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Abstract
We characterize the good weights for some weighted weak-type iterated and bilinear
modified Hardy inequalities to hold.
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1 Introduction and results

The initial problem in the theory of weighted Hardy inequalities was the one of char-
acterizing the positive functions w, v, the weights, such that
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⎝

b∫

a

⎛
⎝

x∫

a

f

⎞
⎠

q

w(x)dx

⎞
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1
q

≤ C

⎛
⎝

b∫

a

f pv

⎞
⎠

1
p

(1.1)

holds for all positive measurable function f with a positive constant C independent
of f , which means that the Hardy operator T f (x) = ∫ x

a f is bounded from L p(v) to
Lq(w).

This problem was solved by Talenti [31], Muckenhoupt [23] and Bradley [4] in the
case p ≤ q, by Mazja [22] when 1 ≤ q < p, Sinnamon [27, 28] for 0 < q < 1 < p
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and Sinnamon and Stepanov [29] for 0 < q < 1 = p. Their results are the following
ones.

Theorem A ([4, 22, 23, 29, 31]) Let 1 < q < ∞, 1 ≤ p < ∞ and let w, v be
positive measurable functions on (a, b), where −∞ ≤ a < b ≤ ∞. Then there exists
a positive constant C such that inequality (1.1) holds for all nonnegative functions f
if and only if

(i) in the case p ≤ q,

B1 ≡ sup
s∈(a,b)

⎛
⎝

b∫

s

w

⎞
⎠

1
q

‖χ(a,s)v
− 1

p ‖p′ < ∞,

and the best constant C in inequality (1.1) verifies B1 ≤ C ≤ K (q, p)B1, where

K (q, p) =
(
1 + q

p′
) 1

q
(
1 + p′

q

) 1
p′ if p > 1 and K (q, 1) = 1;

(ii) in the case q < p,

B2 ≡
⎛
⎜⎝

b∫

a

⎛
⎝

b∫

t

w

⎞
⎠

r
q

‖χ(a,t)v
− 1

p ‖
rp′
q′
p′ v1−p′

(t)dt

⎞
⎟⎠

1
r

< ∞,

where 1
r = 1

q − 1
p , and the best constantC in inequality (1.1) verifies q

(
p′
r

) 1
q′
B2 ≤

C ≤ q
1
q (p′)

1
q′ B2.

Weighted weak-type inequalities for T were also studied. By a weighted weak-type
(p, q) inequality for T wemean the boundedness of T from L p(v) to Lq,∞(w), where

Lq,∞(w) =

⎧⎪⎪⎨
⎪⎪⎩

f : ‖ f ‖q,∞;w = sup
λ>0

λ

⎛
⎜⎝

∫

{x :| f (x)|>λ}
w

⎞
⎟⎠

1
q

< ∞

⎫⎪⎪⎬
⎪⎪⎭

.

Really, weighted weak-type inequalities have been studied for the modified Hardy
operators Tβ f (x) = β(x)

∫ x
a f . This kind of inequalities are technicallymore difficult

than the strong-type ones. In fact, the problem of characterizing the boundedness of
Tβ from L p(v) to Lq,∞(w) in the case q < p is not completely solved yet.

The first results on weighted weak-type inequalities for modified Hardy operators
are due to Andersen and Muckenhoupt [2], who worked with β(x) = xα , α ∈ R, on
(0,∞). Theweightedweak-type inequalitieswithmore general functionsβ were char-
acterized in [6, 20, 21]. The following two theorems contain such characterizations.
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Theorem B ([6, 21]) Let 1 ≤ p ≤ q < ∞ and β, v and w be positive measurable
functions on (a, b), where −∞ ≤ a < b ≤ ∞. Then there exists a positive constant
C such that inequality

∥∥∥∥∥∥
β(x)

⎛
⎝

x∫

a

f

⎞
⎠
∥∥∥∥∥∥
q,∞;w

≤ C‖ f ‖p,v (1.2)

holds for all nonnegative functions f if and only if

B3 ≡ sup
a<s<b

‖βχ(s,b)‖q,∞;w‖χ(a,s)v
− 1

p ‖p′ < ∞, (1.3)

and the best constant C in inequality (1.2) verifies B3 ≤ C ≤ 4B3.

Theorem C ([20]) Let 0 < q < p < ∞ with p ≥ 1 and β, v and w be positive
measurable functions on (a, b), where −∞ ≤ a < b ≤ ∞ and β is a monotone
function. Then there exists a positive constant C such that inequality (1.2) holds for
all nonnegative functions f if and only if the function � defined on (a, b) by

�(x) = sup
b>c>x

⎡
⎢⎣
(

inf
y∈(x,c)

β(y)

)⎛
⎝

c∫

x

w

⎞
⎠

1
p
⎤
⎥⎦ ‖χ(a,x)v

− 1
p ‖p′

belongs to Lr ,∞(w), where 1
r = 1

q − 1
p . In this case, the best constant C in inequality

(1.2) verifies 2− 1
p ‖�‖r ,∞;w ≤ C ≤ (1 + 4p)

1
q ‖�‖r ,∞;w.

It is worth noting that weighted weak-type inequalities for modified linear or sub-
linear operators are included in the topic of weighted mixed weak-type inequalities,
which goes back to the work of Andersen andMuckenhoupt [2] and have been studied
by several authors (see [5, 16–19, 21, 26]).

Two new kinds of Hardy inequalities are the weighted iterated and bilinear Hardy
inequalities. On one hand, weighted iterated Hardy inequalities are of the form

∥∥∥∥∥∥∥
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⎛
⎝
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f
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r
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1
r
∥∥∥∥∥∥∥
q,w

≤ C‖ f ‖p,v (1.4)

or

∥∥∥∥∥∥∥

⎛
⎝

x∫

a

⎛
⎝

x∫

t

f

⎞
⎠

r

u(t)dt

⎞
⎠

1
r
∥∥∥∥∥∥∥
q,w

≤ C‖ f ‖p,v, (1.5)

and have been studied by many authors [3, 8–11, 24, 25, 30].
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On the other hand, weighted strong-type bilinear Hardy inequalities

∥∥∥∥∥∥

⎛
⎝

x∫

a

f

⎞
⎠

⎛
⎝

x∫

a

g

⎞
⎠
∥∥∥∥∥∥
q,w

≤ C‖ f ‖p1,v1‖g‖p2,v2 (1.6)

were characterized in [1] and some of their generalizations and variants have also been
studied later (see, for instance, [12–14, 30]).

Recently, the authors have characterized in [7] the weights w, v1, v2 for which the
weighted weak-type bilinear modified Hardy inequality

∥∥∥∥∥∥
β(x)

⎛
⎝

x∫

a

f

⎞
⎠

⎛
⎝

x∫

a

g

⎞
⎠
∥∥∥∥∥∥
q,∞;w

≤ C‖ f ‖p1,v1‖g‖p2,v2 (1.7)

holds in the cases 0 < q < ∞, 1 ≤ p1, p2 < ∞, q < p1, q < p2 and 1
q ≤ 1

p1
+ 1

p2
.

