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Abstract
We characterize the good weights for some weighted weak-type iterated and bilinear
modified Hardy inequalities to hold.
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1 Introduction and results

The initial problem in the theory of weighted Hardy inequalities was the one of char-
acterizing the positive functions w, v, the weights, such that

1 1
b X q q b P

//f wx)dx | <C /f”v (1.1

a a a

holds for all positive measurable function f with a positive constant C independent
of f, which means that the Hardy operator 7 f (x) = fax f is bounded from L? (v) to
L1 (w).

This problem was solved by Talenti [31], Muckenhoupt [23] and Bradley [4] in the
case p < g, by Mazja [22] when 1 < g < p, Sinnamon [27,28]forO0 < g <1 < p
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and Sinnamon and Stepanov [29] for 0 < g < 1 = p. Their results are the following
ones.

Theorem A ([4, 22, 23,29, 31)) Let 1 < g < 00,1 < p < o0 and let w, v be
positive measurable functions on (a, b), where —0o0 < a < b < 0o. Then there exists

a positive constant C such that inequality (1.1) holds for all nonnegative functions f
if and only if

(1) in the case p < gq,
1
b q
1
By = sup /w ”X(a,s)v p”p/ < 00,
s€(a,b)
and the best constant C in inequality (1.1) verifies By < C

1 N
K(q, p) = <1+§)" (1+%)" ifp>1land K(q,1) = 1;
(i) in the case q < p,

IA

K (q, p)B1, where

~|—

r
b b q .
1 B /
By = / / w| oy 1Y 0 0de | < oo,

a t

1
1_1

where - = it andthe best constant C ininequality (1.1) verifies g (pT/) 7 By <

= =

1
C <qi(p)9 By

Weighted weak-type inequalities for T were also studied. By a weighted weak-type
(p, q) inequality for T we mean the boundedness of T’ from L” (v) to LY>*°(w), where

1
q
LT w) =1 f: ”f”q,oo;w =supAi / w <0
>0

x:[ f(0)|>A}

Really, weighted weak-type inequalities have been studied for the modified Hardy
operators Tg f (x) = B(x) fax /. This kind of inequalities are technically more difficult
than the strong-type ones. In fact, the problem of characterizing the boundedness of
Ty from LP(v) to L9°°(w) in the case ¢ < p is not completely solved yet.

The first results on weighted weak-type inequalities for modified Hardy operators
are due to Andersen and Muckenhoupt [2], who worked with 8(x) = x%, o € R, on
(0, 00). The weighted weak-type inequalities with more general functions 8 were char-
acterized in [6, 20, 21]. The following two theorems contain such characterizations.
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TheoremB ([6, 21]) Let 1 < p < g < oo and B, v and w be positive measurable
functions on (a, b), where —0o0 < a < b < oo. Then there exists a positive constant
C such that inequality

X

B /f < Clfllpa (12)

a q,00;w

holds for all nonnegative functions f if and only if

_1
Bs = sup [Bxe.p)llg.o0iwllX@syv ?lly < oo, (1.3)

a<s<b

and the best constant C in inequality (1.2) verifies B3 < C < 4Bs.

Theorem C ([20]) Let 0 < g < p < oo with p > 1 and B, v and w be positive
measurable functions on (a, b), where —0o < a < b < oo and B is a monotone
function. Then there exists a positive constant C such that inequality (1.2) holds for
all nonnegative functions f if and only if the function V defined on (a, b) by

P

C
_1
W) = sup ( inf ﬂ(y)> f w| | xenv 7y
b>c>x ye(x,c)
X

belongs to L™*°(w), where % = - — % In this case, the best constant C in inequality

1
1 1 1
(1.2) verifies 277 [ Wy 0000 < € < (1 +47)7 | W]l 001

It is worth noting that weighted weak-type inequalities for modified linear or sub-
linear operators are included in the topic of weighted mixed weak-type inequalities,
which goes back to the work of Andersen and Muckenhoupt [2] and have been studied
by several authors (see [5, 16-19, 21, 26]).

