1 Introduction and results

The initial problem in the theory of weighted Hardy inequalities was the one of characterizing the positive functions w, v, the weights, such that

$$\begin{aligned} \left( \int \limits _a^b\left( \int \limits _a^xf\right) ^qw(x) \text {d}x\right) ^{\frac{1}{q}}\le C\left( \int \limits _a^bf^pv\right) ^{\frac{1}{p}} \end{aligned}$$
(1.1)

holds for all positive measurable function f with a positive constant C independent of f, which means that the Hardy operator \(Tf(x)=\int _a^xf\) is bounded from \(L^p(v)\) to \(L^q(w)\).

This problem was solved by Talenti [31], Muckenhoupt [23] and Bradley [4] in the case \(p\le q\), by Mazja [22] when \(1\le q<p\), Sinnamon [27, 28] for \(0<q<1<p\) and Sinnamon and Stepanov [29] for \(0<q<1=p\). Their results are the following ones.

Theorem A

([4, 22, 23, 29, 31]) Let \(1<q<\infty \), \(1\le p<\infty \) and let w, v be positive measurable functions on (ab), where \(-\infty \le a<b\le \infty \). Then there exists a positive constant C such that inequality (1.1) holds for all nonnegative functions f if and only if

  1. (i)

    in the case \(p\le q\),

    $$\begin{aligned} B_1\equiv \sup _{s\in (a,b)}\left( \int \limits _s^bw\right) ^{\frac{1}{q}}\Vert \chi _{(a,s)}v^{-\frac{1}{p}}\Vert _{p'}<\infty , \end{aligned}$$

    and the best constant C in inequality (1.1) verifies \(B_1\le C\le K(q,p)B_1\), where \(K(q,p)=\left( 1+\frac{q}{p'}\right) ^{\frac{1}{q}}\left( 1+\frac{p'}{q}\right) ^{\frac{1}{p'}}\) if \(p>1\) and \(K(q,1)=1\);

  2. (ii)

    in the case \(q<p\),

    $$\begin{aligned} B_2\equiv \left( \int \limits _a^b\left( \int \limits _t^bw\right) ^{\frac{r}{q}}\Vert \chi _{(a,t)}v^{-\frac{1}{p}}\Vert _{p'}^{\frac{rp'}{q'}}v^{1-p'}(t)\text {d}t\right) ^{\frac{1}{r}}<\infty , \end{aligned}$$

    where \(\frac{1}{r}=\frac{1}{q}-\frac{1}{p}\), and the best constant C in inequality (1.1) verifies \(q\left( \frac{p'}{r}\right) ^{\frac{1}{q'}}B_2\le C\le q^{\frac{1}{q}}(p')^{\frac{1}{q'}}B_2\).

Weighted weak-type inequalities for T were also studied. By a weighted weak-type (pq) inequality for T we mean the boundedness of T from \(L^p(v)\) to \(L^{q,\infty }(w)\), where

$$\begin{aligned} L^{q,\infty }(w)=\left\{ f: \Vert f\Vert _{q,\infty ;w}=\sup _{\lambda>0}\lambda \left( \int \limits _{\{ x: \vert f(x)\vert >\lambda \}}w\right) ^{\frac{1}{q}}<\infty \right\} . \end{aligned}$$

Really, weighted weak-type inequalities have been studied for the modified Hardy operators \(T_{\beta }f(x)=\beta (x)\int _a^xf\). This kind of inequalities are technically more difficult than the strong-type ones. In fact, the problem of characterizing the boundedness of \(T_{\beta }\) from \(L^p(v)\) to \(L^{q,\infty }(w)\) in the case \(q<p\) is not completely solved yet.

The first results on weighted weak-type inequalities for modified Hardy operators are due to Andersen and Muckenhoupt [2], who worked with \(\beta (x)=x^{\alpha }\), \(\alpha \in {\mathbb {R}}\), on \((0,\infty )\). The weighted weak-type inequalities with more general functions \(\beta \) were characterized in [6, 20, 21]. The following two theorems contain such characterizations.

Theorem B

([6, 21]) Let \(1\le p\le q<\infty \) and \(\beta \), v and w be positive measurable functions on (ab), where \(-\infty \le a<b\le \infty \). Then there exists a positive constant C such that inequality

$$\begin{aligned} \left\| \beta (x)\left( \int \limits _a^xf\right) \right\| _{q,\infty ;w}\le C\Vert f\Vert _{p, v} \end{aligned}$$
(1.2)

holds for all nonnegative functions f if and only if

$$\begin{aligned} B_3\equiv \sup _{a<s<b}\Vert \beta \chi _{(s,b)}\Vert _{q,\infty ;w}\Vert \chi _{(a,s)}v^{-\frac{1}{p}}\Vert _{p'}<\infty , \end{aligned}$$
(1.3)

and the best constant C in inequality (1.2) verifies \(B_3\le C\le 4B_3\).

Theorem C

([20]) Let \(0<q<p<\infty \) with \(p\ge 1\) and \(\beta \), v and w be positive measurable functions on (ab), where \(-\infty \le a<b\le \infty \) and \(\beta \) is a monotone function. Then there exists a positive constant C such that inequality (1.2) holds for all nonnegative functions f if and only if the function \(\Psi \) defined on (ab) by

$$\begin{aligned} \Psi (x)=\sup _{b>c>x}\left[ \left( \inf _{y\in (x,c)}\beta (y)\right) \left( \int \limits _x^cw\right) ^{\frac{1}{p}}\right] \Vert \chi _{(a,x)}v^{-\frac{1}{p}}\Vert _{p'} \end{aligned}$$

belongs to \(L^{r,\infty }(w)\), where \(\frac{1}{r}=\frac{1}{q}-\frac{1}{p}\). In this case, the best constant C in inequality (1.2) verifies \(2^{-\frac{1}{p}}\Vert \Psi \Vert _{r,\infty ;w}\le C\le (1+4^p)^{\frac{1}{q}}\Vert \Psi \Vert _{r,\infty ;w}\).

It is worth noting that weighted weak-type inequalities for modified linear or sublinear operators are included in the topic of weighted mixed weak-type inequalities, which goes back to the work of Andersen and Muckenhoupt [2] and have been studied by several authors (see [5, 16,17,18,19, 21, 26]).

Two new kinds of Hardy inequalities are the weighted iterated and bilinear Hardy inequalities. On one hand, weighted iterated Hardy inequalities are of the form

$$\begin{aligned} \left\| \left( \int \limits _a^x\left( \int \limits _a^tf\right) ^ru(t) \text {d}t\right) ^{\frac{1}{r}}\right\| _{q,w}\le C\Vert f\Vert _{p, v} \end{aligned}$$
(1.4)

or

$$\begin{aligned} \left\| \left( \int \limits _a^x\left( \int \limits _t^xf\right) ^ru(t) \text {d}t\right) ^{\frac{1}{r}}\right\| _{q,w}\le C\Vert f\Vert _{p, v}, \end{aligned}$$
(1.5)

and have been studied by many authors [3, 8,9,10,11, 24, 25, 30].

On the other hand, weighted strong-type bilinear Hardy inequalities

$$\begin{aligned} \left\| \left( \int \limits _a^xf\right) \left( \int \limits _a^xg\right) \right\| _{q,w}\le C\Vert f\Vert _{p_1, v_1}\Vert g\Vert _{p_2, v_2} \end{aligned}$$
(1.6)

were characterized in [1] and some of their generalizations and variants have also been studied later (see, for instance, [12,13,14, 30]).

Recently, the authors have characterized in [7] the weights \(w, v_1, v_2\) for which the weighted weak-type bilinear modified Hardy inequality

$$\begin{aligned} \left\| \beta (x)\left( \int \limits _a^xf\right) \left( \int \limits _a^xg\right) \right\| _{q,\infty ;w}\le C\Vert f\Vert _{p_1, v_1}\Vert g\Vert _{p_2, v_2} \end{aligned}$$
(1.7)

holds in the cases \(0<q<\infty \), \(1\le p_1, p_2<\infty \), \(q<p_1\), \(q<p_2\) and \(\frac{1}{q}\le \frac{1}{p_1}+\frac{1}{p_2}\). In this paper, we will complete the characterization of inequality (1.7) solving the problem for the case \(\frac{1}{q}>\frac{1}{p_1}+\frac{1}{p_2}\).

As we showed in [7], inequality (1.7) is equivalent to two weighted weak-type iterated modified Hardy inequalities of the form

$$\begin{aligned} \left\| \alpha (x)\left\| u(t)\chi _{(a,x)}(t)\int \limits _a^t f\right\| _r\right\| _{q,\infty ;w}\le C \Vert f \Vert _{p,v}, \end{aligned}$$
(1.8)

where \(q<p\). Therefore, we will solve the problem of the characterization of (1.8) in the case \(q<p\) and then we will get immediately the characterization of (1.7). It is worth noting that the good weights for (1.8) to hold in the case \(p\le q\) were characterized by the authors in [7].

In order to state the results for the iterated inequality (1.8), we define two functions \(\Phi , \Psi \) on (ab) by

$$\begin{aligned} \Phi (x)=\sup _{a<e<c<x<d<b} \left( \inf _{t\in (c,d)} \alpha (t) \Vert \chi _{(e,t)}u\Vert _r\right) \left( \int \limits _c^d w \right) ^{\frac{1}{p}}\Vert \chi _{(a,e)}v^{-\frac{1}{p}}\Vert _{p'} \end{aligned}$$

and

$$\begin{aligned} \begin{array}{rl} \displaystyle \Psi (x)=\displaystyle \sup _{a<c<x<d<b} &{}\displaystyle \left( \inf _{t\in (c,d)} \alpha (t) \right) \left( \int \limits _c^d w \right) ^{\frac{1}{p}}\\ &{}\displaystyle \times \left( \int \limits _a^c\left( \int \limits _t^cu^r\right) ^{\frac{\theta }{r}}\left( \int \limits _a^tv^{1-p'}\right) ^{\frac{\theta }{r'}}v^{1-p'} (t)\text {d}t\right) ^{\frac{1}{\theta }}, \end{array} \end{aligned}$$

where \(\frac{1}{\theta }=\frac{1}{r}-\frac{1}{p}\).