In this paper, we will complete the characterization of inequality (1.7) solving the
problem for the case 1

q > 1
p1

+ 1
p2
.

As we showed in [7], inequality (1.7) is equivalent to two weighted weak-type
iterated modified Hardy inequalities of the form

∥∥∥∥∥∥
α(x)

∥∥∥∥∥∥
u(t)χ(a,x)(t)

t∫

a

f

∥∥∥∥∥∥
r

∥∥∥∥∥∥
q,∞;w

≤ C‖ f ‖p,v, (1.8)

where q < p. Therefore, we will solve the problem of the characterization of (1.8)
in the case q < p and then we will get immediately the characterization of (1.7).
It is worth noting that the good weights for (1.8) to hold in the case p ≤ q were
characterized by the authors in [7].

In order to state the results for the iterated inequality (1.8), we define two functions
�,� on (a, b) by

�(x) = sup
a<e<c<x<d<b

(
inf

t∈(c,d)
α(t)‖χ(e,t)u‖r

)⎛
⎝

d∫

c

w

⎞
⎠

1
p

‖χ(a,e)v
− 1

p ‖p′

and

�(x) = sup
a<c<x<d<b

(
inf

t∈(c,d)
α(t)

)⎛
⎝

d∫

c

w

⎞
⎠

1
p

×
⎛
⎜⎝

c∫

a

⎛
⎝

c∫

t

ur

⎞
⎠

θ
r
⎛
⎝

t∫

a

v1−p′
⎞
⎠

θ
r ′

v1−p′
(t)dt

⎞
⎟⎠

1
θ

,
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where 1
θ

= 1
r − 1

p .
The results are the following ones.

Theorem 1 Let p, q, r with 0 < q < p, 1 ≤ p < ∞ and p ≤ r ≤ ∞. Let α be a
positive function in (a, b) such that

inf
t∈(ρ,ν)

α(t) > 0 (1.9)

for all ρ, ν with a < ρ < ν < b. Let us suppose that for all e ∈ (a, b) and all
measurable sets � ⊂ (e, b), the function α(t)‖χ(e,t)u‖r verifies

inf
t∈�

{α(t)‖χ(e,t)u‖r } = inf
t∈(ρ1,ρ2)

{α(t)‖χ(e,t)u‖r }, (1.10)

where ρ1 = inf � and ρ2 = sup�. Then, (1.8) holds for all nonnegative functions
f if and only if � ∈ Lη,∞(w), where 1

η
= 1

q − 1
p . Moreover, the best constant C in

inequality (1.8) verifies

2
−1
p ‖�‖η,∞;w ≤ C ≤ (‖�‖η

η,∞;w + 2p4(1+ 1
r )p + 2p4

p
r K (r , p)p)

1
q

if r < ∞ and

2
−1
p ‖�‖η,∞;w ≤ C ≤ (2η‖�‖η

η,∞;w + 8p + 2p)
1
q

if r = ∞.

Theorem 2 Let p, q, r with 0 < q < p and 1 < r < p < ∞. Let α be a positive
monotone function in (a, b) and let us suppose that (1.10) holds. Then, the weighted
iterated weak-type modified Hardy inequality (1.8) holds for all nonnegative functions
f if and only if �,� ∈ Lη,∞(w), where 1

η
= 1

q − 1
p . Moreover, the best constant C

in (1.8) verifies

max{2−1
p ‖�‖η,∞;w, 2

−1
p r

(
p′

θ

) 1
r ′ ‖�‖η,∞;w} ≤ C

≤ (‖�‖η
η,∞,w + ‖�‖η

η,∞;w + 2p4(1+ 1
r )p + 2p4

p
r C p

r ,p)
1
q ,

where Cr ,p = r
1
r (p′)

1
r ′ .

Observe that condition (1.10) holds if the function α(t)‖χ(e,t)u‖r is monotone or
increases in an interval (e, x0) and decreases in (x0, b). In the same way, condition
(1.9) holds, for instance, if α is a positive monotone function.

As consequences of Theorems 1 and 2 we get the results for the weighted weak-
type bilinear modified Hardy inequalities. In order to state them, we define the next
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functions on (a, b):

αi (x) = sup
c>x

(
inf
(x,c)

β

)⎛
⎝

c∫

x

w

⎞
⎠

1
pi

, i = 1, 2,

�1(x) = sup
a<e<c<x<d<b

(
inf

t∈(c,d)
α1(t)‖χ(e,t)v

−1
p1
1 ‖p′

1

)

×
⎛
⎝

d∫

c

w

⎞
⎠

1
p2

‖χ(a,e)v
− 1

p2
2 ‖p′

2
,

�2(x) = sup
a<e<c<x<d<b

(
inf

t∈(c,d)
α2(t)‖χ(e,t)v

−1
p2
2 ‖p′

2

)

×
⎛
⎝

d∫

c

w

⎞
⎠

1
p1

‖χ(a,e)v
− 1

p1
1 ‖p′

1
,

�1(x) = sup
a<c<x<d<b

(
inf

t∈(c,d)
α1(t)

)⎛
⎝

d∫

c

w

⎞
⎠

1
p2

×
⎛
⎜⎝

c∫

a

⎛
⎝

c∫

t

v
1−p′

1
1

⎞
⎠

θ

p′1
⎛
⎝

t∫

a

v
1−p′

2
2

⎞
⎠

θ
p1

v
1−p′

2
2 (t)dt

⎞
⎟⎠

1
θ

,

�2(x) = sup
a<c<x<d<b

(
inf

t∈(c,d)
α2(t)

)⎛
⎝

d∫

c

w

⎞
⎠

1
p1

×
⎛
⎜⎝

c∫

a

⎛
⎝

c∫

t

v
1−p′

2
2

⎞
⎠

θ

p′2
⎛
⎝

t∫

a

v
1−p′

1
1

⎞
⎠

θ
p2

v
1−p′

1
1 (t)dt

⎞
⎟⎠

1
θ

,

where 1
θ

= 1
p′
2

− 1
p1

= 1
p′
1

− 1
p2

= 1 − 1
p2

− 1
p1
.

The theorems read as follows.

Theorem 3 Let 0 < q < p1, p2 < ∞, p1, p2 ≥ 1, 1
p1

+ 1
p2

< 1
q and p2 ≤ p′

1. Let
w, v1, v2, β be positive measurable functions on (a, b) with β monotone. Assume that
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the functions αi verify (1.9) and that for all e ∈ (a, b) and all measurable sets � ⊂
(e, b), the functions αi (t)‖χ(e,t)v

−1
pi
i ‖p′

i
, i=1,2, verify (1.10). Then the weighted weak-

type bilinear modified Hardy inequality (1.7) holds if and only if �1,�2 ∈ Lη,∞(w),
where 1

η
= 1

q − 1
p1

− 1
p2
.

