Skip to main content

Advertisement

Log in

Effect of hydrodynamic parameters on hydrogen production by Anabaena sp. in an internal-loop airlift photobioreactor

  • Original Paper
  • Published:
Brazilian Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Global warming and air pollution caused by fossil fuel emissions have triggered the search for a clean, sustainable, and eco-friendly energy source such as H2, which can be produced by cyanobacteria and microalgae. In this study, Anabaena sp. was used in a photobioreactor to achieve biohydrogen production. To this end, hydrodynamic parameters such as gas holdup, liquid circulation velocity, oxygen mass transfer coefficient, and gas velocity were investigated. Results showed that the gas holdup, liquid circulation velocity, and oxygen mass transfer increased by increasing the inlet gas velocity without causing detrimental shear stress to cyanobacteria. A biomass concentration of 1.2 g L−1 and a total H2 production of 371 mL were recorded after 7 days using an inlet gas velocity of 0.524 cm s−1 and a light intensity of 140 µmol photons m−2 s−1. Using a superficial gas velocity of 0.524 cm s−1 resulted in the optimum gas holdup, mass transfer, and light availability to Anabaena sp. The growth of cyanobacteria in an internal-loop airlift photobioreactor was found to be a cost-effective and environmentally friendly technology for hydrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

All generated or analyzed data, the exploited software, and materials were included in this published article. The generated results during the current study are available from the corresponding author on reasonable request.

References

  • Abdel-Basset R, Bader KP (1997) Characterization of hydrogen photoevolution in oscillatoria chalybea detected by means of mass spectrometry. Zeitschrift Für Naturforschung C 52(11–12):775–781

    CAS  Google Scholar 

  • Acién F et al (2017) Photobioreactors for the production of microalgae. Microalgae-based biofuels and bioproducts. Elsevier, pp 1–44

    Google Scholar 

  • Al-Mashhadani MKH, Wilkinson SJ, Zimmerman WB (2015) Airlift bioreactor for biological applications with microbubble mediated transport processes. Chem Eng Sci 137:243–253

    CAS  Google Scholar 

  • Anjos M et al (2013) Optimization of CO2 bio-mitigation by Chlorella vulgaris. Biores Technol 139:149–154

    CAS  Google Scholar 

  • Anwar M et al (2019) Recent advancement and strategy on bio-hydrogen production from photosynthetic microalgae. Bioresour Technol 292:121972

    CAS  PubMed  Google Scholar 

  • Aoyama K et al (1997) Fermentative metabolism to produce hydrogen gas and organic compounds in a cyanobacterium, Spirulina platensis. J Ferment Bioeng 83(1):17–20

    CAS  Google Scholar 

  • Asada Y, Kawamura S (1986) Aerobic hydrogen accumulation by a nitrogen-fixing cyanobacterium Anabaena sp. Appl Environ Microbiol 51(5):1063–1066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Babcock RW, Malda J, Radway JC (2002) Hydrodynamics and mass transfer in a tubular airlift photobioreactor. J Appl Phycol 14(3):169–184

    CAS  Google Scholar 

  • Balat M (2008) Potential importance of hydrogen as a future solution to environmental and transportation problems. Int J Hydrogen Energy 33(15):4013–4029

    CAS  Google Scholar 

  • Ban S et al (2019) Improving hydrogen production of Chlamydomonas reinhardtii by reducing chlorophyll content via atmospheric and room temperature plasma. Bioresour Technol 275:425–429

    CAS  PubMed  Google Scholar 

  • Bello RA, Robinson CW, Moo-Young M (1985a) Prediction of the volumetric mass transfer coefficient in pneumatic contactors. Chem Eng Sci 40(1):53–58

    Google Scholar 

  • Bello RA, Robinson CW, Moo-Young M (1985b) Gas holdup and overall volumetric oxygen transfer coefficient in airlift contactors. Biotechnol Bioeng 27(3):369–381

    CAS  PubMed  Google Scholar 

  • Berberoğlu H, Jay J, Pilon L (2008) Effect of nutrient media on photobiological hydrogen production by Anabaena variabilis ATCC 29413. Int J Hydrogen Energy 33(4):1172–1184

    Google Scholar 

  • Borodin VB et al (2000) Hydrogen production by Anabaena variabilis PK84 under simulated outdoor conditions. Biotechnol Bioeng 69(5):478–485

    CAS  PubMed  Google Scholar 

  • Brentner LB, Peccia J, Zimmerman JB (2010) Challenges in developing biohydrogen as a sustainable energy source: implications for a research agenda. Environ Sci Technol 44(7):2243–2254

    CAS  PubMed  Google Scholar 

  • Cañedo JCG, Lizárraga GLL (2016) Considerations for photobioreactor design and operation for mass cultivation of microalgae. Algae-organisms for imminent biotechnology. InTech

    Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22(6):1490–1506

    CAS  PubMed  Google Scholar 

  • Cheah WY et al (2015) Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour Technol 184:190–201

    CAS  PubMed  Google Scholar 

  • Chisti M, Moo-Young M (1987) Airlift reactors: characteristics, applications and design considerations. Chem Eng Commun 60(1–6):195–242

    CAS  Google Scholar 

  • Dasgupta CN et al (2010) Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production. Int J Hydrogen Energy 35(19):10218–10238

    CAS  Google Scholar 

  • Eroğlu İ et al (2008) Hydrogen production by Rhodobacter sphaeroides O.U.001 in a flat plate solar bioreactor. Int J Hydrogen Energy 33(2):531–541

    Google Scholar 

  • Esquível MG et al (2011) Efficient H2 production via Chlamydomonas reinhardtii. Trends Biotechnol 29(12):595–600

    PubMed  Google Scholar 

  • Esteves-Ferreira AA et al (2017) Cyanobacterial nitrogenases: phylogenetic diversity, regulation and functional predictions. Genet Mol Biol 40:261–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes BD et al (2014) Characterization of split cylinder airlift photobioreactors for efficient microalgae cultivation. Chem Eng Sci 117:445–454

    CAS  Google Scholar 

  • Ferreira AF et al (2012) Biological hydrogen production by Anabaena sp–yield, energy and CO2 analysis including fermentative biomass recovery. Int J Hydrogen Energy 37(1):179–190

    CAS  Google Scholar 

  • Geada P et al (2017) Chapter 13—microalgal biomass cultivation. In: Rastogi RP, Madamwar D, Pandey A (eds) Algal green chemistry. Elsevier, Amsterdam, pp 257–284

    Google Scholar 

  • Guo X, Yao L, Huang Q (2015) Aeration and mass transfer optimization in a rectangular airlift loop photobioreactor for the production of microalgae. Bioresour Technol 190:189–195

    CAS  PubMed  Google Scholar 

  • Guo Z, Li Y, Guo H (2016) Characterization of H2 photoproduction by marine green alga Tetraselmis subcordiformis integrated with an alkaline fuel cell. Biotech Lett 38(3):435–440

    CAS  Google Scholar 

  • Heyer H, Stal L, Krumbein WE (1989) Simultaneous heterolactic and acetate fermentation in the marine cyanobacterium Oscillatoria limosa incubated anaerobically in the dark. Arch Microbiol 151(6):558–564

    CAS  Google Scholar 

  • Hossain MA, Jewaratnam J, Ganesan P (2016) Prospect of hydrogen production from oil palm biomass by thermochemical process—a review. Int J Hydrogen Energy 41(38):16637–16655

    CAS  Google Scholar 

  • Hu J (2021) Chapter 4—comparisons of biohydrogen production technologies and processes. In: Zhang Q et al (eds) Waste to renewable biohydrogen. Academic Press, pp 71–107

    Google Scholar 

  • Huang Q et al (2010) CFD simulation of hydrodynamics and mass transfer in an internal airlift loop reactor using a steady two-fluid model. Chem Eng Sci 65(20):5527–5536

    CAS  Google Scholar 

  • Janssen M et al (2003) Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng 81(2):193–210

    CAS  PubMed  Google Scholar 

  • Jeffries TW, Timourian H, Ward RL (1978) Hydrogen production by Anabaena cylindrica: effects of varying ammonium and ferric ions, pH, and light. Appl Environ Microbiol 35(4):704–710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiménez-Llanos J et al (2020) Sustainable biohydrogen production by Chlorella sp microalgae: a review. Int J Hydrogen Energy 45(15):8310–8328

    Google Scholar 

  • Karemore A et al (2015) Photobioreactors for improved algal biomass production: analysis and design considerations. Springer, Cham, pp 103–124

    Google Scholar 

  • Kavitha S et al (2017a) Low temperature thermochemical mediated energy and economically efficient biological disintegration of sludge: simulation and prediction studies for anaerobic biodegradation. Chem Eng J 317:481–492

    CAS  Google Scholar 

  • Kavitha S et al (2017b) Liquefaction of food waste and its impacts on anaerobic biodegradability, energy ratio and economic feasibility. Appl Energy 208:228–238

    CAS  Google Scholar 

  • Khetkorn W et al (2017) Microalgal hydrogen production—a review. Bioresour Technol 243:1194–1206

    CAS  PubMed  Google Scholar 

  • Kossalbayev BD et al (2020) Determination of the potential of cyanobacterial strains for hydrogen production. Int J Hydrogen Energy 45(4):2627–2639

    CAS  Google Scholar 

  • Krichnavaruk S, Powtongsook S, Pavasant P (2007) Enhanced productivity of Chaetoceros calcitrans in airlift photobioreactors. Bioresour Technol 98(11):2123–2130