The results are the following ones.

Theorem 1

Let pqr with \(0<q<p\), \(1\le p<\infty \) and \(p\le r\le \infty \). Let \(\alpha \) be a positive function in (ab) such that

$$\begin{aligned} \inf _{t\in (\rho , \nu )}\alpha (t)>0 \end{aligned}$$
(1.9)

for all \(\rho , \nu \) with \(a<\rho<\nu < b\). Let us suppose that for all \(e\in (a,b)\) and all measurable sets \(\Omega \subset (e,b)\), the function \(\alpha (t) \Vert \chi _{(e,t)}u\Vert _r\) verifies

$$\begin{aligned} \inf _{t\in \Omega } \{\alpha (t) \Vert \chi _{(e,t)}u\Vert _r \}= \inf _{t\in (\rho _1,\rho _2)} \{\alpha (t) \Vert \chi _{(e,t)}u\Vert _r \}, \end{aligned}$$
(1.10)

where \(\rho _1=\inf \Omega \) and \(\rho _2=\sup \Omega \). Then, (1.8) holds for all nonnegative functions f if and only if \(\Phi \in L^{\eta , \infty }(w)\), where \(\frac{1}{\eta }=\frac{1}{q} - \frac{1}{p}\). Moreover, the best constant C in inequality (1.8) verifies

$$\begin{aligned} 2^{\frac{-1}{p}}\Vert \Phi \Vert _{\eta ,\infty ; w}\le C\le (\Vert \Phi \Vert _{\eta ,\infty ; w}^{\eta }+2^p4^{(1+\frac{1}{r})p}+2^p4^{\frac{p}{r}}K(r,p)^p)^{\frac{1}{q}} \end{aligned}$$

if \(r<\infty \) and

$$\begin{aligned} 2^{\frac{-1}{p}}\Vert \Phi \Vert _{\eta ,\infty ; w}\le C\le (2^{\eta }\Vert \Phi \Vert _{\eta ,\infty ;w}^{\eta }+8^p+2^p)^{\frac{1}{q}} \end{aligned}$$

if \(r=\infty \).

Theorem 2

Let pqr with \(0<q<p\) and \(1<r<p<\infty \). Let \(\alpha \) be a positive monotone function in (ab) and let us suppose that (1.10) holds. Then, the weighted iterated weak-type modified Hardy inequality (1.8) holds for all nonnegative functions f if and only if \(\Phi ,\Psi \in L^{\eta , \infty }(w)\), where \(\frac{1}{\eta }=\frac{1}{q} - \frac{1}{p}\). Moreover, the best constant C in (1.8) verifies

$$\begin{aligned} \begin{array}{rl} &{}\displaystyle \max \{2^{\frac{-1}{p}}\Vert \Phi \Vert _{\eta ,\infty ; w}, 2^{\frac{-1}{p}}r\left( \frac{p'}{\theta }\right) ^{\frac{1}{r'}}\Vert \Psi \Vert _{\eta ,\infty ;w}\}\le C\\ &{}\displaystyle \le (\Vert \Phi \Vert _{\eta ,\infty , w}^{\eta }+\Vert \Psi \Vert _{\eta ,\infty ; w}^{\eta }+2^p4^{(1+\frac{1}{r})p}+2^p4^{\frac{p}{r}}C_{r,p}^p)^{\frac{1}{q}}, \end{array} \end{aligned}$$

where \(C_{r,p}=r^{\frac{1}{r}}(p')^{\frac{1}{r'}}\).

Observe that condition (1.10) holds if the function \(\alpha (t) \Vert \chi _{(e,t)}u\Vert _r\) is monotone or increases in an interval \((e,x_0)\) and decreases in \((x_0,b)\). In the same way, condition (1.9) holds, for instance, if \(\alpha \) is a positive monotone function.

As consequences of Theorems 1 and 2 we get the results for the weighted weak-type bilinear modified Hardy inequalities. In order to state them, we define the next functions on (ab):

$$\begin{aligned} \alpha _i(x)=\sup _{c>x}\left( \inf _{(x,c)}\beta \right) \left( \int \limits _x^cw\right) ^{\frac{1}{p_i}}, \quad i=1,2, \end{aligned}$$
$$\begin{aligned} \begin{array}{rl} \Phi _1(x)=\displaystyle \sup _{a<e<c<x<d<b}&{}\displaystyle \left( \inf _{t\in (c,d)} \alpha _1 (t) \Vert \chi _{(e,t)}v_1^{\frac{-1}{p_1}}\Vert _{p_1'}\right) \\ &{}\displaystyle \times \left( \int \limits _c^d w \right) ^{\frac{1}{p_2}}\Vert \chi _{(a,e)}v_2^{-\frac{1}{p_2}}\Vert _{p_2'}, \end{array} \end{aligned}$$
$$\begin{aligned} \begin{array}{rl} \Phi _2(x)=\displaystyle \sup _{a<e<c<x<d<b} &{}\displaystyle \left( \inf _{t\in (c,d)} \alpha _2 (t) \Vert \chi _{(e,t)}v_2^{\frac{-1}{p_2}}\Vert _{p_2'}\right) \\ &{}\displaystyle \times \left( \int \limits _c^d w \right) ^{\frac{1}{p_1}}\Vert \chi _{(a,e)}v_1^{-\frac{1}{p_1}}\Vert _{p_1'}, \end{array} \end{aligned}$$
$$\begin{aligned} \begin{array}{rl} \displaystyle \Psi _1(x)=\sup _{a<c<x<d<b}&{}\displaystyle \left( \inf _{t\in (c,d)} \alpha _1 (t) \right) \left( \int \limits _c^d w \right) ^{\frac{1}{p_2}}\\ &{}\displaystyle \times \left( \int \limits _a^c\left( \int \limits _t^cv_1^{1-p_1'}\right) ^{\frac{\theta }{p_1'}} \left( \int \limits _a^tv_2^{1-p_2'}\right) ^{\frac{\theta }{p_1}}v_2^{1-p_2'}(t)\text {d}t\right) ^{\frac{1}{\theta }}, \end{array} \end{aligned}$$
$$\begin{aligned} \begin{array}{rl} \displaystyle \Psi _2(x)=\sup _{a<c<x<d<b}&{}\displaystyle \left( \inf _{t\in (c,d)} \alpha _2 (t) \right) \left( \int \limits _c^d w \right) ^{\frac{1}{p_1}}\\ &{}\displaystyle \times \left( \int \limits _a^c\left( \int \limits _t^cv_2^{1-p_2'}\right) ^{\frac{\theta }{p_2'}} \left( \int \limits _a^tv_1^{1-p_1'}\right) ^{\frac{\theta }{p_2}}v_1^{1-p_1'}(t)\text {d}t\right) ^{\frac{1}{\theta }}, \end{array} \end{aligned}$$

where \(\frac{1}{\theta }=\frac{1}{p_2'}-\frac{1}{p_1}=\frac{1}{p_1'}-\frac{1}{p_2}=1-\frac{1}{p_2}-\frac{1}{p_1}\).

The theorems read as follows.

Theorem 3

Let \(0<q<p_1,p_2<\infty \), \(p_1,p_2\ge 1\), \(\frac{1}{p_1}+\frac{1}{p_2}<\frac{1}{q}\) and \(p_2\le p_1'\). Let \(w, v_1, v_2, \beta \) be positive measurable functions on (ab) with \(\beta \) monotone. Assume that the functions \(\alpha _i\) verify (1.9) and that for all \(e\in (a,b)\) and all measurable sets \(\Omega \subset (e,b)\), the functions \(\alpha _i(t) \Vert \chi _{(e,t)}v_i^{\frac{-1}{p_i}}\Vert _{p_i'}\), i=1,2, verify (1.10). Then the weighted weak-type bilinear modified Hardy inequality (1.7) holds if and only if \(\Phi _1, \Phi _2\in L^{\eta ,\infty }(w)\), where \(\frac{1}{\eta }=\frac{1}{q}-\frac{1}{p_1}-\frac{1}{p_2}\).

Theorem 4

Let \(0<q<p_1,p_2<\infty \), \(p_1,p_2\ge 1\), \(\frac{1}{p_1}+\frac{1}{p_2}<\frac{1}{q}\) and \(p_2> p_1'\). Let \(w, v_1, v_2, \beta \) be positive measurable functions on (ab) with \(\beta \) monotone. Assume that the functions \(\alpha _i\) are monotone and that for all \(e\in (a,b)\) and all measurable sets \(\Omega \subset (e,b)\), the functions \(\alpha _i(t) \Vert \chi _{(e,t)}v_i^{\frac{-1}{p_i}}\Vert _{p_i'}\), i=1,2, verify (1.10). Then the weighted weak-type bilinear modified Hardy inequality (1.7) holds if and only if \(\Phi _1, \Phi _2, \Psi _1, \Psi _2\in L^{\eta ,\infty }(w)\), where \(\frac{1}{\eta }=\frac{1}{q}-\frac{1}{p_1}-\frac{1}{p_2}\).

The proofs of Theorems 1 and 2 are included in Sects. 2 and 3, respectively, while Sect. 4 contains the proofs of Theorems 2 and 4.