Theorem 4 Let 0 < q < p1, p2 < ∞, p1, p2 ≥ 1, 1
p1

+ 1
p2

< 1
q and p2 > p′

1. Let
w, v1, v2, β be positive measurable functions on (a, b) with β monotone. Assume that
the functions αi are monotone and that for all e ∈ (a, b) and all measurable sets � ⊂
(e, b), the functions αi (t)‖χ(e,t)v

−1
pi
i ‖p′

i
, i=1,2, verify (1.10). Then the weighted weak-

type bilinear modified Hardy inequality (1.7) holds if and only if �1,�2, �1, �2 ∈
Lη,∞(w), where 1

η
= 1

q − 1
p1

− 1
p2
.

The proofs of Theorems 1 and 2 are included in Sects. 2 and 3, respectively, while
Sect. 4 contains the proofs of Theorems 2 and 4.

2 Proof of Theorem 1

First of all, let us prove the necessity of the condition. Assume that the weak-type
inequality (1.8) holds and let us see that � ∈ Lη,∞(w). Let λ > 0 and Sλ = {x ∈
(a, b) : �(x) > λ}. We will prove that

λ

⎛
⎜⎝
∫

Sλ

w

⎞
⎟⎠

1
η

≤ 2
1
p C,

where C is the constant in (1.8). Let K be a compact subset of Sλ. For all z ∈ K ,
z ∈ Sλ and then �(z) > λ. This implies the existence of cz, dz, ez with ez < cz < dz
such that z ∈ (cz, dz) and

inf
t∈(cz ,dz)

[
α(t)‖χ(ez ,t)u‖r

]
⎛
⎜⎝

dz∫

cz

w

⎞
⎟⎠

1
p ⎛
⎝

ez∫

a

v1−p′
⎞
⎠

1
p′

> λ. (2.1)

Then, K ⊂ ⋃
z∈K (cz, dz). Since K is compact, there are (cz1 , dz1), (cz2 , dz2) . . .

(czN , dzN ) such that K ⊂ ⋃N
j=1(cz j , dz j ). We can also suppose that

N∑
j=1

χ(cz j ,dz j )
≤ 2χ∪N

j=1(cz j ,dz j )
.
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Let, for all j ∈ {1, 2, . . . , N } and x ∈ (a, b),

f j (x) =
⎛
⎜⎝ inf

y∈(cz j ,dz j )

[
α(y)‖χ(ez j ,y)

u‖r
]
⎛
⎜⎝

ez j∫

a

v1−p′

⎞
⎟⎠

⎞
⎟⎠

−p

v(x)−p′
χ(a,ez j )

(x)

and

f =
⎛
⎝

N∑
j=1

f j

⎞
⎠

1
p

.

Let ε with 0 < ε < 1. Let us see that

N⋃
j=1

(cz j , dz j ) ⊂
⎧⎨
⎩x ∈ (a, b) : α(x)

∥∥∥∥∥∥
χ(a,x)(t)u(t)

t∫

a

f

∥∥∥∥∥∥
r

> ε

⎫⎬
⎭ . (2.2)

Indeed, if z ∈ (cz j , dz j ), then

α(z)

∥∥∥∥∥∥
χ(a,z)(t)u(t)

t∫

a

f

∥∥∥∥∥∥
r

≥ α(z)

∥∥∥∥∥∥
χ(ez j ,z)

(t)u(t)

t∫

a

f

∥∥∥∥∥∥
r

≥ α(z)‖χ(ez j ,z)
(t)u(t)‖r

ez j∫

a

f

≥ α(z)‖χ(ez j ,z)
(t)u(t)‖r

ez j∫

a

f
1
p
j

=
α(z)‖χ(ez j ,z)

(t)u(t)‖r
ez j∫

a

v
− p′

p

inf
y∈(cz j ,dz j )

[α(y)‖χ(ez j ,y)
u‖r ]

ez j∫

a

v1−p′

≥ 1 > ε.
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This proves (2.2). Applying the weak-type inequality,

∫

∪N
j=1(cz j ,dz j )

w ≤
∫

{
x∈(a,b):α(x)

∥∥∥∥χ(a,x)(t)u(t)
t∫
a

f

∥∥∥∥
r
>ε

}
w ≤ Cq

εq
‖ f ‖qp,v.

Since the last inequality holds for all ε with 0 < ε < 1, letting ε → 1− we get

∫

∪N
j=1(cz j ,dz j )

w ≤ Cq‖ f ‖qp,v.

Let γ j = inf y∈(cz j ,dz j )
[α(y)‖χ(ez j ,y)

u‖r ]. Then the inequality above and (2.1) yield

∫

∪N
j=1(cz j ,dz j )

w ≤ Cq

⎛
⎝

b∫

a

⎛
⎝

N∑
j=1

f j (x)

⎞
⎠ v(x)dx

⎞
⎠

q
p

= Cq

⎛
⎜⎜⎝

b∫

a

N∑
j=1

v−p′
(x)χ(a,ez j )

(x)

γ
p
j

(∫ ez j

a
v1−p′

)p v(x)dx

⎞
⎟⎟⎠

q
p

= Cq

⎛
⎜⎜⎝

N∑
j=1

1

γ
p
j

(∫ ez j

a
v1−p′

)p

ez j∫

a

v1−p′

⎞
⎟⎟⎠

q
p

= Cq

⎛
⎜⎜⎜⎝

N∑
j=1

1

γ
p
j

(∫ ez j

a
v1−p′

)p−1

⎞
⎟⎟⎟⎠

q
p

≤ Cq

⎛
⎜⎝

N∑
j=1

1

λp

dz j∫

cz j

w

⎞
⎟⎠

q
p

= Cq

λq

⎛
⎜⎝

N∑
j=1

dz j∫

cz j

w

⎞
⎟⎠

q
p

≤ 2
q
p Cq

λq

⎛
⎜⎜⎝

∫

∪N
j=1(cz j ,dz j )

w

⎞
⎟⎟⎠

q
p

.

Then, we have

∫

∪N
j=1(cz j ,dz j )

w ≤ 2
q
p Cq

λq

⎛
⎜⎜⎝

∫

∪N
j=1(cz j ,dz j )

w

⎞
⎟⎟⎠

q
p

,
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i.e.,

λ

⎛
⎜⎜⎝

∫

∪N
j=1(cz j ,dz j )

w

⎞
⎟⎟⎠

1
η

≤ 2
1
p C .

The last inequality implies

λ

⎛
⎝
∫

K

w

⎞
⎠

1
η

≤ 2
1
p C .

Since the inequality above holds for all compact K ⊂ Sλ, the regularity of the measure
w(x)dx gives

λ

⎛
⎜⎝
∫

Sλ

w

⎞
⎟⎠

1
η

≤ 2
1
p C,

what proves that ‖�‖η,∞;w ≤ 2
1
p C , as we wished to show.

Now, let us prove the sufficiency of the condition. Let f be a positive function such
that

∫ b
a f pv = 1. Let λ > 0 and Oλ = {x ∈ (a, b) : α(x)‖χ(a,x)(t)u(t)

∫ t
a f ‖r > λ}.

Then,

∫

Oλ

w =
∫

Oλ∩{x∈(a,b):�(x)>λ
q
η }

w +
∫

Oλ∩{x∈(a,b):�(x)≤λ
q
η }

w = I + I I .