Two new kinds of Hardy inequalities are the weighted iterated and bilinear Hardy
inequalities. On one hand, weighted iterated Hardy inequalities are of the form

1
X t r r

/ /f u(r)de <Clflpv (1.4)
a a q.w
or
x x r i
/ ff u(t)de <Clflpvs (1.5)
a t
q,w

and have been studied by many authors [3, 8—11, 24, 25, 30].
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On the other hand, weighted strong-type bilinear Hardy inequalities

X X

/f /g = C||f||p|,v1 ”g”pz,vz (1.6)

“ 4 q.w

were characterized in [1] and some of their generalizations and variants have also been
studied later (see, for instance, [12—14, 30]).

Recently, the authors have characterized in [7] the weights w, vy, v2 for which the
weighted weak-type bilinear modified Hardy inequality

X X
B(x) /f /g = Clfllprvi gl prv (1.7)
a a q,00;w
holds in the cases 0 < g < 00,1 < p1, p2 < 00,9 < p1,q < pzanda —+

p
In this paper, we will complete the characterization of inequality (1.7) solving the
problem for the case 5 > L l

As we showed in [7], 1nequa11ty (1.7) is equivalent to two weighted weak-type

iterated modified Hardy inequalities of the form

t
a(x) u(t)X(a,x>(t)/f <Clflp.w, (1.8)

a rilg,oo;w

where ¢ < p. Therefore, we will solve the problem of the characterization of (1.8)
in the case ¢ < p and then we will get immediately the characterization of (1.7).
It is worth noting that the good weights for (1.8) to hold in the case p < g were
characterized by the authors in [7].

In order to state the results for the iterated inequality (1.8), we define two functions
®, W on (a, b) by

1
d P

_1
d(x) = sup (mf ot(t)llx(e,,)uHr) /w I X@ev 71l
a<e<c<x<d<b \I€(c.d)
C
and
1
d P
V(x) = sup ( inf oc(t)) /w
a<c<x<d<b \I€(c.d)
P
X / /u’ /vl_", vl_”,(t)dt ,
a t a
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1_1

where é =; =
The results are the following ones.

Theorem 1 Let p,q,r withO < g < p, 1 < p <oocand p <r < 0. Let a be a

positive function in (a, b) such that

inf a(t) >0 (1.9)
te(p,v)

forall p,v witha < p < v < b. Let us suppose that for all e € (a,b) and all
measurable sets Q C (e, b), the function a(t)|| x(.null verifies

inf{a() | xenull;} = inf {alxenulr), (1.10)
teQ te(p1,p2)

where p1 = inf Q and py = sup Q. Then, (1.8) holds for all nonnegative functions
f ifand only if ® € L"°°(w), where % = % — %. Moreover; the best constant C in
inequality (1.8) verifies

—1 1
27 [ ®lycow < C < (1O ., + 2740402 1 2P4T K (r, p)P)a

7,00;w

if r < oo and

—1 1
27 [@llyo0w < € < QM@ .y, + 87 +2P)7

1,00;w
ifr = oo.

Theorem2 Let p,q,r with0 < g < pand 1 <r < p < o0o. Let o be a positive
monotone function in (a, b) and let us suppose that (1.10) holds. Then, the weighted
iterated weak-type modified Hardy inequality (1.8) holds for all nonnegative functions
f if and only if &, W € L"°°(w), where % = ql — % Moreover, the best constant C
in (1.8) verifies

1
-1 -t (p"\7
max{2 » ”(I)”r;,oo;wa2 rr <§) ”\I'”n,oo;w} <C
1
< (10N oo + 10N .. +2P40FDP 4 2PaTCP )7,

7,00;w

1
where C, , = r%(p’)7.