2 Proof of Theorem 1

First of all, let us prove the necessity of the condition. Assume that the weak-type inequality (1.8) holds and let us see that \(\Phi \in L^{\eta ,\infty }(w)\). Let \(\lambda >0\) and \(S_\lambda =\{x\in (a,b):\Phi (x)>\lambda \}\). We will prove that

$$\begin{aligned} \lambda \left( \int \limits _{S_\lambda }w\right) ^{\frac{1}{\eta }} \le 2^{\frac{1}{p}}C, \end{aligned}$$

where C is the constant in (1.8). Let K be a compact subset of \(S_\lambda \). For all \(z\in K\), \(z\in S_\lambda \) and then \(\Phi (z)>\lambda \). This implies the existence of \(c_z, d_z, e_z\) with \(e_z<c_z<d_z\) such that \(z\in (c_z,d_z)\) and

$$\begin{aligned} \inf _{t\in (c_z,d_z)}\left[ \alpha (t)\Vert \chi _{(e_z,t)}u\Vert _r\right] \left( \int \limits _{c_z}^{d_z}w\right) ^{\frac{1}{p}}\left( \int \limits _a^{e_z}v^{1-p'}\right) ^{\frac{1}{p'}}>\lambda . \end{aligned}$$
(2.1)

Then, \(K\subset \bigcup _{z\in K} (c_z, d_z)\). Since K is compact, there are \((c_{z_1},d_{z_1}), (c_{z_2},d_{z_2})\dots \) \((c_{z_N}, d_{z_N})\) such that \(K\subset \bigcup _{j=1}^N (c_{z_j},d_{z_j})\). We can also suppose that

$$\begin{aligned} \sum _{j=1}^N \chi _{(c_{z_j},d_{z_j})}\le 2 \chi _{\cup _{j=1}^N (c_{z_j}, d_{z_j})}. \end{aligned}$$

Let, for all \(j\in \{1, 2, \ldots , N\}\) and \(x\in (a,b)\),

$$\begin{aligned} f_j(x)=\left( \inf _{y\in (c_{z_j},d_{z_j})}\left[ \alpha (y)\Vert \chi _{(e_{z_j},y)}u\Vert _r\right] \left( \int \limits _a^{e_{z_j}}v^{1-p'}\right) \right) ^{-p}v(x)^{-p'}\chi _{(a,e_{z_j})}(x) \end{aligned}$$

and

$$\begin{aligned} f = \left( \sum _{j=1}^N f_j\right) ^{\frac{1}{p}}. \end{aligned}$$

Let \(\varepsilon \) with \(0<\varepsilon <1\). Let us see that

$$\begin{aligned} \bigcup _{j=1}^N (c_{z_j},d_{z_j}) \subset \left\{ x \in (a,b):\alpha (x)\left\| \chi _{(a,x)}(t)u(t)\int \limits _a^t f\right\| _r > \varepsilon \right\} . \end{aligned}$$
(2.2)

Indeed, if \(z\in (c_{z_j},d_{z_j})\), then

$$\begin{aligned} \begin{array}{rl} \displaystyle \alpha (z)\left\| \chi _{(a,z)}(t)u(t)\int \limits _a^t f \right\| _r&{}\displaystyle \ge \alpha (z)\left\| \chi _{(e_{z_j},z)}(t)u(t)\int \limits _a^t f \right\| _r\\ {} &{}\\ &{}\displaystyle \ge \alpha (z) \Vert \chi _{(e_{z_j}, z)}(t) u(t)\Vert _r \int \limits _a^{e_{z_j}}f\\ {} &{}\\ &{}\displaystyle \ge \alpha (z) \Vert \chi _{(e_{z_j}, z)}(t) u(t)\Vert _r \int \limits _a^{e_{z_j}}f_j^{\frac{1}{p}}\\ {} &{}\\ &{}\displaystyle =\frac{\alpha (z)\Vert \chi _{(e_{z_j}, z)}(t)u(t)\Vert _r \displaystyle \int \limits _a^{e_{z_j}}v^{-\frac{p'}{p}}}{\displaystyle \inf _{y\in (c_{z_j},d_{z_j})}[\alpha (y)\Vert \chi _{(e_{z_j}, y)} u \Vert _r] \displaystyle \int \limits _a^{e_{z_j}}v^{1-p'}}\\ {} &{}\\ &{}\displaystyle \ge 1 > \varepsilon . \end{array} \end{aligned}$$

This proves (2.2). Applying the weak-type inequality,

$$\begin{aligned} \displaystyle \int \limits _{\cup _{j=1}^N (c_{z_j},d_{z_j})} w \le \displaystyle \int \limits _{\left\{ x \in (a,b):\alpha (x)\left\| \chi _{(a,x)}(t)u(t)\int \limits _a^t f\right\| _r > \varepsilon \right\} }w \displaystyle \le \frac{C^q}{\varepsilon ^q}\Vert f \Vert _{p,v}^q. \end{aligned}$$

Since the last inequality holds for all \(\varepsilon \) with \(0<\varepsilon <1\), letting \(\varepsilon \rightarrow 1^-\) we get

$$\begin{aligned} \int \limits _{\cup _{j=1}^N (c_{z_j},d_{z_j})} w\le C^q \Vert f \Vert _{p,v}^q. \end{aligned}$$

Let \(\gamma _j= \inf _{y\in (c_{z_j},d_{z_j})} [\alpha (y)\Vert \chi _{(e_{z_j},y)}u\Vert _r]\). Then the inequality above and (2.1) yield

$$\begin{aligned} \begin{array}{rl}&{} \displaystyle \int \limits _{\cup _{j=1}^N (c_{z_j},d_{z_j})} w\le C^q \displaystyle \left( \int \limits _a^b \left( \sum _{j=1}^N f_j(x)\right) v(x)\text{ d }x\right) ^{\frac{q}{p}} \\ {} &{}{}=\displaystyle C^q \left( \int \limits _a^b \sum _{j=1}^N \frac{v^{-p'}(x)\chi _{(a,e_{z_j})}(x)}{\gamma _j^p\left( \displaystyle \int _a^{e_{z_j}}v^{1-p'}\right) ^p}v(x)\text{ d }x\right) ^{\frac{q}{p}}\\ {} &{}{}\\ {} &{}{}=\displaystyle C^q \left( \sum _{j=1}^N \frac{1}{\gamma _j^p\left( \displaystyle \int _a^{e_{z_j}}v^{1-p'}\right) ^p}\int \limits _a^{e_{z_j}}v^{1-p'}\right) ^{\frac{q}{p}}\\ {} &{}{}=\displaystyle C^q \left( \sum _{j=1}^N \frac{1}{\gamma _j^p\left( \displaystyle \int _a^{e_{z_j}}v^{1-p'}\right) ^{p-1}}\right) ^{\frac{q}{p}}\le \displaystyle C^q\left( \sum _{j=1}^N \frac{1}{\lambda ^p} \int \limits _{c_{z_j}}^{d_{z_j}} w \right) ^{\frac{q}{p}}\\ {} &{}{}\\ {} &{}{}=\displaystyle \frac{C^q}{\lambda ^q} \left( \sum _{j=1}^N \int \limits _{c_{z_j}}^{d_{z_j}}w\right) ^{\frac{q}{p}}\le \frac{2^{\frac{q}{p}} C^q}{\lambda ^q}\left( \int \limits _{\cup _{j=1}^N(c_{z_j},d_{z_j})} w \right) ^{\frac{q}{p}}. \end{array} \end{aligned}$$

Then, we have

$$\begin{aligned} \int \limits _{\cup _{j=1}^N(c_{z_j},d_{z_j})} w \le \frac{2^{\frac{q}{p}} C^q}{\lambda ^q}\left( \int \limits _{\cup _{j=1}^N(c_{z_j},d_{z_j})} w \right) ^{\frac{q}{p}}, \end{aligned}$$

i.e.,

$$\begin{aligned} \lambda \left( \int \limits _{\cup _{j=1}^N(c_{z_j},d_{z_j})} w \right) ^{\frac{1}{\eta }}\le 2^{\frac{1}{p}}C. \end{aligned}$$

The last inequality implies

$$\begin{aligned} \lambda \left( \int \limits _K w \right) ^{\frac{1}{\eta }}\le 2^{\frac{1}{p}}C. \end{aligned}$$

Since the inequality above holds for all compact \(K\subset S_{\lambda }\), the regularity of the measure \(w(x)\text {d}x\) gives

$$\begin{aligned} \lambda \left( \int \limits _{S_{\lambda }}w \right) ^{\frac{1}{\eta }} \le 2^{\frac{1}{p}}C, \end{aligned}$$

what proves that \(\Vert \Phi \Vert _{\eta , \infty ; w}\le 2^{\frac{1}{p}}C\), as we wished to show.

Now, let us prove the sufficiency of the condition. Let f be a positive function such that \(\int _a^b f^p v=1\). Let \(\lambda >0\) and \(O_{\lambda }=\{x \in (a,b): \alpha (x)\Vert \chi _{(a,x)}(t)u(t)\int _a^t f \Vert _r>\lambda \}\). Then,

$$\begin{aligned} \int \limits _{O_\lambda } w = \int \limits _{O_\lambda \cap \{ x\in (a,b):\Phi (x)>\lambda ^{\frac{q}{\eta }}\}}w+\int \limits _{O_\lambda \cap \{ x\in (a,b):\Phi (x)\le \lambda ^{\frac{q}{\eta }}\}}w=I+II. \end{aligned}$$

The estimation of I is as follows:

$$\begin{aligned} \lambda ^q \int \limits _{O_\lambda \cap \{ x\in (a,b):\Phi (x)>\lambda ^{\frac{q}{\eta }}\}}w \le \sup _{z>0} z^\eta \int \limits _{O_\lambda \cap \{ x\in (a,b):\Phi (x)>z\}}w=\Vert \Phi \Vert _{\eta , \infty ; w}^\eta . \end{aligned}$$

Now, we will estimate II. Assume first that \(r<\infty \). Let us suppose that \(\int _a^b f <\infty \) and \(\int _a^b \left( \int _a^t f \right) ^ru^r(t)\text {d}t < \infty \), too. Let \(\{ x_k\}\) be the sequence defined by \(x_0=b\) and

$$\begin{aligned} \int \limits _a^{x_{k+1}}\left( \int \limits _a^tf\right) ^ru^r(t) \text {d}t=\int \limits _{x_{k+1}}^{x_k}\left( \int \limits _a^tf\right) ^ru^r(t) \text {d}t. \end{aligned}$$