The estimation of I is as follows:

λq
∫

Oλ∩{x∈(a,b):�(x)>λ
q
η }

w ≤ sup
z>0

zη
∫

Oλ∩{x∈(a,b):�(x)>z}
w = ‖�‖η

η,∞;w.

Now, we will estimate I I . Assume first that r < ∞. Let us suppose that
∫ b
a f < ∞

and
∫ b
a

(∫ t
a f

)r
ur (t)dt < ∞, too. Let {xk} be the sequence defined by x0 = b and

xk+1∫

a

⎛
⎝

t∫

a

f

⎞
⎠

r

ur (t)dt =
xk∫

xk+1

⎛
⎝

t∫

a

f

⎞
⎠

r

ur (t)dt .
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The sequence {xk} decreases to a and verifies

xk∫

a

⎛
⎝

t∫

a

f

⎞
⎠

r

ur (t)dt = 4

xk+1∫

xk+2

⎛
⎝

t∫

a

f

⎞
⎠

r

ur (t)dt (2.3)

for all k. Let Ek = Oλ ∩ {x ∈ (a, b) : �(x) ≤ λ
q
η } ∩ (xk+1, xk). If x ∈ Ek , we have

λ < α(x)

⎛
⎝

x∫

a

⎛
⎝

t∫

a

f

⎞
⎠

r

ur (t)dt

⎞
⎠

1
r

≤ α(x)

⎛
⎝

xk∫

a

⎛
⎝

t∫

a

f

⎞
⎠

r

ur (t)dt

⎞
⎠

1
r

= 4
1
r α(x)

⎛
⎝

xk+1∫

xk+2

⎛
⎝

t∫

a

f

⎞
⎠

r

ur (t)dt

⎞
⎠

1
r

≤ 4
1
r α(x)

⎛
⎝

xk+1∫

xk+2

⎛
⎝

t∫

xk+2

f

⎞
⎠

r

ur (t)dt

⎞
⎠

1
r

+4
1
r α(x)

⎛
⎝

xk+1∫

xk+2

ur

⎞
⎠

1
r xk+2∫

a

f .

(2.4)

It is clear that, for each k, Ek = Ek,1 ∪ Ek,2, where

Ek,1 =

⎧⎪⎨
⎪⎩
x ∈ Ek : α(x)

⎛
⎝

xk+1∫

xk+2

⎛
⎝

t∫

xk+2

f

⎞
⎠

r

ur (t)dt

⎞
⎠

1
r

>
λ

2 · 4 1
r

⎫⎪⎬
⎪⎭

and

Ek,2 =

⎧⎪⎨
⎪⎩
x ∈ Ek : α(x)

⎛
⎝

xk+1∫

xk+2

ur

⎞
⎠

1
r xk+2∫

a

f >
λ

2 · 4 1
r

⎫⎪⎬
⎪⎭

.
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Since p ≤ r , by Theorem A (i), we have that

⎛
⎝

xk+1∫

xk+2

⎛
⎝

t∫

xk+2

f

⎞
⎠

r

ur (t)dt

⎞
⎠

1
r

≤ K (r , p) sup
xk+2<γ<xk+1

⎛
⎝

xk+1∫

γ

ur

⎞
⎠

1
r

‖χ(xk+2,γ )v
− 1

p ‖p′

⎛
⎝

xk+1∫

xk+2

f pv

⎞
⎠

1
p

.

(2.5)

Let us see that the supremum in (2.5) is finite. Let γ ∈ (xk+2, xk+1). As� ∈ Lη,∞(w),
� is finite almost everywhere. Let ρ, ν with xk+1 < ρ < ν < b and let t ∈ (ρ, ν)

such that �(t) < ∞. Then,

1 + �(t) >

⎛
⎜⎝ inf

x∈(ρ,ν)
α(x)

⎛
⎝

x∫

γ

ur

⎞
⎠

1
r
⎞
⎟⎠

⎛
⎝

ν∫

ρ

w

⎞
⎠

1
p

‖χ(a,γ )v
− 1

p ‖p′ .

Thus, there is x̃ ∈ (ρ, ν), which depends on γ , such that

1 + �(t) > α(x̃)

⎛
⎝

x̃∫

γ

ur

⎞
⎠

1
r
⎛
⎝

ν∫

ρ

w

⎞
⎠

1
p

‖χ(a,γ )v
− 1

p ‖p′

≥ α(x̃)

⎛
⎝

xk+1∫

γ

ur

⎞
⎠

1
r
⎛
⎝

ν∫

ρ

w

⎞
⎠

1
p

‖χ(xk+2,γ )v
− 1

p ‖p′ .

Then, applying (1.9), we get

⎛
⎝

xk+1∫

γ

ur

⎞
⎠

1
r

‖χ(xk+2,γ )v
− 1

p ‖p′ <
1 + �(t)

(
inf

(ρ,ν)
α

)(∫ ν

ρ

w

) 1
p

< ∞.

Therefore, the supremum in (2.5) is finite. Then, for all x ∈ Ek,1 we have

λ

2 · 4 1
r K (r , p)

< α(x) sup
xk+2<γ<xk+1

⎛
⎝

xk+1∫

γ

ur

⎞
⎠

1
r

‖χ(xk+2,γ )v
− 1

p ‖p′

⎛
⎝

xk+1∫

xk+2

f pv

⎞
⎠

1
p

.
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Let ε > 1. For every k, there is γk ∈ (xk+2, xk+1) such that

sup
xk+2<γ<xk+1

⎛
⎝

xk+1∫

γ

ur

⎞
⎠

1
r

‖χ(xk+2,γ )v
− 1

p ‖p′

< ε

⎛
⎝

xk+1∫

γk

ur

⎞
⎠

1
r

‖χ(xk+2,γk )v
− 1

p ‖p′ .

Therefore, for all x ∈ Ek,1 the following inequality holds:

λ

2 · 4 1
r K (r , p)

< εα(x)

⎛
⎝

xk+1∫

γk

ur

⎞
⎠

1
r

‖χ(xk+2,γk )v
− 1

p ‖p′

⎛
⎝

xk+1∫

xk+2

f pv

⎞
⎠

1
p

.

Since xk+1 < x , we get

λ

2 · 4 1
r K (r , p)

< εα(x)

⎛
⎝

x∫

γk

ur

⎞
⎠

1
r

‖χ(a,γk )v
− 1

p ‖p′

⎛
⎝

xk+1∫

xk+2

f pv

⎞
⎠

1
p

.