Observe that condition (1.10) holds if the function «(¢)|| x (e, 1|l is monotone or
increases in an interval (e, xo) and decreases in (xg, ). In the same way, condition
(1.9) holds, for instance, if « is a positive monotone function.

As consequences of Theorems 1 and 2 we get the results for the weighted weak-
type bilinear modified Hardy inequalities. In order to state them, we define the next

) Birkhauser
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functions on (a, b):

ai(X):sup(inf ,8) /w =12
c>x \(x,0)
X
-1
D(x) = sup ( inf o1 () X v | ,)
a<e<c<x<d<b \I€(c,d) 1 (e.)V1 ip
d 7 ]
) / w o lxaevy ™ llpy,
c
-1
Dy(x) = sup ( inf oo ()| xe.y vy |l )
a<e<c<x<d<b \l€(c,d) (e,)Vn Py

Vi(x) = sup
a<c<x<d<b
X
Uy (x) = sup (
a<c<x<d<b
X
here L — 1 _ 1 _ 1
where 3 o o

(te(c,d)

L
P1 1

-n
X fw ”X(a,e)vl l”p’l,

c

d
inf al(t)> /w

0

C C Z
1-p}
vy
a t

D=

1-p,
v, A(ndt |,

)+

inf (1)
te(e,d)
P
1
0 9 7
c c /’é t 2
1-ph 1-p! 1-p
/ /v2 P /vl Pl e Mde |
a t a
1l g1 _ 1
p2 P2 p1

The theorems read as follows.

Theorem3 Let0 < g < p1, p2 < 00, p1, p2 > 1,

L

1 1 /
—_ = <
1 + P2 < 7 and p; Py Let

w, vy, V2, B be positive measurable functions on (a, b) with § monotone. Assume that

W Birkhauser
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the functions a; verify (1.9) and that for all e € (a, b) and all measurable sets Q C

(e, b), the functions a; (1) (e, ,)U ||p/, i=1,2, verify (1.10). Then the weighted weak-
type bilinear modified Hardy inequality (1.7) holds if and only if &1, &, € LT (w),
1_ 1 1

where; 7T 112'

1 1 1
Theorem4 Let0 < g < p1,p2 <00, p1,p2 =1, -+ -~ < and py > p}- Let
w, vy, v2, B be positive measurable functions on (a, b) with  monotone. Assume that
the functions a; are monotone and that forall e € (a, b) and all measurable sets 2 C

(e, b), the functions o (1) (e, ,)v ||p/, i=1,2, verify (1.10). Then the weighted weak-
type bilinear modlﬁed Hardy mequalzty (1.7) holds if and only if ®1, $y, V1, Vs €
L (w), where 1 3= =1_1_

The proofs of Theorems 1 and 2 are included in Sects. 2 and 3, respectively, while
Sect. 4 contains the proofs of Theorems 2 and 4.

2 Proof of Theorem 1

First of all, let us prove the necessity of the condition. Assume that the weak-type
inequality (1.8) holds and let us see that ® € L"*(w). Let A > 0 and S) = {x €
(a,b) : ®(x) > A}. We will prove that

1
1

1
A /w <2rC,

Sx

where C is the constant in (1.8). Let K be a compact subset of S,. For all z € K,
z € S and then ®(z) > A. This implies the existence of ¢;, d;, e, withe; < ¢; < d;
such that z € (c;, d;) and

1
d; P e; -

infd [ xe.0oullr] /w /v]*p/ > A. 2.1

t€(cz,dz)
c; a

Then, K C |J,ck(cz.d;). Since K is compact, there are (¢, dz,), (cz,,dz,) ...
(czy» dzy) such that K C U;-Vzl(czj, d;;). We can also suppose that

