jeon, 3D nanostructured N-doped TiO2 photocatalysts with enhanced visible absorption. Nanoscale 10(20), 9747–9751 (2018)

    CAS  Article  Google Scholar 

  37. 37.

    K. Kim, J. Park, S. Hong, S.H. Park, S.G. Jeon, C. Ahn, J.Y. Song, S. Jeon, Anomalous thermoelectricity of pure ZnO from 3D continuous ultrathin nanoshell structures. Nanoscale 10(6), 3046–3052 (2018)

    CAS  Article  Google Scholar 

  38. 38.

    Y.-E. Na, D. Shin, K. Kim, C. Ahn, S. Jeon, D. Jang, Emergence of new density-strength scaling law in 3D hollow ceramic nanoarchitectures. Small 14(44), 1802239 (2018)

    Article  CAS  Google Scholar 

  39. 39.

    H. Park, C. Ahn, H. Jo, M. Choi, D.S. Kim, D.K. Kim, S. Jeon, H. Choe, Large-area metal foams with highly ordered sub-micrometer-scale pores for potential applications in energy areas. Mater. Lett. 129, 174–177 (2014)

    CAS  Article  Google Scholar 

  40. 40.

    S. Kim, C. Ahn, Y. Cho, G. Hyun, S. Jeon, J.H. Park, Suppressing buoyant force: new avenue for long-term durability of oxygen evolution catalysts. Nano Energy 54, 184–191 (2018)

    CAS  Article  Google Scholar 

  41. 41.

    J. Bong, C. Ahn, T. Lim, J.H. Park, S.K. Kwak, S. Jeon, S. Ju, Controlled three-dimensional interconnected capillary structures for liquid repellency engineering. RSC Adv. 6, 61909–61914 (2016)

    CAS  Article  Google Scholar 

  42. 42.

    S.K. Kuk, Y. Ham, K. Gopinath, P. Boonmongkolras, Y. Lee, Y.W. Lee, S. Kondaveeti, C. Ahn, B. Shin, J.-K. Lee, S. Jeon, C.B. Park, Continuous 3D titanium nitride nanoshell structure for solar-driven unbiased biocatalytic CO2 reduction. Adv. Energy Mater. 9(25), 1900029 (2019)

    Article  CAS  Google Scholar 

  43. 43.

    S. Araki, Y. Ishikawa, X. Wang, M. Uenuma, D. Cho, S. Jeon, Y. Uraoka, Fabrication of nanoshell-based 3D periodic structures by templating process using solution-derived ZnO. Nanoscale Res. Lett. 12, 419 (2017)

    Article  CAS  Google Scholar 

  44. 44.

    H. Yan, Y. Yang, Z. Fu, B. Yang, L. Xia, S. Fu, F. Li, Fabrication of 2D and 3D ordered porous Zno films using 3D opal templates by electrodeposition. Electrochem. Commun. 7(11), 1117–1121 (2005)

    CAS  Article  Google Scholar 

  45. 45.

    G.M. Zarkadas, A. Stergiou, G. Papanastasiou, Influence of citric acid on the silver electrodeposition from aqueous AgNO3 solutions. Electrochim. Acta 50(25), 5022–5031 (2005)

    CAS  Article  Google Scholar 

  46. 46.

    X. Yu, Y.-J. Lee, R. Furstenberg, J.O. White, P.V. Braun, Filling fraction dependent properties of inverse opal metallic photonic crystals. Adv. Mater. 19(13), 1689–1692 (2007)

    Article  CAS  Google Scholar 

  47. 47.

    Y. Xu, X. Zhu, Y. Dan, J.H. Moon, V.W. Chen, A.T. Johnson, J.W. Perry, S. Yang, Electrodeposition of three-dimensional titania photonic crystals from holographically patterned microporous polymer templates. Chem. Mater. 20(5), 1816–1823 (2008)

    CAS  Article  Google Scholar 

  48. 48.

    R. Beica, C. Sharbono, T. Ritzdorf, in Through Silicon via Copper Electrodeposition for 3D Integration. 58th Electronic Components and Technology Conference IEEE pp 577–583 (2008).