The last inequality holds for all x ∈ Ek,1. Then,

λ

2 · 4 1
r K (r , p)

≤ ε inf
x∈Ek,1

⎛
⎜⎝α(x)

⎛
⎝

x∫

γk

ur

⎞
⎠

1
r
⎞
⎟⎠ ‖χ(a,γk )v

− 1
p ‖p′

⎛
⎝

xk+1∫

xk+2

f pv

⎞
⎠

1
p

.
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Now, if we multiply both sides of this inequality by

(∫
Ek,1

w

) 1
p

and apply condition

(1.10), we have

λ

2 · 4 1
r K (r , p)ε

⎛
⎜⎝

∫

Ek,1

w

⎞
⎟⎠

1
p

≤ inf
x∈(ρ1

k ,ρ2
k )

⎧⎪⎨
⎪⎩

α(x)

⎛
⎝

x∫

γk

ur

⎞
⎠

1
r

⎫⎪⎬
⎪⎭

×

⎛
⎜⎜⎝

ρ2
k∫

ρ1
k

w

⎞
⎟⎟⎠

1
p

‖χ(a,γk )v
− 1

p ‖p′

⎛
⎝

xk+1∫

xk+2

f pv

⎞
⎠

1
p

≤ λ
q
η

⎛
⎝

xk+1∫

xk+2

f pv

⎞
⎠

1
p

,

where ρ1
k = inf Ek,1, ρ2

k = sup Ek,1 and the last inequality holds since

inf
x∈(ρ1

k ,ρ2
k )

⎧⎪⎨
⎪⎩

α(x)

⎛
⎝

x∫

γk

ur

⎞
⎠

1
r

⎫⎪⎬
⎪⎭

⎛
⎜⎜⎝

ρ2
k∫

ρ1
k

w

⎞
⎟⎟⎠

1
p

‖χ(a,γk )v
− 1

p ‖p′ ≤ �(t) ≤ λ
q
η

for all t ∈ Ek,1. Thus,

λ

⎛
⎜⎝

∫

Ek,1

w

⎞
⎟⎠

1
p

≤ ε2 · 4 1
r K (r , p)λ

q
η

⎛
⎝

xk+1∫

xk+2

f pv

⎞
⎠

1
p

.

Since this inequality holds for every ε > 1, letting ε → 1+ and raising to p we get

∫

Ek,1

w ≤ 2p4
p
r K (r , p)pλ

qp
η

−p

xk+1∫

xk+2

f pv.

Now, summing up in k, we have

∫

∪k Ek,1

w ≤ 2p · 4 p
r K (r , p)p

λq

b∫

a

f pv = 2p · 4 p
r K (r , p)p

λq
,
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what finishes the estimation of
∫
∪k Ek,1

w. In order to estimate
∫
∪k Ek,2

w, we will use
the technique, due to Lai [15], that we have already used in [7]. Let us define the

sequence {y′
m} as y′

0 = b and
∫ y′

m+1
a f = ∫ y′

m
y′
m+1

f . Let {yn} be the subsequence of {y′
m}

defined by y0 = y′
0 and by deleting y′

m+1 if [y′
m+1, y

′
m) ∩ {xk} = ∅. In this way, if

y′
m+1 = yn+1 ≤ xk+2 < yn , then xk+2 ≤ y′

m and yn+2 ≤ y′
m+2, which yields

xk+2∫

a

f ≤
y′
m∫

a

f = 4
∫ y′

m+1

y′
m+2

f ≤ 4

yn+1∫

yn+2

f . (2.6)

Let En
2 = ⋃

{k:yn+1≤xk+2<yn} Ek,2. If x ∈ En
2 , there exists k with yn+1 ≤ xk+2 < yn

such that x ∈ Ek,2 and then, by (2.6),

λ

2 · 4 1
r

< α(x)

⎛
⎝

xk+1∫

xk+2

ur

⎞
⎠

1
r xk+2∫

a

f ≤ 4α(x)

⎛
⎝

x∫

yn+1

ur

⎞
⎠

1
r yn+1∫

yn+2

f . (2.7)

Since (2.7) holds for all x ∈ En
2 , we have

λ

2 · 41+ 1
r

≤ inf
x∈En

2

⎡
⎢⎣α(x)

⎛
⎝

x∫

yn+1

ur

⎞
⎠

1
r
⎤
⎥⎦

yn+1∫

yn+2

f . (2.8)

Multiplying both sides of (2.8) by
(∫

En
2
w
) 1

p
, applying Holder’s inequality and

(1.10), we get

λ

2 · 41+ 1
r

⎛
⎜⎝
∫

En
2

w

⎞
⎟⎠

1
p

≤ inf
x∈(ρn

1 ,ρn
2 )

⎡
⎢⎣α(x)

⎛
⎝

x∫

yn+1

ur

⎞
⎠

1
r
⎤
⎥⎦

×
⎛
⎜⎝

ρn
2∫

ρn
1

w

⎞
⎟⎠

1
p

‖χ(a,yn+1)v
− 1

p ‖p′

⎛
⎝

yn+1∫

yn+2

f pv

⎞
⎠

1
p

≤ λ
q
η

⎛
⎝

yn+1∫

yn+2

f pv

⎞
⎠

1
p

,

(2.9)
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where we have used that

inf
x∈(ρn

1 ,ρn
2 )

⎡
⎢⎣α(x)

⎛
⎝

x∫

yn+1

ur

⎞
⎠

1
r
⎤
⎥⎦

⎛
⎜⎝

ρn
2∫

ρn
1

w

⎞
⎟⎠

1
p

‖χ(a,yn+1)v
− 1

p ‖p′ ≤ �(t)

for all t ∈ En
2 .

Then, raising to the p in (2.9) and summing, we get

∫

∪k Ek,2

w =
∞∑
k=0

∫

Ek,2

w =
∞∑
n=0

∑
{k:yn+1≤xk+2<yn}

∫

Ek,2

w =
∞∑
n=0

∫

En
2

w

≤ 2p · 4(1+ 1
r )p

λq

⎛
⎝

b∫

a

f pv

⎞
⎠ = 2p · 4(1+ 1

r )p

λq
,

(2.10)

which implies

I I ≤
∫

∪k Ek,1

w +
∫

∪k Ek,2

w ≤ 1

λq
(2p · 4(1+ 1

r )p + 2p · 4 p
r K (r , p)p).

This finishes the proof of the sufficiency in the case r < ∞. Now, we will deal with
the case r = ∞. Let us consider two sequences {an} and {bn}, with {an} decreasing to
a and {bn} increasing to b. Then,� ∈ Lη,∞(w) implies that�n ∈ Lη,∞(w, (an, bn)),
where

�n(x) = sup
an<e<c<x<d<bn

(
inf

t∈(c,d)

(
α(t)‖χ(e,t)u‖∞

))

×
⎛
⎝

d∫

c

w

⎞
⎠

1
p

‖χ(an ,e)v
− 1

p ‖p′ .