N

Z X(CZj»dzj) = zxujyzl(czl,,dz/)'
j=l1 o

) Birkhauser
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Let, forall j € {1,2,..., N}and x € (a, b),

ez P
s = _int, [a@e, o] | [0 ] 000 xay @)
Y(Czj>dzj) J J
a

and

1

N P
= -
j=1

Let ¢ with O < & < 1. Let us see that

N

t
Jtez dep) c {x e @by aw) X(a,x)(t)u(z)/f >el. (22)

j=1 ,

Indeed, if 7 € (czj, dzj), then

t t
a(z) X(a,z)(t)u(t)ff = a(2) X(ezj,z)(t)u(t)/f

r r

Za(Z)”X(er,z)(t)M(t)”r/f

9o
Za(Z)HX(ezj,z)(t)M(t)”r/fjp

ez,
“j

D)l er, 0 DUl / v

a

dz;)

Cajolzj

ez .
“J

i a0l sl [0
a

1>e.

v

W Birkhauser
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26

This proves (2.2). Applying the weak-type inequality,

Cq
/ w < f w= 1l

N t
szl(cz-f’dz-/) {xe(a,b):a(x) Xax)Out) [ f >8}

Since the last inequality holds for all ¢ with 0 < ¢ < 1, letting ¢ — 1~ we get

/ w < CUYIfI1%0.

N
Uj:l (Czj ,dzj)

Let y; = inf ve(e:, ,dzj)[“ M X(ez )t [I-]. Then the inequality above and (2.1) yield

by 5
/ w < C? / ij(x) v(x)dx
=1
U;\lzl(cz]-sdzj) ¢ /
q
b o _p !
VP () X(ae.,)(X)
=t /Z L u(x)dx
2; )
u J=1 Vjp </ v1p>
a
q
ey . P
N 1 J
1_ /
—cr| Y — p/v »
j=1 yj/’</ vl—l’) a
a
1 q
b . \ 7
N 1 Ny
=Cc1> - | =
i=tyf </ 2 vl—ﬁ’) =t e
a

q

P

d, .
N
c4 2pC4
=S| e] =5 / w) .
€z Uiy (2 dz )
w
)

Then, we have

Sk

[ =5
w <<
= "4

N N
Ujmi(ezjodz)) U= (62 dz;

) Birkhauser
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ie.,

The last inequality implies

n
1
A /w <2rC.

K

Since the inequality above holds for all compact K C S, the regularity of the measure
w(x)dx gives

1 .
what proves that || ®||; o0 < 27 C, as we wished to show.
Now, let us prove the sufficiency of the condition. Let f be a positive function such

that fab fPv=1.LetA >0and O; = {x € (a,b) : a(x)|| x(a,x))u(t) f; fllr > A}

Then,
/w: / w + / w=1+1I.

0, a q
O,N{xe(a,b):®(x)>A1"} O, N{xe(a,b):d(x)<rn}

The estimation of [ is as follows:

A4 / w < supz’ f w=||P|”

1,00;w "’
z>0

O-Aﬂ{xe(u,b):CD(x)>)»%} 0;N{xe(a,b):®(x)>z}

Now, we will estimate /7. Assume first that r < co. Let us suppose that | ab f <o
r
and fab (fal f) u” (1)dt < oo, too. Let {x;} be the sequence defined by xy = b and

r X t r

Xk+1 t k
/ /f ur(t)dt=/ /f u’ (1)dr.
a a Xk+1 a

W Birkhauser



Some new weighted weak-type iterated and bilinear... Page 110f27 26

The sequence {x;} decreases to a and verifies

Xk t r Xk41 t r
/ /f ur(t)dt:4f /f u" (¢)dt 2.3)
a a Xk42 a

forallk.Let Ex = O, N{x € (a,b) : P(x) < A%} N (Xg+1, xx)- If x € Ey, we have

~|—

x t r

A < ax) / /f u" (t)dt
a a . l
Xk t r
sat | [ | [ 1] wor
a a l
Xk+1 t r 7
— 4T a(x) / /f u” (1)dt 2.4
k+2 a
1
Xk+1 t r r
<d4ra(x) / / £ wa
k+2 k42
i
Xk+1 r Xk+2
+4%a(x) /ur /f.
k+2 a