  49. 49.

    K.A. Arpin, M.D. Losego, P.V. Braun, Electrodeposited 3D tungsten photonic crystals with enhanced thermal stability. Chem. Mater. 23(21), 4783–4788 (2011)

    CAS  Article  Google Scholar 

  50. 50.

    M. Heim, S. Reculusa, S. Ravaine, A. Kuhn, Engineering of complex macroporous materials through controlled electrodeposition in colloidal superstructures. Adv. Funct. Mater. 22(3), 538–545 (2012)

    CAS  Article  Google Scholar 

  51. 51.

    D. Santiago, G.G. Rodríguez-Calero, A. Palkar, D. Barraza-Jimenez, D.H. Galvan, G. Casillas, A. Mayoral, M. Jose-Yacamán, L. Echegoyen, C.R. Cabrera, Platinum electrodeposition on unsupported carbon nano-onions. Langmuir 28(49), 17202–17210 (2012)

    CAS  Article  Google Scholar 

  52. 52.

    S. Hrapovic, Y. Liu, G. Enright, F. Bensebaa, J.H.T. Luong, New strategy for preparing thin gold films on modified glass surfaces by electroless deposition. Langmuir 19(9), 3958–3965 (2003)

    CAS  Article  Google Scholar 

  53. 53.

    Y. Chen, M. Cao, Q. Xu, J. Zhu, Electroless nickel plating on silicon carbide nanoparticles. Surf. Coat. Tech. 172(1), 90–94 (2003)

    CAS  Article  Google Scholar 

  54. 54.

    F. Hanna, Z.A. Hamid, A.A. Aal, Controlling factors affecting the stability and rate of electroless copper plating. Mater. Lett. 58(1–2), 104–109 (2004)

    CAS  Article  Google Scholar 

  55. 55.

    A. Radke, T. Gissibl, T. Klotzbücher, P.V. Braun, H. Giessen, Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating. Adv. Mater. 23(27), 3018–3021 (2011)

    CAS  Article  Google Scholar 

  56. 56.

    C.-F. Cheng, H.-Y. Hsueh, C.-H. Lai, C.-J. Pan, B.-J. Hwang, C.-C. Hu, R.-M. Ho, Nanoporous gyroid platinum with high catalytic activity from block copolymer templates via electroless plating. NPG Asia Mater. 7, e170 (2015)

    CAS  Article  Google Scholar 

  57. 57.

    T.A. Schaedler, A.J. Jacobsen, A. Torrents, A.E. Sorensen, J. Lian, J.R. Greer, L. Valdevit, W.B. Carter, Ultralight metallic microlattices. Science 334(6058), 962–965 (2011)

    CAS  Article  Google Scholar 

  58. 58.

    N. Xu, Y. Zhang, T. Zhang, Y. Liu, J. Qiao, Efficient quantum dots anchored nanocomposite for highly active ORR/OER electrocatalyst of advanced metal-air batteries. Nano Energy 57, 176–185 (2019)

    CAS  Article  Google Scholar 

  59. 59.

    K. Kim, A.P. Tiwari, G. Hyun, T.G. Novak, S. Jeon, Improving electrochemical active area of MoS2 via attached on 3D-ordered structures for hydrogen evolution reaction. Int. J. Hydrog. Energy 44(52), 28143–28150 (2019)

    CAS  Article  Google Scholar 

  60. 60.

    F. Song, W. Li, J. Yang, G. Han, P. Liao, Y. Sun, Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions. Nat. Commun. 9, 4531 (2018)

    Article  CAS  Google Scholar 

  61. 61.

    A.P. Tiwari, K. Lee, K. Kim, J. Kim, T.G. Novak, S. Jeon, Conformally coated nickel phosphide on 3D, ordered nanoporous nickel for highly active and durable hydrogen evolution. ACS. Sustain. Chem. Eng. 8(46), 17116–17123 (2020)

    CAS  Article  Google Scholar 

  62. 62.