For fixed n, there is r0 > p such that (bn − an)
1
r ≤ 2 for all r ≥ r0. Then, if r ≥ r0

and an < e < x < bn , we have

‖χ(e,x)u‖r =
⎛
⎝

x∫

e

|u|r
⎞
⎠

1
r

≤ ‖χ(e,x)u‖∞(bn − an)
1
r ≤ 2‖χ(e,x)u‖∞.
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Therefore, if we define �n,r (x) as

�n,r (x) = sup
an<e<c<x<d<bn

(
inf

t∈(c,d)

(
α(t)‖χ(e,t)u‖r

))

×
⎛
⎝

d∫

c

w

⎞
⎠

1
p

‖χ(an ,e)v
− 1

p ‖p′ ,

we have that �n,r ∈ Lη,∞(w, (an, bn)) for all r ≥ r0 and their norms are bounded by
2‖�‖η,∞,w. Now, applying the Theorem in the case which we have already proved,
we have that the weak-type inequality

∥∥∥∥∥∥
χ(an ,bn)(x)α(x)

∥∥∥∥∥∥
χ(an ,x)(t)u(t)

t∫

an

f

∥∥∥∥∥∥
r

∥∥∥∥∥∥
q,∞;w

≤ Cr ,p,q‖χ(an ,bn) f ‖p,v (2.11)

holds, where Cr ,p,q = (2η‖�‖η
η,∞,w + 2p4

p
r (4p + K (r , p)p))

1
q . Since

∥∥∥∥∥∥
χ(an ,x)(t)u(t)

t∫

an

f

∥∥∥∥∥∥
∞

= lim
r→∞

∥∥∥∥∥∥
χ(an ,x)(t)u(t)

t∫

an

f

∥∥∥∥∥∥
r

for every x , by Fatou’s lemma we have

∥∥∥∥∥∥
χ(an ,bn)(x)α(x)

∥∥∥∥∥∥
χ(an ,x)(t)u(t)

t∫

an

f

∥∥∥∥∥∥
∞

∥∥∥∥∥∥
q,∞;w

≤ lim inf
r→∞

∥∥∥∥χ(an ,bn)(x)α(x)

∥∥∥∥χ(an ,x)(t)u(t)
∫ t

an
f

∥∥∥∥
r

∥∥∥∥
q,∞;w

.

(2.12)

Now, from (2.11) and (2.12) we get

∥∥∥∥∥∥
χ(an ,bn)(x)α(x)

∥∥∥∥∥∥
χ(an ,x)(t)u(t)

t∫

an

f

∥∥∥∥∥∥
∞

∥∥∥∥∥∥
q,∞;w

≤ Cp,q‖χ(an ,bn) f ‖p,v, (2.13)

where Cp,q = (2η‖�‖η
η,∞,w + 8p + 2p)

1
q . Finally, since (2.13) holds for all n with

a constant independent of n, letting n tend to infinity and applying the monotone
convergence theorem, we get (1.8) in the case r = ∞.
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3 Proof of Theorem 2

The necessity of condition � ∈ Lη,∞(w) follows as in the proof of Theorem 1.

Therefore, the best constant C in (1.8) verifies C ≥ 2
−1
p ‖�‖η,∞,w. Let us prove now

that (1.8) implies � ∈ Lη,∞(w). Let λ > 0 and Sλ = {x ∈ (a, b) : �(x) > λ}. Let
K be a compact subset of Sλ. If z ∈ K , there exist cz, dz with cz < z < dz such that

(
inf

(cz ,dz)
α

)⎛
⎜⎝

dz∫

cz

w

⎞
⎟⎠

1
p
⎛
⎜⎝

cz∫

a

⎛
⎝

cz∫

t

ur

⎞
⎠

θ
r
⎛
⎝

t∫

a

v1−p′
⎞
⎠

θ
r ′

v1−p′
(t)dt

⎞
⎟⎠

1
θ

> λ. (3.1)

Since K is compact, there exist z1, z2, . . . , zN ∈ K such that K ⊂
N⋃
j=1

(cz j , dz j ) and

N∑
j=1

χ(cz j ,dz j )
≤ 2χ∪N

j=1(cz j ,dz j )
. (3.2)

Let, for each j ∈ {1, 2, . . . , N },

f j (x) =
(

inf
(cz j ,dz j )

α

)−p

χ(a,cz j )
(x)

⎛
⎜⎝

cz j∫

x

ur

⎞
⎟⎠

θ
r ⎛
⎝

x∫

a

v1−p′
⎞
⎠

θ
r ′

v−p′
(x)

×
⎛
⎜⎝

cz j∫

a

(∫ cz j

t
ur

) θ
r

⎛
⎝

t∫

a

v1−p′
⎞
⎠

θ
r ′

v1−p′
(t)dt

⎞
⎟⎠

− p
r

and

f =
⎛
⎝

N∑
j=1

f j

⎞
⎠

1
p

.

If z ∈ (cz j , dz j ) and γ j = inf(cz j ,dz j ) α, we have

α(z)

⎛
⎝

z∫

a

⎛
⎝

t∫

a

f

⎞
⎠

r

ur (t)dt

⎞
⎠

1
r

≥ α(z)

⎛
⎜⎝

cz j∫

a

⎛
⎝

t∫

a

f
1
p
j

⎞
⎠

r

ur (t)dt

⎞
⎟⎠

1
r
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= α(z)

γ j

(∫ cz j

a

(∫ cz j

t
ur

) θ
r
(∫ t

a
v1−p′

) θ
r ′

v1−p′
(t)dt

) 1
r

×

⎛
⎜⎜⎝

cz j∫

a

⎛
⎜⎜⎝

t∫

a

⎛
⎜⎝

cz j∫

x

ur

⎞
⎟⎠

θ
rp ⎛

⎝
x∫

a

v1−p′
⎞
⎠

θ
r ′ p

v1−p′
(x)dx

⎞
⎟⎟⎠

r

ur (t)dt

⎞
⎟⎟⎠

1
r

.

(3.3)

If h(x) =
(∫ cz j

x
ur

) θ
rp

(∫ x

a
v1−p′

) θ
r ′ p

v1−p′
(x), the last factor in (3.3) can be writ-

ten as follows

⎛
⎜⎝

cz j∫

a

⎛
⎝

t∫

a

h(x)dx

⎞
⎠

r

ur (t)dt

⎞
⎟⎠

1
r

=
⎛
⎜⎝

cz j∫

a

⎛
⎝

t∫

a

⎡
⎣
⎛
⎝

s∫

a

h

⎞
⎠

r⎤
⎦

′

(s)ds

⎞
⎠ ur (t)dt

⎞
⎟⎠

1
r

= r
1
r

⎛
⎜⎝

cz j∫

a

⎛
⎜⎝

t∫

a

⎛
⎝

s∫

a

h

⎞
⎠

r−1

h(s)ds

⎞
⎟⎠ ur (t)dt

⎞
⎟⎠

1
r

= r
1
r

⎛
⎜⎝

cz j∫

a

⎛
⎜⎝

cz j∫

s

ur (t)dt

⎞
⎟⎠

⎛
⎝

s∫

a

h

⎞
⎠

r−1

h(s)ds

⎞
⎟⎠

1
r

.