It is clear that, for each k, Ex = Ej 1 U Ei 2, where

r i

Xi+1 t .
Er1=13x € Eg:a(x) / / fl v @d)| > :
2. 47
k+2 k+2
and
1
X1 7 Xk42 N
Exo=3x € E;:ax) u" /> 1
2. 4r
K2

) Birkhauser



26 Page12of27 V. G. Garcia et al.

Since p < r, by Theorem A (i), we have that

Xk+1 t r
/f u"(t)dt
k+2 k+2 1 1 (25)
Xk+1 r Xk+1 P
_1
<K(r,p) sup u | XV Pl /f”v
X2 <Y <Xk+1
14 k+2

Letus see that the supremum in (2.5) is finite. Let y € (xg42, Xk41)- As @ € LT (w),
® is finite almost everywhere. Let p, v with x441 < p < v < bandlett € (p, v)
such that ®(¢) < oo. Then,

1

X v

_1
1+ ®(r) > inf  a(x) /ur /w I X@yyv 7llp-

x€(p,v)

~ =

Y P

Thus, there is X € (p, v), which depends on y, such that

1

~l=

X

_1
1+ d() > a(x) fu’ /w 1 X@nv Py

Vv

y p
1
Xk+1 r v P
_1
> o(%) / " / | Wepeant Pl
12 p
Then, applying (1.9), we get
1
Xk+1 r
, _1 1+ ®(r)
u I XCrs2 v 2l < < o0.

VoD
4 <inf a> </ w)
(p,v) P

Therefore, the supremum in (2.5) is finite. Then, for all x € Ej ; we have

A
1
2-47K(r, p)
1 1
Xk+1 v Xk+1 P
_1
<a(x)  sup /ur I Xy P llp /fpv
X2 <Y <X+1
Y k+2

W Birkhauser
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Let ¢ > 1. For every k, there is yx € (xx+42, Xk+1) such that

1
Xk+1 r

_1
sup /”r I X2V 2l
X2 <Y <Xt

1
Xk+1 r

_1

=° /u’ I XCs2.00 P llpre
Yk

Therefore, for all x € Ej 1 the following inequality holds:

1 1
Xk+1 r Xfe+1 ?
_1
241 K( )<8a(x) W | xusaov 7 llp frv
47 K (r,
p Yk k+2
Since xj41 < x, we get
1 1
X r Xk+1 P
A . 1 )
—a o <ea) | [u ) lx@yv Py frv
2-47K(r, p)
k k+2

The last inequality holds for all x € Ey 1. Then,

S =

X1

x ;
A . , 1 »
——— <¢ inf |a®k) u I X@yov 7l S
2-47K(r, p) YE€Ek 1 A

k+2

) Birkhauser
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1
P

Now, if we multiply both sides of this inequality by < / w) and apply condition
Ep,1

(1.10), we have

<=

1
X r

A
S fw < inf o fur
247K (@r.ple \ xe(pl.pp)
k,1

(3

) 1
Pi% b Xk+1 P
_1
X /w ”X(a,yk)v p”p/ / fpv
p,ﬁ k+2
Xk+1 P
q
< AT fPo|
k+2

where p} = inf Ey 1, pf = sup Ex,1 and the last inequality holds since

x % P/% g
_1 q
inf a(x) fur /w X@yov ?lly < ®@) <An
xe(p}.p?)
k P/i
forall t € Ey 1. Thus,
1 1
4 Xk+1 P
1 q
A fw <e2-47K(r, p)An / fPv
Ek.1 k+2

Since this inequality holds for every & > 1, letting ¢ — 17 and raising to p we get

Xk+1
fw52P45K(r,p)Pﬁ"’ / fPu.