    D.J. Shir, S. Jeon, H. Liao, M. Highland, D.G. Cahill, M.F. Su, I.F. El-Kady, C.G. Christodoulou, G.R. Bogart, A.V. Hamza, J.A. Rogers, Three-dimensional nanofabrication with elastomeric phase masks. J. Phys. Chem. B 111(45), 12945–12958 (2007)

    CAS  Article  Google Scholar 

  63. 63.

    J. Ahn, C. Ahn, S. Jeon, J. Park, Atomic layer deposition of inorganic thin films on 3D polymer nanonetworks. Appl. Sci. 9(10), 1990 (2019)

    CAS  Article  Google Scholar 

  64. 64.

    K. Lee, H. Yoon, C. Ahn, J. Park, S. Jeon, Strategies to improve the photocatalytic activity of TiO2: 3D nanostructuring and heterostructuring with graphitic carbon nanomaterials. Nanoscale 11, 7025–7040 (2019)

    CAS  Article  Google Scholar 

  65. 65.

    L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321(5895), 1457–1461 (2008)

    CAS  Article  Google Scholar 

  66. 66.

    G. Chen, M. Dresselhaus, G. Dresselhaus, J.-P. Fleurial, T. Caillat, Recent developments in thermoelectric materials. Int. Mater. Rev. 48(1), 45–66 (2003)

    CAS  Article  Google Scholar 

  67. 67.

    K.P. Ong, D.J. Singh, P. Wu, Analysis of the thermoelectric properties of n-type ZnO. Phys. Rev. B 83(11), 115110 (2011)

    Article  CAS  Google Scholar 

  68. 68.

    M. Ohtaki, Recent aspects of oxide thermoelectric materials for power generation from mid-to-high temperature heat source. J. Ceram. Soc. Jpn. 119(1395), 770–775 (2011)

    CAS  Article  Google Scholar 

  69. 69.

    T. Tsubota, M. Ohtaki, K. Eguchi, H. Arai, Thermoelectric properties of Al-doped ZnO as a promising oxidematerial for high-temperature thermoelectric conversion. J. Mater. Chem. 7, 85–90 (1997)

    CAS  Article  Google Scholar 

  70. 70.

    E. Guilmeau, P. Díaz-Chao, O.I. Lebedev, A. Rečnik, M.C. Schäfer, F. Delorme, F. Giovannelli, M. Košir, S. Bernik, Inversion boundaries and phonon scattering in Ga: ZnO thermoelectric compounds. Inorg. Chem. 56, 480–487 (2016)

    Article  CAS  Google Scholar 

  71. 71.

    X. Qu, W. Wang, S. Lv, D. Jia, Thermoelectric properties and electronic structure of Al-doped ZnO. Solid State Commun. 151(4), 332–336 (2011)

    CAS  Article  Google Scholar 

  72. 72.

    Y. Kinemuchi, M. Mikami, K. Kobayashi, K. Watari, Y. Hotta, Thermoelectric properties of nanograined ZnO. J. Electron. Mater. 39(9), 2059–2063 (2010)

    CAS  Article  Google Scholar 

  73. 73.

    L. Shi, J. Chen, G. Zhang, B. Li, Thermoelectric figure of merit in Ga-doped [0001] ZnO manowires. Phys. Lett. A 376(8), 978–981 (2012)

    CAS  Article  Google Scholar 

  74. 74.

    M. Ruoho, T. Juntunen, I. Tittonen, Large-area thermoelectric high-aspect-ratio nanostructures by atomic layer deposition. Nanotechnology 27(35), 355403 (2016)

    Article  CAS  Google Scholar 

  75. 75.

    P. Jood, R.J. Mehta, Y. Zhang, G. Peleckis, X. Wang, R.W. Siegel, T. Borca-Tasciuc, S.X. Dou, G. Ramanath, Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties. Nano Lett. 11(10), 4337–4342 (2011)

    CAS  Article  Google Scholar 

  76. 76.

    X.A. Zhang, A. Bagal, E.C. Dandley, J. Zhao, C.J. Oldham, B.I. Wu, G.N. Parsons, C.H. Chang, Ordered 3D thin-shell nanolattice materials with near-unity refractive indices. Adv. Funct. Mater. 25(42), 6644–6649 (2015)

    CAS  Article  Google Scholar 

  77. 77.