The sequence \(\{ x_k\}\) decreases to a and verifies

$$\begin{aligned} \int \limits _a^{x_{k}}\left( \int \limits _a^tf\right) ^ru^r(t) \text {d}t=4\int \limits _{x_{k+2}}^{x_{k+1}}\left( \int \limits _a^tf\right) ^ru^r(t) \text {d}t \end{aligned}$$
(2.3)

for all k. Let \(E_k=O_\lambda \cap \{ x\in (a,b):\Phi (x)\le \lambda ^{\frac{q}{\eta }}\}\cap (x_{k+1},x_k)\). If \(x\in E_k\), we have

$$\begin{aligned} \begin{array}{rl} \lambda &{} <\displaystyle \alpha (x)\left( \int \limits _a^x\left( \int \limits _a^tf\right) ^ru^r(t) \text {d}t\right) ^{\frac{1}{r}}\\ &{}\le \displaystyle \alpha (x)\left( \int \limits _a^{x_k}\left( \int \limits _a^tf\right) ^ru^r(t) \text {d}t\right) ^{\frac{1}{r}}\\ &{} =\displaystyle 4^{\frac{1}{r}}\alpha (x)\left( \int \limits _{x_{k+2}}^{x_{k+1}}\left( \int \limits _a^tf\right) ^ru^r(t) \text {d}t\right) ^{\frac{1}{r}}\\ &{}\le \displaystyle 4^{\frac{1}{r}}\alpha (x)\left( \int \limits _{x_{k+2}}^{x_{k+1}}\left( \int \limits _{x_{k+2}}^tf\right) ^ru^r(t) \text {d}t\right) ^{\frac{1}{r}} \\ &{} +\displaystyle 4^{\frac{1}{r}}\alpha (x)\left( \int \limits _{x_{k+2}}^{x_{k+1}}u^r\right) ^{\frac{1}{r}}\int \limits _a^{x_{k+2}}f. \end{array} \end{aligned}$$
(2.4)

It is clear that, for each k, \(E_k= E_{k,1}\cup E_{k,2}\), where

$$\begin{aligned} E_{k,1}=\left\{ x\in E_k: \alpha (x)\left( \int \limits _{x_{k+2}}^{x_{k+1}}\left( \int \limits _{x_{k+2}}^tf\right) ^ru^r(t) \text {d}t\right) ^{\frac{1}{r}}>\frac{\lambda }{2\cdot 4^{\frac{1}{r}}} \right\} \end{aligned}$$

and

$$\begin{aligned} E_{k,2}=\left\{ x\in E_k: \alpha (x)\left( \int \limits _{x_{k+2}}^{x_{k+1}}u^r\right) ^{\frac{1}{r}}\int \limits _a^{x_{k+2}}f>\frac{\lambda }{2\cdot 4^{\frac{1}{r}}} \right\} . \end{aligned}$$

Since \(p\le r\), by Theorem A (i), we have that

$$\begin{aligned} \begin{array}{rl} &{}\displaystyle \left( \int \limits _{x_{k+2}}^{x_{k+1}}\left( \int \limits _{x_{k+2}}^tf\right) ^ru^r(t) \text {d}t\right) ^{\frac{1}{r}} \\ &{}\displaystyle \le K(r,p)\sup _{x_{k+2}<\gamma <x_{k+1}}\left( \int \limits _{\gamma }^{x_{k+1}}u^r\right) ^{\frac{1}{r}}\Vert \chi _{(x_{k+2},\gamma )}v^{-\frac{1}{p}}\Vert _{p'}\left( \int \limits _{x_{k+2}}^{x_{k+1}}f^pv\right) ^{\frac{1}{p}}. \end{array} \end{aligned}$$
(2.5)

Let us see that the supremum in (2.5) is finite. Let \(\gamma \in (x_{k+2},x_{k+1})\). As \(\Phi \in L^{\eta , \infty }(w)\), \(\Phi \) is finite almost everywhere. Let \(\rho , \nu \) with \(x_{k+1}<\rho<\nu <b\) and let \(t\in (\rho ,\nu )\) such that \(\Phi (t)<\infty \). Then,

$$\begin{aligned} 1+\Phi (t)> \left( \inf _{x\in (\rho ,\nu )}\alpha (x)\left( \int \limits _\gamma ^x u^r\right) ^{\frac{1}{r}}\right) \left( \int \limits _\rho ^\nu w\right) ^{\frac{1}{p}}\Vert \chi _{(a,\gamma )}v^{-\frac{1}{p}}\Vert _{p'}. \end{aligned}$$

Thus, there is \({\tilde{x}}\in (\rho , \nu )\), which depends on \(\gamma \), such that

$$\begin{aligned} \begin{array}{rl} \displaystyle 1+\Phi (t)&{}\displaystyle > \alpha ({\tilde{x}})\left( \int \limits _\gamma ^{{\tilde{x}}} u^r\right) ^{\frac{1}{r}}\left( \int \limits _\rho ^\nu w\right) ^{\frac{1}{p}}\Vert \chi _{(a,\gamma )}v^{-\frac{1}{p}}\Vert _{p'}\\ &{}\\ &{}\displaystyle \ge \alpha ({\tilde{x}})\left( \int \limits _\gamma ^{x_{k+1}} u^r\right) ^{\frac{1}{r}}\left( \int \limits _\rho ^\nu w\right) ^{\frac{1}{p}}\Vert \chi _{(x_{k+2},\gamma )}v^{-\frac{1}{p}}\Vert _{p'}. \end{array} \end{aligned}$$

Then, applying (1.9), we get

$$\begin{aligned} \left( \int \limits _{\gamma }^{x_{k+1}}u^r\right) ^{\frac{1}{r}} \Vert \chi _{(x_{k+2},\gamma )}v^{-\frac{1}{p}}\Vert _{p'}< \displaystyle \frac{ 1 +\Phi (t)}{\left( \displaystyle \inf _{(\rho ,\nu )}\alpha \right) \left( \displaystyle \int _\rho ^\nu w \right) ^{\frac{1}{p}} }<\infty . \end{aligned}$$

Therefore, the supremum in (2.5) is finite. Then, for all \(x\in E_{k,1}\) we have

$$\begin{aligned} \begin{array}{rl} &{}\displaystyle \frac{\lambda }{2\cdot 4^{\frac{1}{r}}K(r,p)}\\ &{}<\displaystyle \alpha (x)\sup _{x_{k+2}<\gamma <x_{k+1}}\left( \int \limits _{\gamma }^{x_{k+1}}u^r\right) ^{\frac{1}{r}}\Vert \chi _{(x_{k+2},\gamma )}v^{-\frac{1}{p}}\Vert _{p'}\left( \int \limits _{x_{k+2}}^{x_{k+1}}f^pv\right) ^{\frac{1}{p}}. \end{array} \end{aligned}$$

Let \(\varepsilon >1\). For every k, there is \(\gamma _k \in (x_{k+2},x_{k+1})\) such that

$$\begin{aligned} \begin{array}{rl} \displaystyle \sup _{x_{k+2}<\gamma<x_{k+1}}&{}\displaystyle \left( \int \limits _{\gamma }^{x_{k+1}}u^r\right) ^{\frac{1}{r}}\Vert \chi _{(x_{k+2},\gamma )}v^{-\frac{1}{p}}\Vert _{p'}\\ &{}<\displaystyle \varepsilon \left( \int \limits _{\gamma _k}^{x_{k+1}}u^r\right) ^{\frac{1}{r}}\Vert \chi _{(x_{k+2},\gamma _k)}v^{-\frac{1}{p}}\Vert _{p'}. \end{array} \end{aligned}$$

Therefore, for all \(x\in E_{k,1}\) the following inequality holds:

$$\begin{aligned} \frac{\lambda }{2\cdot 4^{\frac{1}{r}}K(r,p)}<\varepsilon \alpha (x)\left( \int \limits _{\gamma _k}^{x_{k+1}}u^r\right) ^{\frac{1}{r}}\Vert \chi _{(x_{k+2},\gamma _k)}v^{-\frac{1}{p}}\Vert _{p'}\left( \int \limits _{x_{k+2}}^{x_{k+1}}f^pv\right) ^{\frac{1}{p}}. \end{aligned}$$

Since \(x_{k+1}<x\), we get

$$\begin{aligned} \frac{\lambda }{2\cdot 4^{\frac{1}{r}}K(r,p)}<\varepsilon \alpha (x)\left( \int \limits _{\gamma _k}^{x}u^r\right) ^{\frac{1}{r}}\Vert \chi _{(a,\gamma _k)}v^{-\frac{1}{p}}\Vert _{p'}\left( \int \limits _{x_{k+2}}^{x_{k+1}}f^pv\right) ^{\frac{1}{p}}. \end{aligned}$$

The last inequality holds for all \(x\in E_{k,1}\). Then,

$$\begin{aligned} \frac{\lambda }{2\cdot 4^{\frac{1}{r}}K(r,p)}\le \varepsilon \inf _{x\in E_{k,1}}\left( \alpha (x)\left( \int \limits _{\gamma _k}^{x}u^r\right) ^{\frac{1}{r}}\right) \Vert \chi _{(a,\gamma _k)}v^{-\frac{1}{p}}\Vert _{p'}\left( \int \limits _{x_{k+2}}^{x_{k+1}}f^pv\right) ^{\frac{1}{p}}. \end{aligned}$$