Er1 Xk+2

Now, summing up in k, we have

3

p b
2 47K (r, p)? 2 47K (r, p)?
w ——mMmM8M— fpv =
Al 24
a

Uk Ek.1

W Birkhauser
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what finishes the estimation of w. In order to estimate || w, we will use
. . U Ek 1 = JUiE
the technique, due to Lai [15], that we have already used in [7]. Let us define the

sequence {y,,} as y, = b and fay'/”“ f= fy):’" f.Let {y,} be the subsequence of {y,, }
m+1

defined by yo = y; and by deleting y; ., if [y,, ., y,,) N {xx} = . In this way, if
Vil = Ynt1 < Xk2 < Yn, then xg42 <y, and y,42 <y, ., which yields

Xk+2 Vi ¥ Yn+1
m+1
/fs/f=4/ +fs4/f. 2.6)
p p Y2
Yn+2

Let E5 = Ukyi) <xisa<yn) B2 If x € E3, there exists k with ypi1 < xiq2 < Y
such that x € Ey > and then, by (2.6),

1 1
Xk+1 r Xk+2 X 7 Yn+l

)Ll < a(x) /u’ /f§4oz(x) /ur /f. 2.7)
4r k+2 a Vn+1 Yn+2

Since (2.7) holds for all x € E’}, we have

Yn+1

< inf | a(x) /ur /f. (2.8)

2.41+0 T e

~|—

X

n+1 Yn+2

1
Multiplying both sides of (2.8) by < /, El w) ", applying Holder’s inequality and
(1.10), we get

1
X r

A . ,
—_— w < inf a(x) u
2.4+ J x&(p.p3) 1
2 n+ _
n - 1
1) P Ynt1 7
-1 2.9
X /w IX@yus v 7l f [P 29)
i’ n+2

Vit ?
/ fpv ’

n+2

Sk

) Birkhauser



26 Page 16 of 27 V. G. Garcia et al.

where we have used that

1 n 1
X v 1) P

_1
it e [ [ ] ] w71 = 00
xe(pl,0y)
n+1 ’|1

forallz € E7.
Then, raising to the p in (2.9) and summing, we get

o o
[o=X[v=> ¥ [u=3[w
Uk E 2 kZOEkyz n=0 {k:yﬂ+lS"I{-¢—2<y»l}EkY2 "20E121
(2.10)
ap . 40+Hp b 2p . 40+bp
< /fpv — ,
- A b/

a

which implies

1
11 < / w+ / wsp,<2p~4<1+%>I’+2P~4?K(r,p)1’).

Uk Ek.1 Uk Ek 2

This finishes the proof of the sufficiency in the case r < oo. Now, we will deal with
the case r = o0o. Let us consider two sequences {a,} and {b, }, with {a, } decreasing to
a and {b,} increasing to b. Then, ® € L"°*°(w) implies that ®,, € L™ (w, (ay,, by)),
where

Py (x) = sup <tei(rgfd) (Ot(t)IIX(e,z)ulloo))

ap<e<c<x<d<by,
1
d r

_1
X /w ”X(a,,,e)v p”p’-

c

1
For fixed n, there is ro > p such that (b, — a,)r < 2 for all » > rg. Then, if r > rg
and a, < e < x < b,, we have

1
X r

1
Ittenyttlly = /|u|’ < ttenyttllos(n — an)* < 2l xce.nitlloo.

e

W Birkhauser
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Therefore, if we define @, ,(x) as

Dy (x) = sup (tei(ncfd) (Ot(t)IIX(e,z)ullr))

ay<e<c<x<d<b,
1
d P

_1
X /w ”X(an,e)v 4 ”p’»

c

we have that @, , € L™ (w, (an, by)) for all r > ry and their norms are bounded by
2||®|,00,w- Now, applying the Theorem in the case which we have already proved,
we have that the weak-type inequality

t
X(an,bp) (Xt (x) X(an,x)(t)u(t)/f < Cr pqllx@,.bn fllpv (2.11)

an rlg,ooiw

1
holds, where C, , 4 = (21[|® 1} oo + 2747 (47 + K (r, p)P))7. Since

13 t
Ko Ou) [ £ = tim | x00ue) [ 1

o r

for every x, by Fatou’s lemma we have

t
X(an,by) (XD (x) X(an,x)(t)”(t)/f
an oo llg, 00w (2.12)
t

<lim inf ”X(an,h,,)(x)a(x) ‘X(an,x)(t)u(t) f
r—00 an rll g, 00w
Now, from (2.11) and (2.12) we get
t
X(an,by) (X)) X(a,,,x)(t)u(l)/f < Cpglx@,.bn) fllpv, (2.13)