    S.I. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee, Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348(6230), 109–114 (2015)

    CAS  Article  Google Scholar 

  78. 78.

    S. Hong, J. Park, S.G. Jeon, K. Kim, S.H. Park, H.S. Shin, B. Kim, S. Jeon, J.Y. Song, Monolithic Bi1.5Sb0.5Te3 ternary alloys with a periodic 3D nanostructure for enhancing thermoelectric performance. J. Mater. Chem. C. 5, 8974–8980 (2017)

    Article  Google Scholar 

  79. 79.

    Y.-Y. Choi, T.G. Yun, N. Qaiser, H. Paik, H.S. Roh, J. Hong, S. Hong, S.M. Han, K. No, Vertically aligned P(VDF-TrFE) core-shell structures on flexible pillar arrays. Sci. Rep. 5, 10728 (2015)

    CAS  Article  Google Scholar 

  80. 80.

    J. Ryu, H. Jeong, Y. Chen, C. Oh, J. Kim, H. Kim, S. Cho, K. No, Y.-H. Park, S. Park, S. Hong, Flexible piezoelectric liquid volume sensor. Sensors Actuat. A: Phys. 276, 219–225 (2018)

    CAS  Article  Google Scholar 

  81. 81.

    Z. Li, Y. Wang, Z.-Y. Cheng, Electromechanical properties of poly(vinylidene-fluoride-chlorotrifluoroethylene) copolymer. Appl. Phys. Lett. 88(6), 062904 (2006)

    Article  CAS  Google Scholar 

  82. 82.

    Y. Chen, Y. Zhang, F. Yuan, F. Ding, O.G. Schmidt, A flexible PMN-PT ribbon-based piezoelectric-pyroelectric hybrid generator for human-activity energy harvesting and monitoring. Adv. Electron. Mater. 3(3), 1600540 (2017)

    Article  CAS  Google Scholar 

  83. 83.

    Z. Yu, C. Ang, R. Guo, A.S. Bhalla, Piezoelectric and strain properties of Ba(Ti1−xZrx)O3 ceramics. J. Appl. Phys. 92(3), 1489–1493 (2002)

    CAS  Article  Google Scholar 

  84. 84.

    K. Wang, J.-F. Li, J.-J. Zhou, High normalized strain obtained in Li-modified (K, Na)NbO3 lead-free piezoceramics. Appl. Phys. Express 4(6), 061501 (2011)

    Article  CAS  Google Scholar 

  85. 85.

    D. Jang, L.R. Meza, F. Greer, J.R. Greer, Fabrication and deformation of three-dimensional hollow ceramic nanostructures. Nat. Mater. 12(10), 893–898 (2013)

    CAS  Article  Google Scholar 

  86. 86.

    L.R. Meza, S. Das, J.R. Greer, Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345(6202), 1322–1326 (2014)

    CAS  Article  Google Scholar 

  87. 87.

    X. Li, H. Gao, Smaller and stronger. Nat. Mater. 15(4), 373–374 (2016)

    CAS  Article  Google Scholar 

  88. 88.

    H. Mirzaei, M. Darroudi, Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceram. Int. 43(1), 907–914 (2017)

    CAS  Article  Google Scholar 

  89. 89.

    B. Yin, Y. Qiu, H. Zhang, J. Lei, Y. Chang, J. Ji, Y. Luo, Y. Zhao, L. Hu, Piezoelectric performance enhancement of ZnO flexible nanogenerator by a NiO-ZnO p-n junction formation. Nano Energy 14, 95–101 (2015)

    CAS  Article  Google Scholar 

  90. 90.

    J. Hong, H. Wagata, K.-I. Katsumata, N. Matsushita, Low Temperature solution-processed ZnO film on flexible substrate. Mater. Sci. Semicond. Process. 47, 20–24 (2016)

    CAS  Article  Google Scholar 

  91. 91.

    H. Kim, S. Yun, K. Kim, W. Kim, J. Ryu, H.G. Nam, S.M. Han, S. Jeon, S. Hong, Breaking the elastic limit of piezoelectric ceramics using nanostructures: a case study using ZnO. Nano Energy 78, 105259 (2020)

    CAS  Article  Google Scholar 

  92. 92.