Now, if we multiply both sides of this inequality by \(\displaystyle \left( \int _{E_{k,1}} w \right) ^{\frac{1}{p}}\) and apply condition (1.10), we have

$$\begin{aligned} \begin{array}{rl} &{}\displaystyle \frac{\lambda }{2\cdot 4^{\frac{1}{r}}K(r,p)\varepsilon }\left( \int \limits _{E_{k,1}} w \right) ^{\frac{1}{p}}\displaystyle \le \inf _{x\in (\rho _k^1, \rho _k^2)}\left\{ \alpha (x)\left( \int \limits _{\gamma _k}^{x}u^r\right) ^{\frac{1}{r}}\right\} \\ &{}\\ &{}\displaystyle \times \left( \int \limits _{\rho _k^1}^{\rho _k^2}w\right) ^{\frac{1}{p}}\Vert \chi _{(a,\gamma _k)}v^{-\frac{1}{p}}\Vert _{p'}\left( \int \limits _{x_{k+2}}^{x_{k+1}}f^pv\right) ^{\frac{1}{p}}\\ &{}\\ &{}\displaystyle \le \lambda ^{\frac{q}{\eta }}\left( \int \limits _{x_{k+2}}^{x_{k+1}}f^pv\right) ^{\frac{1}{p}}, \end{array} \end{aligned}$$

where \(\rho _k^1=\inf E_{k,1}\), \(\rho _k^2=\sup E_{k,1}\) and the last inequality holds since

$$\begin{aligned} \inf _{x\in (\rho _k^1, \rho _k^2)}\left\{ \alpha (x)\left( \int \limits _{\gamma _k}^{x}u^r\right) ^{\frac{1}{r}}\right\} \left( \int \limits _{\rho _k^1}^{\rho _k^2}w\right) ^{\frac{1}{p}}\Vert \chi _{(a,\gamma _k)}v^{-\frac{1}{p}}\Vert _{p'}\le \Phi (t)\le \lambda ^{\frac{q}{\eta }} \end{aligned}$$

for all \(t\in E_{k,1}\). Thus,

$$\begin{aligned} \lambda \left( \int \limits _{E_{k,1}}w\right) ^{\frac{1}{p}}\le \varepsilon 2 \cdot 4^{\frac{1}{r}} K(r,p) \lambda ^{\frac{q}{\eta }}\left( \int \limits _{x_{k+2}}^{x_{k+1}}f^pv\right) ^{\frac{1}{p}}. \end{aligned}$$

Since this inequality holds for every \(\varepsilon >1\), letting \(\varepsilon \rightarrow 1^+\) and raising to p we get

$$\begin{aligned} \int \limits _{E_{k,1}}w\le 2^p 4^{\frac{p}{r}}K(r,p)^p \lambda ^{\frac{qp}{\eta }-p} \int \limits _{x_{k+2}}^{x_{k+1}}f^p v. \end{aligned}$$

Now, summing up in k, we have

$$\begin{aligned} \int \limits _{\cup _k E_{k,1}} w \le \frac{2^p\cdot 4^{\frac{p}{r}}K(r,p)^p}{\lambda ^q}\int \limits _a^b f^pv=\frac{2^p\cdot 4^{\frac{p}{r}}K(r,p)^p}{\lambda ^q}, \end{aligned}$$

what finishes the estimation of \(\int _{\cup _k E_{k,1}}w\). In order to estimate \(\int _{\cup _kE_{k,2}}w\), we will use the technique, due to Lai [15], that we have already used in [7]. Let us define the sequence \(\{ y_m'\}\) as \(y_0'=b\) and \(\int _a^{y_{m+1}'}f=\int _{y'_{m+1}}^{y_m'}f\). Let \(\{ y_n\}\) be the subsequence of \(\{ y_m'\}\) defined by \(y_0=y_0'\) and by deleting \(y'_{m+1}\) if \([y'_{m+1}, y'_m)\cap \{ x_k\}=\emptyset \). In this way, if \(y'_{m+1}=y_{n+1}\le x_{k+2}<y_n\), then \(x_{k+2}\le y'_m\) and \(y_{n+2}\le y'_{m+2}\), which yields

$$\begin{aligned} \int \limits _a^{x_{k+2}}f\le \int \limits _a^{y'_m}f=4\int _{y'_{m+2}}^{y'_{m+1}}f\le 4\int \limits _{y_{n+2}}^{y_{n+1}}f. \end{aligned}$$
(2.6)

Let \(E_2^n=\bigcup _{\{k: y_{n+1}\le x_{k+2}<y_n\}}E_{k,2}\). If \(x\in E_2^n\), there exists k with \(y_{n+1}\le x_{k+2}<y_n\) such that \(x\in E_{k,2}\) and then, by (2.6),

$$\begin{aligned} \frac{\lambda }{2\cdot 4^{\frac{1}{r}}}<\alpha (x)\left( \int \limits _{x_{k+2}}^{x_{k+1}}u^r\right) ^{\frac{1}{r}}\int \limits _a^{x_{k+2}}f\le 4 \alpha (x)\left( \int \limits _{y_{n+1}}^{x}u^r\right) ^{\frac{1}{r}}\int \limits _{y_{n+2}}^{y_{n+1}}f. \end{aligned}$$
(2.7)

Since (2.7) holds for all \(x\in E_2^n\), we have

$$\begin{aligned} \frac{\lambda }{2\cdot 4^{1+\frac{1}{r}}}\le \inf _{x\in E_2^n}\left[ \alpha (x)\left( \int \limits _{y_{n+1}}^{x}u^r\right) ^{\frac{1}{r}}\right] \int \limits _{y_{n+2}}^{y_{n+1}}f. \end{aligned}$$
(2.8)

Multiplying both sides of (2.8) by \(\left( \int _{E_2^n}w\right) ^{\frac{1}{p}}\), applying Holder’s inequality and (1.10), we get

$$\begin{aligned} \begin{array}{rl} \displaystyle \frac{\lambda }{2\cdot 4^{1+\frac{1}{r}}}\left( \int \limits _{E_2^n}w\right) ^{\frac{1}{p}} &{}\le \displaystyle \inf _{x\in (\rho _1^n,\rho _2^n)}\left[ \alpha (x)\left( \int \limits _{y_{n+1}}^{x}u^r\right) ^{\frac{1}{r}}\right] \\ &{}\\ &{}\displaystyle \times \left( \int \limits _{\rho _1^n}^{\rho _2^n}w\right) ^{\frac{1}{p}}\Vert \chi _{(a,y_{n+1})}v^{-{\frac{1}{p}}} \Vert _{p'}\left( \int \limits _{y_{n+2}}^{y_{n+1}}f^pv\right) ^{\frac{1}{p}}\\ &{}\\ &{}\displaystyle \le \lambda ^{\frac{q}{\eta }}\left( \int \limits _{y_{n+2}}^{y_{n+1}} f^pv\right) ^{\frac{1}{p}}, \end{array} \end{aligned}$$
(2.9)

where we have used that

$$\begin{aligned} \inf _{x\in (\rho _1^n,\rho _2^n)}\left[ \alpha (x)\left( \int \limits _{y_{n+1}}^{x}u^r\right) ^{\frac{1}{r}}\right] \left( \int \limits _{\rho _1^n}^{\rho _2^n}w\right) ^{\frac{1}{p}}\Vert \chi _{(a,y_{n+1})}v^{-{\frac{1}{p}}}\Vert _{p'}\le \Phi (t) \end{aligned}$$

for all \(t\in E_2^n\).

Then, raising to the p in (2.9) and summing, we get

$$\begin{aligned} \begin{array}{rl} \displaystyle \int \limits _{\cup _kE_{k,2}}w&{}\displaystyle =\sum _{k=0}^{\infty }\int \limits _{E_{k,2}}w=\sum _{n=0}^{\infty }\sum _{\{k: y_{n+1}\le x_{k+2}<y_n\}}\int \limits _{E_{k,2}}w=\sum _{n=0}^{\infty }\int \limits _{E_2^n}w\\ &{}\\ &{}\displaystyle \le \frac{2^p\cdot 4^{(1+\frac{1}{r})p}}{\lambda ^q}\left( \int \limits _a^bf^pv\right) =\frac{2^p\cdot 4^{(1+\frac{1}{r})p}}{\lambda ^q}, \end{array} \end{aligned}$$
(2.10)

which implies

$$\begin{aligned} II\le \int \limits _{\cup _k E_{k,1}}w+\int \limits _{\cup _k E_{k,2}}w\le \frac{1}{\lambda ^q} (2^p\cdot 4^{(1+\frac{1}{r})p}+2^p\cdot 4^{\frac{p}{r}}K(r,p)^p). \end{aligned}$$

This finishes the proof of the sufficiency in the case \(r<\infty \). Now, we will deal with the case \(r=\infty \). Let us consider two sequences \(\{a_n\}\) and \(\{b_n\}\), with \(\{ a_n\}\) decreasing to a and \(\{ b_n\}\) increasing to b. Then, \(\Phi \in L^{\eta , \infty }(w)\) implies that \(\Phi _n \in L^{\eta , \infty }(w, (a_n,b_n))\), where

$$\begin{aligned} \begin{array}{rl} \Phi _n(x)=\displaystyle \sup _{a_n<e<c<x<d<b_n}&{}\displaystyle \left( \inf _{t\in (c,d)} \left( \alpha (t) \Vert \chi _{(e,t)}u\Vert _{\infty } \right) \right) \\ &{}\displaystyle \times \left( \int \limits _c^d w \right) ^{\frac{1}{p}} \Vert \chi _{(a_n,e)}v^{-\frac{1}{p}}\Vert _{p'}. \end{array} \end{aligned}$$

For fixed n, there is \(r_0>p\) such that \((b_n-a_n)^{\frac{1}{r}} \le 2\) for all \(r\ge r_0\). Then, if \(r\ge r_0\) and \(a_n<e<x<b_n\), we have

$$\begin{aligned} \Vert \chi _{(e,x)}u \Vert _r =\left( \int \limits _e^x \vert u \vert ^r\right) ^{\frac{1}{r}}\le \Vert \chi _{(e,x)}u \Vert _\infty (b_n-a_n)^{\frac{1}{r}} \le 2 \Vert \chi _{(e,x)}u \Vert _\infty . \end{aligned}$$