An oo g, 00w

1
where Cp, 4 = (2’7||<I>||7,700,w + 87 + 2P)4. Finally, since (2.13) holds for all n with
a constant independent of n, letting n tend to infinity and applying the monotone
convergence theorem, we get (1.8) in the case r = oco.
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3 Proof of Theorem 2

The necessity of condition ® € L7°°(w) follows as in the proof of Theorem 1.
1

Therefore, the best constant C in (1.8) verifies C > 27 1P 1l5,00,w- Let us prove now
that (1.8) implies ¥ € LT (w). Let A > O and S) = {x € (a,b) : ¥(x) > A}. Let
K be a compact subset of 5. If z € K, there exist ¢, d; with ¢; < z < d; such that

1
4

1
d; r Cz Cz g t %
< inf oz) /w / /ur ‘/vlfp, VP wde | s @G
(Czydz)
c; a t a
N
Since K is compact, there exist z1, z2, ..., 2y € K such that K C U(CZJ’ dzj) and
j=1
N
Z X(ij>d7j) = 2XU?IZI(CZj,de)‘ (32)
j=1

Let, foreach j € {1,2,..., N},
[

0
_p ‘]
fix) = <( ing )oz) X(a,czj)(x) /u’ /vl_”/ v_”,(x)

J J pé a

~1
=
o

€ 0 t ri’ '
i ’ 1- 1-p/
X u” v P v P (ndr
a ! a

and

N ?
=X -
j=1

Ifz € (¢;;,d;;) and y; = inf(czj,dzj) o, we have

~ |

1 ,
t r v Cjogsot r

; 1
a(z) / /f u'(Hdt | > az) / /fj" u” (¢t)dr

a a a a
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o(z)
B c C; . g t g r
Vi (/ <J </ N ur)r (/ v! ")r vl_p/(t)dt>
a t a
(3.3)
Cif 1 [ % B En ' '
X / / /ur (f vlp,) vlfpl(x)dx u" (r)dr

6
[ i X N\ ,
If h(x) = / ! ur) ' </ vlp) " yl-p (x), the last factor in (3.3) can be writ-
a

X
ten as follows

~ =

[

1
j ¢ r T CZj t s r—=/
/ /h(x)dx) u’ (t)dt = / (f /h) (s)ds | u" (t)dt

a a a a a
Czj t s r—1 %
— 7 / /(fh h(s)ds | u” (t)dt
a a a
CZ]' Cz]- K r—1 rl
=t / /ur(t)dt (fh h(s)ds
a N a
(3.4)
N
Let us estimate now / h:
a
0
p p Cz rp - "'
/h(x)dx:/</ u) fvl_p 017 (1)dx
a a . a
[
Czj [T X %
> fur f fvl_” 0! ()
N a a
a
= % /ur /Ul_p,
N a
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Taking this estimate to (3.4), we get

Cz, t r r 1
/ (/h(x)dx) u" (t)dt > rt (rg )r
r—1
T c; % ¥ r%
X / /u" /u’ (/ vlp/) h(s)ds
. 9 1
N Gy f € /s 7
o) () (o) e
Going back to (3.3) we get that for all z € (czj, dzl.),
, 1
Z t r , i/ , L/
(@) (/ (/ f) u’(t)dt) > (”—) @, (5>
0 Vi [%
Therefore, by (1.8), we have
/ w < 710