    J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and material. Chem. Rev. 114(10), 9919–9986 (2014)

    CAS  Article  Google Scholar 

  93. 93.

    X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107(7), 2891–2959 (2007)

    CAS  Article  Google Scholar 

  94. 94.

    M.S. Dresselhaus, I.L. Thomas, Alternative energy technologies. Nature 414, 332–337 (2001)

    CAS  Article  Google Scholar 

  95. 95.

    Y. Hou, B.L. Abrams, P.C.K. Vesborg, M.E. Björketun, K. Herbst, L. Bech, A.M. Setti, C.D. Damsgaard, T. Pedersen, O. Hansen, J. Rossmeisl, S. Dahl, J.K. Nørskov, I. Chorkendorff, Bioinspired molecular Co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat. Mater. 10, 434 (2011)

    CAS  Article  Google Scholar 

  96. 96.

    Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133(19), 7296–7299 (2011)

    CAS  Article  Google Scholar 

  97. 97.

    A. Tiwari, T. Novak, X. Bu, J. Ho, S. Jeon, Layered ternary and quaternary transition metal chalcogenide based catalysts for water splitting. Catalysts 8(11), 551 (2018)

    Article  CAS  Google Scholar 

  98. 98.

    X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44(15), 5148–5180 (2015)

    CAS  Article  Google Scholar 

  99. 99.

    N.P. Dasgupta, C. Liu, S. Andrews, F.B. Prinz, P. Yang, Atomic layer deposition of platinum catalysts on nanowire surfaces for photoelectrochemical water reduction. J. Am. Chem. Soc. 135(35), 12932–12935 (2013)

    CAS  Article  Google Scholar 

  100. 100.

    A.P. Tiwari, D. Kim, Y. Kim, O. Prakash, H. Lee, Highly active and stable layered ternary transition metal chalcogenide for hydrogen evolution reaction. Nano Energy 28, 366–372 (2016)

    CAS  Article  Google Scholar 

  101. 101.

    A.P. Tiwari, D. Kim, Y. Kim, H. Lee, Bifunctional oxygen electrocatalysis through chemical bonding of transition metal chalcogenides on conductive carbons. Adv. Energy Mater. 7(14), 1602217 (2017)

    Article  CAS  Google Scholar 

  102. 102.

    Y. Kim, A.P. Tiwari, O. Prakash, H. Lee, Activation of ternary transition metal chalcogenide basal planes through chemical strain for the hydrogen evolution reaction. ChemPlusChem 82(5), 785–791 (2017)

    CAS  Article  Google Scholar 

  103. 103.

    A.P. Tiwari, A. Azam, T.G. Novak, O. Prakash, S. Jeon, Chemical strain formation through anion substitution in Cu2WS4 for efficient electrocatalysis of water dissociation. J. Mater. Chem. A 6, 7786–7793 (2018)

    CAS  Article  Google Scholar 

  104. 104.

    Y. Yoon, A.P. Tiwari, M. Lee, M. Choi, W. Song, J. Im, T. Zyung, H.-K. Jung, S.S. Lee, S. Jeon, K.-S. An, Enhanced electrocatalytic activity by chemical nitridation of two-dimensional titanium carbide mxene for hydrogen evolution. J. Mater. Chem. A 6, 20869–20877 (2018)

    CAS  Article  Google Scholar 

  105. 105.

    T.G. Novak, O. Prakash, A.P. Tiwari, S. Jeon, Solution-phase phosphorus substitution for enhanced oxygen evolution reaction in Cu2WS4. RSC Adv. 9, 234–239 (2019)

    CAS  Article  Google Scholar 

  106. 106.

    A.P. Tiwari, Y. Yoon, T.G. Novak, A. Azam, M. Lee, S.S. Lee, G. Lee, D.J. Srolovitz, K.-S. An, S. Jeon, Lattice strain formation through spin-coupled shells of MoS2 on Mo2C for bifunctional oxygen reduction and oxygen evolution reaction electrocatalysts. Adv. Mater. Interfaces 6(22), 1900948 (2019)

    CAS  Article  Google Scholar 

  107. 107.