Therefore, if we define \(\Phi _{n,r}(x)\) as

$$\begin{aligned} \begin{array}{rl} \Phi _{n,r}(x)=\displaystyle \sup _{a_n<e<c<x<d<b_n}&{}\displaystyle \left( \inf _{t\in (c,d)} \left( \alpha (t) \Vert \chi _{(e,t)}u\Vert _{r} \right) \right) \\ &{}\displaystyle \times \left( \int \limits _c^d w \right) ^{\frac{1}{p}} \Vert \chi _{(a_n,e)}v^{-\frac{1}{p}}\Vert _{p'}, \end{array} \end{aligned}$$

we have that \(\Phi _{n,r}\in L^{\eta , \infty }(w, (a_n,b_n))\) for all \(r\ge r_0\) and their norms are bounded by \(2\Vert \Phi \Vert _{\eta ,\infty ,w}\). Now, applying the Theorem in the case which we have already proved, we have that the weak-type inequality

$$\begin{aligned} \left\| \chi _{(a_n,b_n)}(x)\alpha (x)\left\| \chi _{(a_n,x)}(t) u(t)\int \limits _{a_n}^t f \right\| _r \right\| _{q,\infty ; w}\le C_{r,p,q}\Vert \chi _{(a_n,b_n)}f \Vert _{p,v} \end{aligned}$$
(2.11)

holds, where \(C_{r,p,q}=(2^{\eta }\Vert \Phi \Vert _{\eta ,\infty ,w}^{\eta }+2^p4^{\frac{p}{r}}(4^p+K(r,p)^p))^{\frac{1}{q}} \). Since

$$\begin{aligned} \left\| \chi _{(a_n,x)}(t)u(t)\int \limits _{a_n}^tf\right\| _{\infty }=\lim _{r\rightarrow \infty }\left\| \chi _{(a_n,x)}(t)u(t)\int \limits _{a_n}^tf\right\| _r \end{aligned}$$

for every x, by Fatou’s lemma we have

$$\begin{aligned} \begin{array}{rl} &{}\displaystyle \left\| \chi _{(a_n,b_n)}(x) \alpha (x)\left\| \chi _{(a_n,x)}(t)u(t)\int \limits _{a_n}^tf\right\| _{\infty }\right\| _{q,\infty ;w}\\ &{}\displaystyle \le \lim \inf _{r\rightarrow \infty } \left\| \chi _{(a_n,b_n)}(x)\alpha (x)\left\| \chi _{(a_n,x)}(t)u(t)\int _{a_n}^tf\right\| _r\right\| _{q,\infty ;w}. \end{array} \end{aligned}$$
(2.12)

Now, from (2.11) and (2.12) we get

$$\begin{aligned} \left\| \chi _{(a_n,b_n)}(x)\alpha (x)\left\| \chi _{(a_n,x)}(t)u(t)\int \limits _{a_n}^tf\right\| _{\infty }\right\| _{q,\infty ;w}\le C_{p,q} \Vert \chi _{(a_n,b_n)} f\Vert _{p, v}, \end{aligned}$$
(2.13)

where \(C_{p,q}=(2^{\eta }\Vert \Phi \Vert _{\eta ,\infty ,w}^{\eta }+8^p+2^p)^{\frac{1}{q}}\). Finally, since (2.13) holds for all n with a constant independent of n, letting n tend to infinity and applying the monotone convergence theorem, we get (1.8) in the case \(r=\infty \).

3 Proof of Theorem 2

The necessity of condition \(\Phi \in L^{\eta ,\infty }(w)\) follows as in the proof of Theorem 1. Therefore, the best constant C in (1.8) verifies \(C\ge 2^{\frac{-1}{p}}\Vert \Phi \Vert _{\eta ,\infty , w}\). Let us prove now that (1.8) implies \(\Psi \in L^{\eta , \infty }(w)\). Let \(\lambda >0\) and \(S_{\lambda }=\{ x\in (a,b): \Psi (x)>\lambda \}\). Let K be a compact subset of \(S_{\lambda }\). If \(z\in K\), there exist \(c_z, d_z\) with \(c_z<z<d_z\) such that

$$\begin{aligned} \left( \inf _{(c_z,d_z)}\alpha \right) \left( \int \limits _{c_z}^{d_z}w\right) ^{\frac{1}{p}}\left( \int \limits _a^{c_z}\left( \int \limits _t^{c_z}u^r\right) ^{\frac{\theta }{r}} \left( \int \limits _a^tv^{1-p'}\right) ^{\frac{\theta }{r'}}v^{1-p'}(t)\text {d}t\right) ^{\frac{1}{\theta }}>\lambda . \end{aligned}$$
(3.1)

Since K is compact, there exist \(z_1, z_2,\ldots ,z_N\in K\) such that \(K\subset \displaystyle \bigcup _{j=1}^N(c_{z_j},d_{z_j})\) and

$$\begin{aligned} {} \sum \limits _{j=1}^N \chi _{(c_{z_j},d_{z_j})}\le 2 \chi _{\cup _{j=1}^N (c_{z_j}, d_{z_j})}. \end{aligned}$$
(3.2)

Let, for each \(j\in \{ 1,2,\ldots ,N\}\),

$$\begin{aligned} \begin{array}{rl} f_j(x)&{} =\displaystyle \left( \inf _{(c_{z_j},d_{z_j})}\alpha \right) ^{-p}\chi _{(a,c_{z_j})}(x) \left( \int \limits _x^{c_{z_j}}u^r\right) ^{\frac{\theta }{r}}\left( \int \limits _a^xv^{1-p'}\right) ^{\frac{\theta }{r'}}v^{-p'}(x)\\ &{}\\ &{}\times \displaystyle \left( \int \limits _a^{c_{z_j}}\left( \int _t^{c_{z_j}}u^r\right) ^{\frac{\theta }{r}} \left( \int \limits _a^tv^{1-p'}\right) ^{\frac{\theta }{r'}}v^{1-p'}(t)\text {d}t\right) ^{-\frac{p}{r}} \end{array} \end{aligned}$$

and

$$\begin{aligned} f = \left( \sum _{j=1}^N f_j\right) ^{\frac{1}{p}}. \end{aligned}$$

If \(z\in (c_{z_j},d_{z_j})\) and \(\gamma _j=\inf _{(c_{z_j},d_{z_j})}\alpha \), we have

$$\begin{aligned} \displaystyle \alpha (z)\left( \int \limits _a^z\left( \int \limits _a^t f\right) ^ru^r(t)\text {d}t\right) ^{\frac{1}{r}}\ge \alpha (z)\left( \int \limits _a^{c_{z_j}}\left( \int \limits _a^t f_j^{\frac{1}{p}}\right) ^ru^r(t)\text {d}t\right) ^{\frac{1}{r}}\nonumber \\ \begin{array}{rl} &{}\displaystyle =\frac{\alpha (z)}{\gamma _j\left( \displaystyle \int _a^{c_{z_j}} \left( \int _t^{c_{z_j}}u^r\right) ^{\frac{\theta }{r}}\left( \int _a^tv^{1-p'}\right) ^{\frac{\theta }{r'}}v^{1-p'}(t)\text {d}t\right) ^{\frac{1}{r}}}\\ {} &{}\\ &{}\displaystyle \times \left( \int \limits _a^{c_{z_j}} \left( \int \limits _a^t\left( \int \limits _x^{c_{z_j}}u^r\right) ^{\frac{\theta }{rp}} \left( \int \limits _a^xv^{1-p'}\right) ^{\frac{\theta }{r'p}}v^{1-p'}(x)\text {d}x\right) ^ru^r(t)\text {d}t\right) ^{\frac{1}{r}}. \end{array} \end{aligned}$$
(3.3)

If \(h(x)=\displaystyle \left( \int _x^{c_{z_j}}u^r\right) ^{\frac{\theta }{rp}} \left( \int _a^xv^{1-p'}\right) ^{\frac{\theta }{r'p}}v^{1-p'}(x)\), the last factor in (3.3) can be written as follows

$$\begin{aligned} \displaystyle \left( \int \limits _a^{c_{z_j}}\left( \int \limits _a^th(x)\text {d}x\right) ^ru^r(t)\text {d}t\right) ^{\frac{1}{r}}{} & {} =\displaystyle \left( \int \limits _a^{c_{z_j}}\left( \int \limits _a^t\left[ \left( \int \limits _a^s h\right) ^r\right] '(s)\text {d}s\right) u^r(t)\text {d}t\right) ^{\frac{1}{r}}\nonumber \\{} & {} =r^{\frac{1}{r}}\left( \int \limits _a^{c_{z_j}}\left( \int \limits _a^t\left( \int \limits _a^s h\right) ^{r-1}h(s)\text {d}s\right) u^r(t)\text {d}t\right) ^{\frac{1}{r}}\nonumber \\{} & {} \displaystyle =r^{\frac{1}{r}}\left( \int \limits _a^{c_{z_j}}\left( \int \limits _s^{c_{z_j}}u^r(t)\text {d}t\right) \left( \int \limits _a^s h\right) ^{r-1}h(s)\text {d}s\right) ^{\frac{1}{r}}.\nonumber \\ \end{aligned}$$
(3.4)

Let us estimate now \(\displaystyle \int _a^sh\):

$$\begin{aligned} \begin{array}{rl} \displaystyle \int \limits _a^sh(x)\text {d}x &{}=\displaystyle \int \limits _a^s\left( \int _x^{c_{z_j}}u^r\right) ^{\frac{\theta }{rp}} \left( \int \limits _a^xv^{1-p'}\right) ^{\frac{\theta }{r'p}}v^{1-p'}(x)\text {d}x\\ &{}\\ &{}\displaystyle \ge \left( \int \limits _s^{c_{z_j}}u^r\right) ^{\frac{\theta }{rp}}\int \limits _a^s \left( \int \limits _a^xv^{1-p'}\right) ^{\frac{\theta }{r'p}}v^{1-p'}(x)\text {d}x\\ &{}\\ &{}=\displaystyle \frac{rp'}{\theta }\left( \int \limits _s^{c_{z_j}}u^r\right) ^{\frac{\theta }{rp}} \left( \int \limits _a^xv^{1-p'}\right) ^{\frac{\theta }{rp'}}. \end{array} \end{aligned}$$