    CAS  PubMed  Google Scholar 

  • Kruse O, Hankamer B (2010) Microalgal hydrogen production. Curr Opin Biotechnol 21(3):238–243

    CAS  PubMed  Google Scholar 

  • Kumar G et al (2020) Thermochemical conversion routes of hydrogen production from organic biomass: processes, challenges and limitations. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-020-01127-9

    Article  Google Scholar 

  • Lazaro CZ, Varesche MBA, Silva EL (2015) Effect of inoculum concentration, pH, light intensity and lighting regime on hydrogen production by phototrophic microbial consortium. Renew Energy 75:1–7

    CAS  Google Scholar 

  • López CG et al (2009) Utilization of the cyanobacteria Anabaena sp ATCC 33047 in CO2 removal processes. Bioresour Technol 100(23):5904–5910

    Google Scholar 

  • Markov SA et al (1993) A hollow fibre photobioreactor for continuous production of hydrogen by immobilized cyanobacteria under partial vacuum. Int J Hydrogen Energy 18(11):901–906

    CAS  Google Scholar 

  • Masukawa H, Mochimaru M, Sakurai H (2002) Hydrogenases and photobiological hydrogen production utilizing nitrogenase system in cyanobacteria. Int J Hydrogen Energy 27(11):1471–1474

    CAS  Google Scholar 

  • Masukawa H et al (2010) Site-directed mutagenesis of the Anabaena sp Strain PCC 7120 nitrogenase active site to increase photobiological hydrogen production. Appl Environ Microbiol 76(20):6741–6750

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masukawa H et al (2014) Sustained photobiological hydrogen production in the presence of N2 by nitrogenase mutants of the heterocyst-forming cyanobacterium Anabaena. Int J Hydrogen Energy 39(34):19444–19451

    CAS  Google Scholar 

  • Moezelaar R, Bijvank SM, Stal LJ (1996) Fermentation and sulfur reduction in the mat-building cyanobacterium Microcoleus chthonoplastes. Appl Environ Microbiol 62(5):1752–1758

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mona S et al (2020) Green technology for sustainable biohydrogen production (waste to energy): a review. Sci Total Environ 728:138481

    CAS  PubMed  Google Scholar 

  • Nagarajan D et al (2017) Recent insights into biohydrogen production by microalgae—from biophotolysis to dark fermentation. Bioresour Technol 227:373–387

    CAS  Google Scholar 

  • Nayak BK, Roy S, Das D (2014) Biohydrogen production from algal biomass (Anabaena sp PCC 7120) cultivated in airlift photobioreactor. Int J Hydrogen Energy 39(14):7553–7560

    CAS  Google Scholar 

  • Ohta Y, Frank J, Mitsui A (1981) Hydrogen production by marine photosynthetic bacteria: effect of environmental factors and substrate specificity on the growth of a hydrogen-producing marine photosynthetic bacterium, Chromatium sp Miami PBS 1071. Int J Hydrogen Energy 6(5):451–460

    CAS  Google Scholar 

  • Ojha A, Al-Dahhan M (2018) Local gas holdup and bubble dynamics investigation during microalgae culturing in a split airlift photobioreactor. Chem Eng Sci 175:185–198

    CAS  Google Scholar 

  • Oncel S, Kose A (2014) Comparison of tubular and panel type photobioreactors for biohydrogen production utilizing Chlamydomonas reinhardtii considering mixing time and light intensity. Bioresour Technol 151:265–270

    CAS  PubMed  Google Scholar 

  • Otsuki T et al (1998) Hydrogen production by a floating-type photobioreactor. Biohydrogen. Springer, pp 369–374

    Google Scholar 

  • Pegallapati AK, Nirmalakhandan N (2013) Internally illuminated photobioreactor for algal cultivation under carbon dioxide-supplementation: performance evaluation. Renew Energy 56:129–135

    CAS  Google Scholar 

  • Phlips E, Mitsui A (1983) Role of light intensity and temperature in the regulation of hydrogen photoproduction by the marine cyanobacterium Oscillatoria sp strain Miami BG7. Appl Environ Microbiol 45(4):1212–1220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prabina BJ, Kumar K (2010) Studies on the optimization of cultural conditions for maximum hydrogen production by selected cyanobacteria. J Agric Biol Sci 5(5):22–31

    Google Scholar 

  • Rippka R et al (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111(1):1–61

    Google Scholar 

  • Rosenbaum M, Schröder U (2010) Photomicrobial solar and fuel cells. Electroanalysis 22(7–8):844–855

    CAS  Google Scholar 

  • Sarat Chandra T et al (2017) Growth and biochemical characteristics of an indigenous freshwater microalga, Scenedesmus obtusus, cultivated in an airlift photobioreactor: effect of reactor hydrodynamics, light intensity, and photoperiod. Bioprocess Biosyst Eng 40(7):1057–1068