    G. Hyun, S.-H. Cho, J. Park, K. Kim, C. Ahn, A.P. Tiwari, I.-D. Kim, S. Jeon, 3D ordered carbon/SnO2 hybrid nanostructures for energy storage applications. Electrochim. Acta 288, 108–114 (2018)

    CAS  Article  Google Scholar 

  108. 108.

    H. Wang, D. Kong, P. Johanes, J.J. Cha, G. Zheng, K. Yan, N. Liu, Y. Cui, MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano Lett. 13(7), 3426–3433 (2013)

    CAS  Article  Google Scholar 

  109. 109.

    M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263 (2013)

    Article  Google Scholar 

  110. 110.

    D. Voiry, H. Yamaguchi, J. Li, R. Silva, D.C.B. Alves, T. Fujita, M. Chen, T. Asefa, V.B. Shenoy, G. Eda, M. Chhowalla, Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850 (2013)

    CAS  Article  Google Scholar 

  111. 111.

    M.-R. Gao, J.-X. Liang, Y.-R. Zheng, Y.-F. Xu, J. Jiang, Q. Gao, J. Li, S.-H. Yu, An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nate Commun. 6, 5982 (2015)

    CAS  Article  Google Scholar 

  112. 112.

    B. Hinnemann, P.G. Moses, J. Bonde, K.P. Jørgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, J.K. Nørskov, Biomimetic hydrogen evolution: mos2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127(15), 5308–5309 (2005)

    CAS  Article  Google Scholar 

  113. 113.

    T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317(5834), 100–102 (2007)

    CAS  Article  Google Scholar 

  114. 114.

    Z. Chen, D. Cummins, B.N. Reinecke, E. Clark, M.K. Sunkara, T.F. Jaramillo, Core-shell MoO3-MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. Nano Lett. 11(10), 4168–4175 (2011)

    CAS  Article  Google Scholar 

  115. 115.

    C.G. Morales-Guio, X. Hu, Amorphous molybdenum sulfides as hydrogen evolution catalysts. Acc. Chem. Res. 47(8), 2671–2681 (2014)

    CAS  Article  Google Scholar 

  116. 116.

    J. Kibsgaard, Z. Chen, B.N. Reinecke, T.F. Jaramillo, Engineering the surface structure of MoS2 To preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963 (2012)

    CAS  Article  Google Scholar 

  117. 117.

    D. Kong, H. Wang, J.J. Cha, M. Pasta, K.J. Koski, J. Yao, Y. Cui, Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 13(3), 1341–1347 (2013)

    CAS  Article  Google Scholar 

  118. 118.

    J. Hu, B. Huang, C. Zhang, Z. Wang, Y. An, D. Zhou, H. Lin, M.K.H. Leung, S. Yang, Engineering stepped edge surface structures of MoS2 sheet stacks to accelerate the hydrogen evolution reaction. Energy Environ. Sci. 10(2), 593–603 (2017)

    CAS  Article  Google Scholar 

  119. 119.

    Q. Zhang, Z. Xu, B. Lu, Strongly coupled MoS2-3D graphene materials for ultrafast charge slow discharge libs and water splitting applications. Energy Storage Mater. 4, 84–91 (2016)

    Article  Google Scholar 

  120. 120.

    X. Geng, W. Wu, N. Li, W. Sun, J. Armstrong, A. Al-hilo, M. Brozak, J. Cui, T.-P. Chen, Three-dimensional structures of mos2 nanosheets with ultrahigh hydrogen evolution reaction in water reduction. Adv. Funct. Mater. 24(39), 6123–6129 (2014)

    CAS  Article  Google Scholar 

  121. 121.

    D. Cho, J. Park, J. Kim, T. Kim, J. Kim, I. Park, S. Jeon, Three-dimensionally continuous conductive nanostructure for highly sensitive and stretchable strain sensor. ACS Appl. Mater. Interfaces 9(20), 17369–17378 (2017)

    CAS  Article  Google Scholar 

  122. 122.