Taking this estimate to (3.4), we get

$$\begin{aligned}{} & {} \displaystyle \left( \int \limits _a^{c_{z_j}}\left( \int \limits _a^th(x)\text {d}x\right) ^ru^r(t)\text {d}t\right) ^{\frac{1}{r}}\displaystyle \ge r^{\frac{1}{r}}\left( \frac{rp'}{\theta }\right) ^{\frac{1}{r'}}\\{} & {} \quad \displaystyle \times \left( \int \limits _a^{c_{z_j}}\left( \int \limits _s^{c_{z_j}}u^r\right) \left( \left( \int \limits _s^{c_{z_j}}u^r\right) ^{\frac{\theta }{rp}} \left( \int \limits _a^xv^{1-p'}\right) ^{\frac{\theta }{rp'}}\right) ^{r-1}h(s)\text {d}s\right) ^{\frac{1}{r}}\\{} & {} \quad \displaystyle =r\left( \frac{p'}{\theta }\right) ^{\frac{1}{r'}}\left( \int \limits _a^{c_{z_j}}\left( \int \limits _s^{c_{z_j}}u^r\right) ^{\frac{\theta }{r}} \left( \int \limits _a^sv^{1-p'}\right) ^{\frac{\theta }{r'}}v^{1-p'}(s)\text {d}s\right) ^{\frac{1}{r}}. \end{aligned}$$

Going back to (3.3) we get that for all \(z\in (c_{z_j}, d_{z_j})\),

$$\begin{aligned} \alpha (z)\left( \int \limits _a^z\left( \int \limits _a^t f\right) ^ru^r(t)\text {d}t\right) ^{\frac{1}{r}}\ge r\left( \frac{p'}{\theta }\right) ^{\frac{1}{r'}}\frac{\alpha (z)}{\gamma _j}\ge r\left( \frac{p'}{\theta }\right) ^{\frac{1}{r'}}. \end{aligned}$$

Therefore, by (1.8), we have

$$\begin{aligned} \int \limits _{{\cup _{j=1}^N (c_{{z_{j}}},d_{{z_{j}}})}} w\le \frac{C^q}{\left( r\left( \frac{p'}{\theta }\right) ^{\frac{1}{r'}}\right) ^{q}} \Vert f \Vert _{p,v}^q. \end{aligned}$$
(3.5)

Let us estimate \(\Vert f \Vert _{p,v}^q\). By definition of f, (3.1) and (3.2),

$$\begin{aligned} \Vert f \Vert _{p,v}^q =\left[ \displaystyle \int _a^b\sum _{j=1}^N\frac{\displaystyle \left( \int _x^{c_{z_j}}u^r\right) ^{\frac{\theta }{r}}\left( \int _a^xv^{1-p'}\right) ^{\frac{\theta }{r'}}v^{1-p'}(x) \chi _{(a,c_{z_j})}(x)}{\displaystyle \gamma _j^p\left( \int _a^{c_{z_j}} \left( \int _s^{c_{z_j}}u^r\right) ^{\frac{\theta }{r}}\left( \int _a^sv^{1-p'}\right) ^{\frac{\theta }{r'}}v^{1-p'}(s)\text {d}s\right) ^{\frac{p}{r}}}\text {d}x\right] ^{\frac{q}{p}}\nonumber \\ \begin{array}{rl} &{}\displaystyle =\left[ \sum _{j=1}^N\gamma _j^{-p}\left( \int \limits _a^{c_{z_j}} \left( \int \limits _s^{c_{z_j}}u^r\right) ^{\frac{\theta }{r}}\left( \int \limits _a^sv^{1-p'}\right) ^{\frac{\theta }{r'}}v^{1-p'}(s)\text {d}s\right) ^{-\frac{p}{\theta }}\right] ^{\frac{q}{p}}\\ &{}\\ &{}\displaystyle \le \left( \sum _{j=1}^N\frac{1}{\lambda ^p}\int \limits _{c_{z_j}}^{d_{z_j}}w\right) ^{\frac{q}{p}}\le \frac{2^{\frac{q}{p}}}{\lambda ^q}\left( \int \limits _{\cup _{j=1}^N(c_{z_j},d_{z_j})} w \right) ^{\frac{q}{p}}. \end{array} \end{aligned}$$
(3.6)

Finally, from (3.5) and (3.6) we get

$$\begin{aligned} \lambda ^q\left( \int \limits _{\cup _{j=1}^N(c_{z_j},d_{z_j})} w \right) ^{\frac{q}{\eta }}\le \frac{2^{\frac{q}{p}}C^q}{\left( r\left( \frac{p'}{\theta }\right) ^{\frac{1}{r'}}\right) ^q}, \end{aligned}$$

which implies

$$\begin{aligned} \lambda \left( \int \limits _Kw\right) ^{\frac{1}{\eta }}\le \frac{2^{\frac{1}{p}}C}{r\left( \frac{p'}{\theta }\right) ^{\frac{1}{r'}}}. \end{aligned}$$

Since the inequality above holds for all compact set \(K\subset S_{\lambda }\), we have that \(\Psi \in L^{\eta ,\infty }(w)\) and \(C\ge 2^{\frac{-1}{p}}r\left( \frac{p'}{\theta }\right) ^{\frac{1}{r'}}\Vert \Psi \Vert _{\eta ,\infty ;w}\).

Let us prove now the sufficiency. Let f be a nonnegative function with \(f\in L^1\) and \(\int _a^bf^pv=1\). Let \(\lambda >0\) and

$$\begin{aligned} O_{\lambda }=\left\{ x \in (a,b): \alpha (x)\Vert \chi _{(a,x)}(t)u(t)\int \limits _a^t f \Vert _r>\lambda \right\} . \end{aligned}$$

Then, as in the proof of Theorem 1,

$$\begin{aligned} \int \limits _{O_\lambda } w = \int \limits _{O_\lambda \cap \{ x\in (a,b):\Phi (x)>\lambda ^{\frac{q}{\eta }}\}}w+\int \limits _{O_\lambda \cap \{ x\in (a,b):\Phi (x)\le \lambda ^{\frac{q}{\eta }}\}}w=I+II. \end{aligned}$$

The estimation of I can be done as in the case \(p\le r\). For the estimation of II, we work as follows:

$$\begin{aligned} \begin{array}{rl} II&{}=\displaystyle \int \limits _{O_\lambda \cap \{ x\in (a,b):\Phi (x)\le \lambda ^{\frac{q}{\eta }}, \Psi (x)>\lambda ^{\frac{q}{\eta }}\}}w+\int \limits _{O_\lambda \cap \{ x\in (a,b):\Phi (x)\le \lambda ^{\frac{q}{\eta }}, \Psi (x)\le \lambda ^{\frac{q}{\eta }}\}}w\\ &{}\\ &{}=III+IV. \end{array} \end{aligned}$$

Firstly,

$$\begin{aligned} III\le \int \limits _{O_\lambda \cap \{ x\in (a,b): \Psi (x)>\lambda ^{\frac{q}{\eta }}\}}w \end{aligned}$$

and then

$$\begin{aligned} \displaystyle \int \limits _{O_\lambda \cap \{ x\in (a,b):\Psi (x)>\lambda ^{\frac{q}{\eta }}\}}w\le \frac{\Vert \Psi \Vert _{\eta , \infty ; w}^\eta }{\lambda ^q}=\frac{\Vert \Psi \Vert _{\eta , \infty ; w}^\eta }{\lambda ^q}\Vert f \Vert _{p,v}^q. \end{aligned}$$

Now, we will work on IV. Let \(\{ x_k\}\) be the sequence defined as in the proof of Theorem 1 and

$$\begin{aligned} E_k=O_{\lambda }\cap (x_{k+1}, x_k)\cap \{ x\in (a,b):\Phi (x)\le \lambda ^{\frac{q}{\eta }}, \Psi (x)\le \lambda ^{\frac{q}{\eta }}\}. \end{aligned}$$

If \(x\in E_k\),

$$\begin{aligned} \lambda <4^{\frac{1}{r}}\alpha (x)\left( \int \limits _{x_{k+2}}^{x_{k+1}}\left( \int \limits _{x_{k+2}}^tf\right) ^ru^r(t) \text {d}t\right) ^{\frac{1}{r}} +4^{\frac{1}{r}}\alpha (x)\left( \int \limits _{x_{k+2}}^{x_{k+1}}u^r\right) ^{\frac{1}{r}}\int _a^{x_{k+2}}f. \end{aligned}$$

It is clear that, for each k, \(E_k= E_{k,1}\cup E_{k,2}\), where

$$\begin{aligned} E_{k,1}=\left\{ x\in E_k: \alpha (x)\left( \int \limits _{x_{k+2}}^{x_{k+1}}\left( \int \limits _{x_{k+2}}^tf\right) ^ru^r(t) \text {d}t\right) ^{\frac{1}{r}}>\frac{\lambda }{2\cdot 4^{\frac{1}{r}}} \right\} \end{aligned}$$

and

$$\begin{aligned} E_{k,2}=\left\{ x\in E_k: \alpha (x)\left( \int \limits _{x_{k+2}}^{x_{k+1}}u^r\right) ^{\frac{1}{r}}\int \limits _a^{x_{k+2}}f>\frac{\lambda }{2\cdot 4^{\frac{1}{r}}} \right\} . \end{aligned}$$

Since \(r<p\), by Theorem A (ii) we have

$$\begin{aligned} \begin{array}{rl} &{}\displaystyle \left( \int \limits _{x_{k+2}}^{x_{k+1}}\left( \int \limits _{x_{k+2}}^tf\right) ^ru^r(t) \text {d}t\right) ^{\frac{1}{r}} \\ &{}\displaystyle \le C_{r,p}\left( \int \limits _{x_{k+2}}^{x_{k+1}} \left( \int \limits _t^{x_{k+1}}u^r\right) ^{\frac{\theta }{r}} \left( \int \limits _{x_{k+2}}^tv^{1-p'}\right) ^{\frac{\theta }{r'}}v^{1-p'}(t)\text {d}t\right) ^{\frac{1}{\theta }}\\ &{}\displaystyle \times \left( \int \limits _{x_{k+2}}^{x_{k+1}}f^pv\right) ^{\frac{1}{p}}, \end{array} \end{aligned}$$
(3.7)

where \(C_{r,p}=r^{\frac{1}{r}}(p')^{\frac{1}{r'}}\). The first integral in the right-hand side of (3.7) is finite due to the monotonicity of \(\alpha \) and the proof of this fact follows the pattern of the one in Theorem 1.