(3.4)

Let us estimate now
∫ s

a
h:

s∫

a

h(x)dx =
s∫

a

(∫ cz j

x
ur

) θ
rp

⎛
⎝

x∫

a

v1−p′
⎞
⎠

θ
r ′ p

v1−p′
(x)dx

≥
⎛
⎜⎝

cz j∫

s

ur

⎞
⎟⎠

θ
rp s∫

a

⎛
⎝

x∫

a

v1−p′
⎞
⎠

θ
r ′ p

v1−p′
(x)dx

= rp′

θ

⎛
⎜⎝

cz j∫

s

ur

⎞
⎟⎠

θ
rp ⎛

⎝
x∫

a

v1−p′
⎞
⎠

θ
rp′

.
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Taking this estimate to (3.4), we get

⎛
⎜⎝

cz j∫

a

⎛
⎝

t∫

a

h(x)dx

⎞
⎠

r

ur (t)dt

⎞
⎟⎠

1
r

≥ r
1
r

(
rp′

θ

) 1
r ′

×

⎛
⎜⎜⎜⎝

cz j∫

a

⎛
⎜⎝

cz j∫

s

ur

⎞
⎟⎠

⎛
⎜⎜⎝

⎛
⎜⎝

cz j∫

s

ur

⎞
⎟⎠

θ
rp ⎛

⎝
x∫

a

v1−p′
⎞
⎠

θ
rp′

⎞
⎟⎟⎠

r−1

h(s)ds

⎞
⎟⎟⎟⎠

1
r

= r

(
p′

θ

) 1
r ′

⎛
⎜⎜⎝

cz j∫

a

⎛
⎜⎝

cz j∫

s

ur

⎞
⎟⎠

θ
r ⎛
⎝

s∫

a

v1−p′
⎞
⎠

θ
r ′

v1−p′
(s)ds

⎞
⎟⎟⎠

1
r

.

Going back to (3.3) we get that for all z ∈ (cz j , dz j ),

α(z)

⎛
⎝

z∫

a

⎛
⎝

t∫

a

f

⎞
⎠

r

ur (t)dt

⎞
⎠

1
r

≥ r

(
p′

θ

) 1
r ′ α(z)

γ j
≥ r

(
p′

θ

) 1
r ′

.

Therefore, by (1.8), we have

∫

∪N
j=1(cz j ,dz j )

w ≤ Cq

(
r
(
p′
θ

) 1
r ′
)q ‖ f ‖qp,v. (3.5)

Let us estimate ‖ f ‖qp,v . By definition of f , (3.1) and (3.2),

‖ f ‖qp,v =

⎡
⎢⎢⎢⎢⎢⎢⎣

∫ b

a

N∑
j=1

(∫ cz j

x
ur

) θ
r
(∫ x

a
v1−p′

) θ
r ′

v1−p′
(x)χ(a,cz j )

(x)

γ
p
j

(∫ cz j

a

(∫ cz j

s
ur

) θ
r
(∫ s

a
v1−p′

) θ
r ′

v1−p′
(s)ds

) p
r
dx

⎤
⎥⎥⎥⎥⎥⎥⎦

q
p

=

⎡
⎢⎢⎢⎣

N∑
j=1

γ
−p
j

⎛
⎜⎜⎝

cz j∫

a

⎛
⎜⎝

cz j∫

s

ur

⎞
⎟⎠

θ
r ⎛
⎝

s∫

a

v1−p′
⎞
⎠

θ
r ′

v1−p′
(s)ds

⎞
⎟⎟⎠

− p
θ

⎤
⎥⎥⎥⎦

q
p

≤
⎛
⎜⎝

N∑
j=1

1

λp

dz j∫

cz j

w

⎞
⎟⎠

q
p

≤ 2
q
p

λq

⎛
⎜⎜⎝

∫

∪N
j=1(cz j ,dz j )

w

⎞
⎟⎟⎠

q
p

.

(3.6)
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Finally, from (3.5) and (3.6) we get

λq

⎛
⎜⎜⎝

∫

∪N
j=1(cz j ,dz j )

w

⎞
⎟⎟⎠

q
η

≤ 2
q
p Cq

(
r
(
p′
θ

) 1
r ′
)q ,

which implies

λ

⎛
⎝
∫

K

w

⎞
⎠

1
η

≤ 2
1
p C

r
(
p′
θ

) 1
r ′

.

Since the inequality above holds for all compact set K ⊂ Sλ, we have that � ∈
Lη,∞(w) and C ≥ 2

−1
p r

(
p′
θ

) 1
r ′ ‖�‖η,∞;w.

Let us prove now the sufficiency. Let f be a nonnegative function with f ∈ L1 and∫ b
a f pv = 1. Let λ > 0 and

Oλ =
⎧⎨
⎩x ∈ (a, b) : α(x)‖χ(a,x)(t)u(t)

t∫

a

f ‖r > λ

⎫⎬
⎭ .

Then, as in the proof of Theorem 1,

∫

Oλ

w =
∫

Oλ∩{x∈(a,b):�(x)>λ
q
η }

w +
∫

Oλ∩{x∈(a,b):�(x)≤λ
q
η }

w = I + I I .

The estimation of I can be done as in the case p ≤ r . For the estimation of I I , we
work as follows:

I I =
∫

Oλ∩{x∈(a,b):�(x)≤λ
q
η ,�(x)>λ

q
η }

w +
∫

Oλ∩{x∈(a,b):�(x)≤λ
q
η ,�(x)≤λ

q
η }

w

= I I I + I V .

Firstly,

I I I ≤
∫

Oλ∩{x∈(a,b):�(x)>λ
q
η }

w
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and then

∫

Oλ∩{x∈(a,b):�(x)>λ
q
η }

w ≤ ‖�‖η

η,∞;w
λq

= ‖�‖η

η,∞;w
λq

‖ f ‖qp,v.

Now, we will work on I V . Let {xk} be the sequence defined as in the proof of
Theorem 1 and

Ek = Oλ ∩ (xk+1, xk) ∩ {x ∈ (a, b) : �(x) ≤ λ
q
η , �(x) ≤ λ

q
η }.

If x ∈ Ek ,

λ < 4
1
r α(x)

⎛
⎝

xk+1∫

xk+2

⎛
⎝

t∫

xk+2

f

⎞
⎠

r

ur (t)dt

⎞
⎠

1
r

+ 4
1
r α(x)

⎛
⎝

xk+1∫

xk+2

ur

⎞
⎠

1
r ∫ xk+2

a
f .

It is clear that, for each k, Ek = Ek,1 ∪ Ek,2, where

Ek,1 =

⎧⎪⎨
⎪⎩
x ∈ Ek : α(x)

⎛
⎝

xk+1∫

xk+2

⎛
⎝

t∫

xk+2

f

⎞
⎠

r

ur (t)dt

⎞
⎠

1
r

>
λ

2 · 4 1
r

⎫⎪⎬
⎪⎭

and

Ek,2 =

⎧⎪⎨
⎪⎩
x ∈ Ek : α(x)

⎛
⎝

xk+1∫

xk+2

ur

⎞
⎠

1
r xk+2∫

a

f >
λ

2 · 4 1
r

⎫⎪⎬
⎪⎭

.

Since r < p, by Theorem A (i i) we have

⎛
⎝

xk+1∫

xk+2

⎛
⎝

t∫

xk+2

f

⎞
⎠

r

ur (t)dt

⎞
⎠

1
r

≤ Cr ,p

⎛
⎜⎝

xk+1∫

xk+2

⎛
⎝

xk+1∫

t

ur

⎞
⎠

θ
r
⎛
⎝

t∫

xk+2

v1−p′
⎞
⎠

θ
r ′

v1−p′
(t)dt

⎞
⎟⎠

1
θ

×
⎛
⎝

xk+1∫

xk+2

f pv

⎞
⎠

1
p

,

(3.7)
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where Cr ,p = r
1
r (p′)

1
r ′ . The first integral in the right-hand side of (3.7) is finite due

to the monotonicity of α and the proof of this fact follows the pattern of the one in
Theorem 1.