    E.J. Popczun, J.R. McKone, C.G. Read, A.J. Biacchi, A.M. Wiltrout, N.S. Lewis, R.E. Schaak, Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135(25), 9267–9270 (2013)

    CAS  Article  Google Scholar 

  123. 123.

    W.-F. Chen, J.T. Muckerman, E. Fujita, Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun. 49, 8896–8909 (2013)

    CAS  Article  Google Scholar 

  124. 124.

    H.B. Wu, B.Y. Xia, L. Yu, X.-Y. Yu, X.W. Luo, Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nat. Commun. 6, 6512 (2015)

    CAS  Article  Google Scholar 

  125. 125.

    S.J. Sitler, K.S. Raja, I. Charit, Metal-rich transition metal diborides as electrocatalysts for hydrogen evolution reactions in a wide range of pH. J. Electrochem. Soc. 163(13), 1609–1075 (2016)

    Article  CAS  Google Scholar 

  126. 126.

    J. Ren, Z. Hu, C. Chen, Y. Liu, Z. Yuan, Integrated Ni2P nanosheet arrays on three-dimensional Ni foam for highly efficient water reduction and oxidation. J. Energy Chem. 26(6), 1196–1202 (2017)

    Article  Google Scholar 

  127. 127.

    L. Yu, I.K. Mishra, Y. Xie, H. Zhou, J. Sun, J. Zhou, Y. Ni, D. Luo, F. Yu, Y. Yu, S. Chen, Z. Ren, Ternary Ni2(1–x)Mo2xP nanowire arrays toward efficient and stable hydrogen evolution electrocatalysis under large-current-density. Nano Energy 53, 492–500 (2018)

    CAS  Article  Google Scholar 

  128. 128.

    X. Wang, W. Li, D. Xiong, D.Y. Petrovykh, L. Liu, Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting. Adv. Funct. Mater. 26(23), 4067–4077 (2016)

    CAS  Article  Google Scholar 

  129. 129.

    X. Wang, W. Li, D. Xiong, L. Liu, Fast fabrication of self-supported porous nickel phosphide foam for efficient, durable oxygen evolution and overall water splitting. J. Mater. Chem. A 4, 5639–5646 (2016)

    CAS  Article  Google Scholar 

  130. 130.

    B. Liu, B. He, H.-Q. Peng, Y. Zhao, Y. Cheng, J. Xia, J. Shen, T.-W. Ng, X. Meng, C.-S. Lee, W. Zhang, Unconventional nickel nitride enriched with nitrogen vacancies as a high-efficiency electrocatalyst for hydrogen evolution. Adv. Sci. 5(8), 1800406 (2018)

    Article  CAS  Google Scholar 

  131. 131.

    L. Yu, S. Song, B. McElhenny, F. Ding, D. Luo, Y. Yu, S. Chen, Z. Ren, A universal synthesis strategy to make metal nitride electrocatalysts for hydrogen evolution reaction. J. Mater. Chem. A 7, 19728–19732 (2019)

    CAS  Article  Google Scholar 

  132. 132.

    L. Yu, Q. Zhu, S. Song, B. McElhenny, D. Wang, C. Wu, Z. Qin, J. Bao, Y. Yu, S. Chen, Z. Ren, Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 10, 5106 (2019)

    Article  CAS  Google Scholar 

  133. 133.

    C. Huang, S. Cheng, L. Yu, W. Zhang, J. Zhou, Y. Zhang, Y. Yu, Electrolyzer with hierarchical transition metal sulfide and phosphide towards overall water splitting. Mater. Today Phys. 11, 100162 (2019)

    Article  Google Scholar 

  134. 134.

    S.H. Yu, W. Chen, H. Wang, H. Pan, D.H.C. Chua, Highly stable tungsten disulfide supported on a self-standing nickel phosphide foam as a hybrid electrocatalyst for efficient electrolytic hydrogen evolution. Nano Energy 55, 193–202 (2019)

    CAS  Article  Google Scholar 

  135. 135.