If \(x\in E_{k,1}\),

$$\begin{aligned} \begin{array}{rl} \lambda &{}<\displaystyle 2\cdot 4^{\frac{1}{r}} C_{r,p} \alpha (x)\left( \int \limits _{x_{k+2}}^{x_{k+1}}\left( \int \limits _t^{x_{k+1}}u^r\right) ^{\frac{\theta }{r}} \left( \int \limits _{x_{k+2}}^tv^{1-p'}\right) ^{\frac{\theta }{r'}}v^{1-p'}(t)\text {d}t\right) ^{\frac{1}{\theta }}\\ &{}\displaystyle \times \left( \int \limits _{x_{k+2}}^{x_{k+1}}f^pv\right) ^{\frac{1}{p}}, \end{array} \end{aligned}$$

which implies, due to the monotonicity of \(\alpha \),

$$\begin{aligned} \begin{array}{rl} &{}\lambda \le \displaystyle 2\cdot 4^{\frac{1}{r}} C_{r,p}\left( \int \limits _{x_{k+2}}^{x_{k+1}} \left( \int \limits _t^{x_{k+1}}u^r\right) ^{\frac{\theta }{r}} \left( \int \limits _{x_{k+2}}^tv^{1-p'}\right) ^{\frac{\theta }{r'}}v^{1-p'}(t)\text {d}t\right) ^{\frac{1}{\theta }}\\ &{}\displaystyle \times \left( \inf _{(\rho _k^1, \rho _k^2)} \alpha \right) \left( \int \limits _{x_{k+2}}^{x_{k+1}}f^pv\right) ^{\frac{1}{p}}. \end{array} \end{aligned}$$

If we multiply both terms of the last inequality by \(\displaystyle \left( \int _{E_{k,1}} w \right) ^{\frac{1}{p}}\), we get

$$\begin{aligned} \begin{array}{rl} &{}\displaystyle \left( \int \limits _{E_{k,1}} w \right) ^{\frac{1}{p}}\displaystyle \le \frac{2\cdot 4^{\frac{1}{r}} C_{r,p}}{\lambda }\left( \inf _{(\rho _k^1, \rho _k^2)} \alpha \right) \left( \int \limits _{\rho _k^1}^{\rho _k^2}w\right) ^{\frac{1}{p}}\\ &{}\\ &{}\displaystyle \times \left( \int _{x_{k+2}}^{x_{k+1}}\left( \int \limits _t^{x_{k+1}}u^r\right) ^{\frac{\theta }{r}} \left( \int \limits _{x_{k+2}}^tv^{1-p'}\right) ^{\frac{\theta }{r'}}v^{1-p'}(t)\text {d}t\right) ^{\frac{1}{\theta }} \left( \int \limits _{x_{k+2}}^{x_{k+1}}f^pv\right) ^{\frac{1}{p}}\\ &{}\\ &{}\displaystyle \le \frac{2\cdot 4^{\frac{1}{r}} C_{r,p}}{\lambda }\left( \inf _{(\rho _k^1, \rho _k^2)} \alpha \right) \left( \int \limits _{\rho _k^1}^{\rho _k^2}w\right) ^{\frac{1}{p}} \end{array} \\ \begin{array}{rl} &{}\displaystyle \times \left( \int \limits _a^{\rho _k^1}\left( \int \limits _t^{\rho _k^1}u^r\right) ^{\frac{\theta }{r}} \left( \int \limits _{a}^tv^{1-p'}\right) ^{\frac{\theta }{r'}}v^{1-p'}(t)\text {d}t\right) ^{\frac{1}{\theta }} \left( \int \limits _{x_{k+2}}^{x_{k+1}}f^pv\right) ^{\frac{1}{p}}\\ &{}\\ &{}\displaystyle \le \frac{2\cdot 4^{\frac{1}{r}} C_{r,p}}{\lambda }\lambda ^{\frac{q}{\eta }} \left( \int \limits _{x_{k+2}}^{x_{k+1}}f^pv\right) ^{\frac{1}{p}}, \end{array} \end{aligned}$$

where the last inequality holds since

$$\begin{aligned} \displaystyle \left( \inf \limits _{(\rho _k^1, \rho _k^2)} \alpha \right) \left( \int \limits _{\rho _k^1}^{\rho _k^2}w\right) ^{\frac{1}{p}}\left( \int \limits _a^{\rho _k^1}\left( \int \limits _t^{\rho _k^1}u^r\right) ^{\frac{\theta }{r}} \left( \int \limits _{a}^tv^{1-p'}\right) ^{\frac{\theta }{r'}}v^{1-p'}(t)\text {d}t\right) ^{\frac{1}{\theta }} \end{aligned}$$

\(\le \Psi (t)\) for all \(t\in E_{k,1}\). Raising to p, we have that

$$\begin{aligned} \int \limits _{E_{k,1}}w \le \frac{2^p\cdot 4^{\frac{p}{r}} C_{r,p}^p}{\lambda ^{p-\frac{pq}{\eta }}} \left( \int \limits _{x_{k+2}}^{x_{k+1}}f^pv\right) =\frac{2^p\cdot 4^{\frac{p}{r}} C_{r,p}^p}{\lambda ^q} \left( \int \limits _{x_{k+2}}^{x_{k+1}}f^pv\right) . \end{aligned}$$

Now, summing up in k,

$$\begin{aligned} \int \limits _{\cup _k E_{k,1}}w \le \frac{2^p\cdot 4^{\frac{p}{r}} C_{r,p}^p}{\lambda ^q} \left( \int \limits _a^b f^pv\right) =\frac{2^p\cdot 4^{\frac{p}{r}} C_{r,p}^p}{\lambda ^q}. \end{aligned}$$

The estimation of \(\int _{\cup _k E_{k,2}} w\) is the same as the one in Theorem 1, because the relationship between r and p is not taken into account. Therefore, the proof is complete.

4 Proofs of Theorems 3 and 4

Working as in ([7], proof of Theorem 3), we have that (1.8) is equivalent to the two weighted weak-type bilinear inequalities

$$\begin{aligned} \left\| \beta (x)\int \limits _a^xf(t)\left( \int \limits _a^tg\right) \text {d}t\right\| _{q,\infty ;w}\le C\Vert f\Vert _{p_1, v_1}\Vert g\Vert _{p_2, v_2} \end{aligned}$$
(4.1)

and

$$\begin{aligned} \left\| \beta (x)\int \limits _a^xg(t)\left( \int \limits _a^tf\right) \text {d}t\right\| _{q,\infty ;w}\le C\Vert f\Vert _{p_1, v_1}\Vert g\Vert _{p_2, v_2}. \end{aligned}$$
(4.2)

Inequality (4.1) is equivalent to

$$\begin{aligned} \left\| \beta (x)\int \limits _a^xh\right\| _{q,\infty ;w}\le C\Vert h\Vert _{p_1, \tilde{v}_1^g}, \end{aligned}$$
(4.3)

where \(\tilde{v}_1^g(x)=v_1(x)\left( \int _a^x\frac{g}{\Vert g\Vert _{p_2,v_2}}\right) ^{-p_1}\) and the constant C does not depend on g.

Since \(q<p_1\) and \(\beta \) is a monotone function, by Theorem C inequality (4.3) holds if and only if there exists \(C>0\) such that

$$\begin{aligned} \Vert \Psi _g\Vert _{r_1,\infty ;w}\le C \end{aligned}$$
(4.4)

for all g, where \(\frac{1}{r_1}=\frac{1}{q}-\frac{1}{p_1}\) and

$$\begin{aligned} \begin{array}{rl} \displaystyle \Psi _g(x)&{}=\displaystyle \sup _{c>x}\left( (\inf _{y\in (x,c)}\beta (y)) \left( \int \limits _x^cw\right) ^{\frac{1}{p_1}}\right) \Vert \chi _{(a,x)}(\tilde{v}_1^g)^{-\frac{1}{p_1}}\Vert _{p_1'}\\ &{}\\ &{}=\displaystyle \alpha _1(x)\Vert \chi _{(a,x)}(\tilde{v}_1^g)^{-\frac{1}{p_1}}\Vert _{p_1'}. \end{array} \end{aligned}$$

Then (4.4) can be written as

$$\begin{aligned} \left\| \alpha _1(x)\left\| \chi _{(a,x)}(t)\left( v_1^{-\frac{1}{p_1}}(t)\int \limits _a^tg\right) \right\| _{p_1'}\right\| _{r_1,\infty ;w}\le C\Vert g\Vert _{p_2,v_2}. \end{aligned}$$
(4.5)

Therefore, inequality (4.1) holds if and only if inequality (4.5) holds. Since \(p_2> r_1\), by Theorems 1 and 2, (4.5) holds if and only \(\Phi _1\in L^{\eta ,\infty }(w)\) in the case \(p_2\le p_1'\) and \(\Phi _1, \Psi _1\in L^{\eta ,\infty }(w)\) in the case \(p_1'<p_2\).

In the same way, we see that (4.2) holds if and only if \(\Phi _2\in L^{\eta ,\infty }(w)\) in the case \(p_2\le p_1'\) and \(\Phi _2, \Psi _2\in L^{\eta ,\infty }(w)\) in the case \(p_1'<p_2\).