If x ∈ Ek,1,

λ < 2 · 4 1
r Cr ,pα(x)

⎛
⎜⎝

xk+1∫

xk+2

⎛
⎝

xk+1∫

t

ur

⎞
⎠

θ
r
⎛
⎝

t∫

xk+2

v1−p′
⎞
⎠

θ
r ′

v1−p′
(t)dt

⎞
⎟⎠

1
θ

×
⎛
⎝

xk+1∫

xk+2

f pv

⎞
⎠

1
p

,

which implies, due to the monotonicity of α,

λ ≤ 2 · 4 1
r Cr ,p

⎛
⎜⎝

xk+1∫

xk+2

⎛
⎝

xk+1∫

t

ur

⎞
⎠

θ
r
⎛
⎝

t∫

xk+2

v1−p′
⎞
⎠

θ
r ′

v1−p′
(t)dt

⎞
⎟⎠

1
θ

×
(

inf
(ρ1

k ,ρ2
k )

α

)⎛
⎝

xk+1∫

xk+2

f pv

⎞
⎠

1
p

.

If we multiply both terms of the last inequality by

(∫
Ek,1

w

) 1
p

, we get

⎛
⎜⎝

∫

Ek,1

w

⎞
⎟⎠

1
p

≤ 2 · 4 1
r Cr ,p

λ

(
inf

(ρ1
k ,ρ2

k )

α

)⎛
⎜⎜⎝

ρ2
k∫

ρ1
k

w

⎞
⎟⎟⎠

1
p

×
⎛
⎜⎝
∫ xk+1

xk+2

⎛
⎝

xk+1∫

t

ur

⎞
⎠

θ
r
⎛
⎝

t∫

xk+2

v1−p′
⎞
⎠

θ
r ′

v1−p′
(t)dt

⎞
⎟⎠

1
θ ⎛
⎝

xk+1∫

xk+2

f pv

⎞
⎠

1
p

≤ 2 · 4 1
r Cr ,p

λ

(
inf

(ρ1
k ,ρ2

k )

α

)⎛
⎜⎜⎝

ρ2
k∫

ρ1
k

w

⎞
⎟⎟⎠

1
p
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×

⎛
⎜⎜⎜⎝

ρ1
k∫

a

⎛
⎜⎝

ρ1
k∫

t

ur

⎞
⎟⎠

θ
r ⎛
⎝

t∫

a

v1−p′
⎞
⎠

θ
r ′

v1−p′
(t)dt

⎞
⎟⎟⎟⎠

1
θ ⎛
⎝

xk+1∫

xk+2

f pv

⎞
⎠

1
p

≤ 2 · 4 1
r Cr ,p

λ
λ

q
η

⎛
⎝

xk+1∫

xk+2

f pv

⎞
⎠

1
p

,

where the last inequality holds since

(
inf

(ρ1
k ,ρ2

k )

α

)⎛
⎜⎜⎝

ρ2
k∫

ρ1
k

w

⎞
⎟⎟⎠

1
p
⎛
⎜⎜⎜⎝

ρ1
k∫

a

⎛
⎜⎝

ρ1
k∫

t

ur

⎞
⎟⎠

θ
r ⎛
⎝

t∫

a

v1−p′
⎞
⎠

θ
r ′

v1−p′
(t)dt

⎞
⎟⎟⎟⎠

1
θ

≤ �(t) for all t ∈ Ek,1. Raising to p, we have that

∫

Ek,1

w ≤ 2p · 4 p
r C p

r ,p

λ
p− pq

η

⎛
⎝

xk+1∫

xk+2

f pv

⎞
⎠ = 2p · 4 p

r C p
r ,p

λq

⎛
⎝

xk+1∫

xk+2

f pv

⎞
⎠ .

Now, summing up in k,

∫

∪k Ek,1

w ≤ 2p · 4 p
r C p

r ,p

λq

⎛
⎝

b∫

a

f pv

⎞
⎠ = 2p · 4 p

r C p
r ,p

λq
.

The estimation of
∫
∪k Ek,2

w is the same as the one in Theorem 1, because the relation-
ship between r and p is not taken into account. Therefore, the proof is complete.

4 Proofs of Theorems 3 and 4

Working as in ([7], proof of Theorem 3), we have that (1.8) is equivalent to the two
weighted weak-type bilinear inequalities

∥∥∥∥∥∥
β(x)

x∫

a

f (t)

⎛
⎝

t∫

a

g

⎞
⎠ dt

∥∥∥∥∥∥
q,∞;w

≤ C‖ f ‖p1,v1‖g‖p2,v2 (4.1)
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and

∥∥∥∥∥∥
β(x)

x∫

a

g(t)

⎛
⎝

t∫

a

f

⎞
⎠ dt

∥∥∥∥∥∥
q,∞;w

≤ C‖ f ‖p1,v1‖g‖p2,v2 . (4.2)

Inequality (4.1) is equivalent to

∥∥∥∥∥∥
β(x)

x∫

a

h

∥∥∥∥∥∥
q,∞;w

≤ C‖h‖p1,ṽ
g
1
, (4.3)

where ṽ
g
1 (x) = v1(x)

(∫ x
a

g
‖g‖p2,v2

)−p1
and the constant C does not depend on g.

Since q < p1 and β is a monotone function, by Theorem C inequality (4.3) holds
if and only if there exists C > 0 such that

‖�g‖r1,∞;w ≤ C (4.4)

for all g, where 1
r1

= 1
q − 1

p1
and

�g(x) = sup
c>x

⎛
⎜⎝( inf

y∈(x,c)
β(y))

⎛
⎝

c∫

x

w

⎞
⎠

1
p1

⎞
⎟⎠ ‖χ(a,x)(ṽ

g
1 )

− 1
p1 ‖p′

1

= α1(x)‖χ(a,x)(ṽ
g
1 )

− 1
p1 ‖p′

1
.

Then (4.4) can be written as

∥∥∥∥∥∥∥
α1(x)

∥∥∥∥∥∥
χ(a,x)(t)

⎛
⎝v

− 1
p1

1 (t)

t∫

a

g

⎞
⎠
∥∥∥∥∥∥
p′
1

∥∥∥∥∥∥∥
r1,∞;w

≤ C‖g‖p2,v2 . (4.5)

Therefore, inequality (4.1) holds if and only if inequality (4.5) holds. Since p2 > r1,
by Theorems 1 and 2, (4.5) holds if and only �1 ∈ Lη,∞(w) in the case p2 ≤ p′

1 and
�1, �1 ∈ Lη,∞(w) in the case p′

1 < p2.
In the same way, we see that (4.2) holds if and only if �2 ∈ Lη,∞(w) in the case

p2 ≤ p′
1 and �2, �2 ∈ Lη,∞(w) in the case p′

1 < p2.
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