    X. Bu, R. Wei, W. Gao, C. Lan, J.C. Ho, A unique sandwich structure of a CoMnP/Ni2P/NiFe electrocatalyst for highly efficient overall water splitting. J. Mater. Chem. A 7, 12325–12332 (2019)

    CAS  Article  Google Scholar 

  136. 136.

    S. Liu, C. Hu, C. Lv, J. Cai, M. Daun, J. Luo, J. Song, Y. Shi, C. Chen, D. Luo, A. Watanabe, E. Aoyagi, S. Ito, Facile preparation of large-area self-supported porous nickel phosphide nanosheets for efficient electrocatalytic hydrogen evolution. Int. J. Hydrog. Energy 44(33), 17974–17984 (2019)

    CAS  Article  Google Scholar 

  137. 137.

    C. Hu, J. Cai, S. Liu, C. Lv, J. Luo, M. Daun, C. Chen, Y. Shi, J. Song, Z. Zhang, A. Watanabe, E. Aoyagi, S. Ito, General strategy for preparation of porous nickel phosphide nanosheets on arbitrary substrates toward efficient hydrogen generation. ACS Appl. Energy Mater. 3(1), 1036–1045 (2020)

    CAS  Article  Google Scholar 

  138. 138.

    C. Haung, L. Yu, W. Zhang, Q. Xiao, J. Zhou, Y. Zhang, P. An, J. Zhang, Y. Yu, N-doped Ni-Mo based sulfides for high-efficiency and stable hydrogen evolution reaction. Appl. Catal. B 276(5), 119137 (2020)

    Article  CAS  Google Scholar 

  139. 139.

    C. Hu, C. Lv, S. Liu, Y. Shi, J. Song, Z. Zhang, J. Cai, A. Watanabe, Nickel phosphide electrocatalysts for hydrogen evolution reaction. Catalysts 10(2), 188 (2020)

    CAS  Article  Google Scholar 

  140. 140.

    C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135(45), 16977–16987 (2013)

    CAS  Article  Google Scholar 

  141. 141.

    J. Zhang, J. Liu, L. Xi, Y. Yu, N. Chen, S. Sun, W. Wang, K.M. Lange, B. Zhang, Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 140(11), 3876–3879 (2018)

    CAS  Article  Google Scholar 

  142. 142.

    H.-R.M. Jhong, S. Ma, P.J.A. Kenis, Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities. Curr. Opin. Chem. Eng. 2(2), 191–199 (2013)

    Article  Google Scholar 

  143. 143.

    J. Kim, J.T. Song, H. Ryoo, J.-G. Kim, S.-Y. Chung, J. Oh, Morphology-controlled au nanostructures for efficient and selective electrochemical CO2 reduction. J. Mater. Chem. A 6, 5119–5128 (2018)

    CAS  Article  Google Scholar 

  144. 144.

    G. Hyun, J.T. Song, C. Ahn, Y. Ham, D. Cho, J. Oh, S. Jeon, Hierarchically porous Au nanostructures with interconnected channels for efficient mass transport in electrocatalytic CO2 reduction. PNAS 117(11), 5680–5685 (2020)

    CAS  Article  Google Scholar 

  145. 145.

    X. Liu, S. Inagaki, J. Gong, Heterogeneous molecular systems for photocatalytic CO2 reduction with water oxidation. Angew. Chem. Int. Ed. 55(48), 14924–14950 (2016)

    CAS  Article  Google Scholar 

  146. 146.

    P. Zhou, J. Yu, M. Jaroniec, All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 26(29), 4920–4935 (2014)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R1I1A1A01071675), Nano-Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2017M3A7B4049547), and Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT (NRF-2017M3D1A1039558, NRF-2020M3D1A1110522).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Seokwoo Jeon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, K., Tiwari, A.P., Novak, T.G. et al. 3D ordered nanoelectrodes for energy conversion applications: thermoelectric, piezoelectric, and electrocatalytic applications. J. Korean Ceram. Soc. 58, 379–398 (2021). https://doi.org/10.1007/s43207-021-00113-9

Download citation

Keywords

  • 3D nanopatterning
  • Electrodes
  • Thermal applications
  • Piezoelectric properties
  • Electrocatalysts