    CAS  PubMed  Google Scholar 

  • Schenk PM et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res 1(1):20–43

    Google Scholar 

  • Schütz K et al (2004) Cyanobacterial H2 production—a comparative analysis. Planta 218(3):350–359

    PubMed  Google Scholar 

  • Serebryakova LT, Sheremetieva ME, Lindblad P (2000) H2-uptake and evolution in the unicellular cyanobacterium Chroococcidiopsis thermalis CALU 758. Plant Physiol Biochem 38(6):525–530

    CAS  Google Scholar 

  • Sivaramakrishnan R et al (2021) Insights on biological hydrogen production routes and potential microorganisms for high hydrogen yield. Fuel 291:120136

    CAS  Google Scholar 

  • Skjånes K et al (2016) Design and construction of a photobioreactor for hydrogen production, including status in the field. J Appl Phycol 28(4):2205–2223

    PubMed  PubMed Central  Google Scholar 

  • Su Z et al (2010) An effective device for gas–liquid oxygen removal in enclosed microalgae culture. Appl Biochem Biotechnol 160(2):428–437

    CAS  PubMed  Google Scholar 

  • Tiwari A, Pandey A (2012) Cyanobacterial hydrogen production—a step towards clean environment. Int J Hydrogen Energy 37(1):139–150

    CAS  Google Scholar 

  • Touloupakis E et al (2016) Hydrogen production by immobilized Synechocystis sp PCC 6803. Int J Hydrogen Energy 41(34):15181–15186

    CAS  Google Scholar 

  • Tsygankov AA et al (1998a) An automated helical photobioreactor incorporating cyanobacteria for continuous hydrogen production. Biohydrogen. Springer, pp 431–440

    Google Scholar 

  • Tsygankov AA et al (1998b) Acetylene reduction and hydrogen photoproduction by wild-type and mutant strains of Anabaena at different CO2 and O2 concentrations. FEMS Microbiol Lett 167(1):13–17

    CAS  Google Scholar 

  • Tsygankov A et al (2002) Hydrogen production by cyanobacteria in an automated outdoor photobioreactor under aerobic conditions. Biotechnol Bioeng 80(7):777–783

    CAS  PubMed  Google Scholar 

  • Vargas SR et al (2018) Optimization of biomass and hydrogen production by Anabaena sp (UTEX 1448) in nitrogen-deprived cultures. Biomass Bioenergy 111:70–76

    CAS  Google Scholar 

  • Volgusheva A et al (2015) Hydrogen photoproduction in green algae Chlamydomonas reinhardtii under magnesium deprivation. RSC Adv 5(8):5633–5637

    CAS  Google Scholar 

  • Weber J et al (2014) Biotechnological hydrogen production by photosynthesis. Eng Life Sci 14(6):592–606

    CAS  Google Scholar 

  • Xiaogang H et al (2020) Microalgal growth coupled with wastewater treatment in open and closed systems for advanced biofuel generation. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-020-01061-w

    Article  Google Scholar 

  • Xue S et al (2013) A novel photobioreactor structure using optical fibers as inner light source to fulfill flashing light effects of microalgae. Bioresour Technol 138:141–147

    CAS  PubMed  Google Scholar 

  • Yeager CM et al (2011) Evaluation of experimental conditions that influence hydrogen production among heterocystous Cyanobacteria. Int J Hydrogen Energy 36(13):7487–7499

    CAS  Google Scholar 

  • Yoon JH et al (2002) High cell density culture of Anabaena variabilis using repeated injections of carbon dioxide for the production of hydrogen. Int J Hydrogen Energy 27(11):1265–1270

    CAS  Google Scholar 

  • Zürrer H, Bachofen R (1982) Aspects of growth and hydrogen production of the photosynthetic bacterium Rhodospirillum rubrum in continuous culture. Biomass 2(3):165–174

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Chemical Engineering of the University of Sistan & Baluchestan, Zahedan and Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran. The authors would like to thank Professor Rahbar Rahimi for his help with bioreactor design.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

ZZ methodology, data collection, preliminary analysis, writing, original draft. PM methodology, data collection, preliminary analysis. AT writing, review, editing. MHM investigation, writing, review, data curation, editing, visualization, formal analysis, conceptualization, methodology, supervision.

Corresponding author

Correspondence to Mohammad Hossein Morowvat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarei, Z., Malekshahi, P., Trzcinski, A.P. et al. Effect of hydrodynamic parameters on hydrogen production by Anabaena sp. in an internal-loop airlift photobioreactor. Braz. J. Chem. Eng. 40, 379–388 (2023). https://doi.org/10.1007/s43153-022-00245-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43153-022-00245-3

Keywords

Navigation