N .
U_i=1(Czjsdzj)

Let us estimate ||f||‘,’,,v. By definition of f, (3.1) and (3.2),

0P (@) X (e ()

(RAlFx

b N
/“ Jj=1 “j €z
([

a s

9
7

[4
. . g ')
N Czj [ €z r s 7
’ ,
= Zyj p / /ur /vl_p v! 7P (s)ds
j=1 a K a
d 9 q
P P
J q
Yo 25
(s ] = :
I ])»P M
= C} U.],yzl(czj-sd:j)

W Birkhauser
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0 L
ur>r (/ vl_p/)r vl_p/(s)ds)

r
2

<R

<k

(3.5)

(3.6)



Some new weighted weak-type iterated and bilinear... Page 21 of 27

26

Finally, from (3.5) and (3.6) we get

S

which implies

Since the inequality above holds for all compact set K C S, we have that ¥ €

1
—1 '\ T
L"®(w)and C > 27 r (%) 19 1. 00:u-

Let us prove now the sufficiency. Let f be a nonnegative function with f € L' and

[P fPv=1.LetA > 0and

t
Op=1x€(ab): Ot(x)ll)((a,x)(t)u(t)/fllr > A

Then, as in the proof of Theorem 1,

Y A

0, a q
O,N{xe(a,b):®(x)>A1"} O, N{xe(a,b):d(x)<rn}

The estimation of I can be done as in the case p < r. For the estimation of /7, we

work as follows:

1= / w / w

Okﬁ{xe(a,b)zcb(x)g)u% ,\I-’(X)>)\.%} Okﬁ{xe(a,b)ﬂb(x)g)u% ,\P(x)fk%}

=I1I1+1V.

Firstly,

I < / w

O;Lﬁ{xe(a,b):\ll(x)>)h%}
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and then

W L By

n n
/ W1 oo W 0o
q
O, N{xe(a,b):¥(x)>Ar"}

Now, we will work on /V. Let {x;} be the sequence defined as in the proof of
Theorem 1 and

Ex = 05 N (g1, x0) N {x € (@.b) : @(x) < A7, W(x) < A7},

If x € Eg,
1
Xk+1 t r r Xk41
1 1 Xk+2
A< 4dra(x) / / fl] u@®dr] +4ralx) / u” / f.
k+2 k+2 k+2 ¢
It is clear that, for each k, Ex = Ej 1 U Eg 2, where
Xk+1 t r r
Ex1=1x € Ep:ax) / / fl W @®dr| > :
k+2 k+2 '
and
1
Xk+1 r Xk+2
Exp=1x € Ep:ax) /u’ / f > -
2. 47
k42
Since r < p, by Theorem A (ii) we have
1
Xk+1 t r r
/ f| u(@de
k+2 k42
[ A %
Xk+1 Xk+1 r t -
=Crp / f u" / =7 V7P (1)de (3.7
k+2 t k+2
Xk+41 %
X fro|
k+2
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1
where C, , = rr (p)7". The first integral in the right-hand side of (3.7) is finite due
to the monotonicity of o and the proof of this fact follows the pattern of the one in
Theorem 1.

Ifx € Ex 1,
0 o g
X1 [ Xkt v ¢ 7
1 / /
A <2-47Cp pa(x) / / u” / P W P (dr
k+2 t k+2
1

X1 P
X / fPv|

k42

which implies, due to the monotonicity of «,
1
[ A 2
Xk+1 [ Xk+1 r t ,/
1 / /
1 1— 1—
L<2-47C, / fur / v P v TP (1)dr
k+2 t k+2
1
X1 P

x| inf « / fPv| .

(}.pd)

k42

1
V4

If we multiply both terms of the last inequality by < / w) , we get
Ep1

2 4C
/w < =~ PP inf «
A (/’kpk

D

6 6
Xk+1 r t 7 Xk+1 P
Y41 ey -
X u” v P v P (ndr fPv
Xk+2
t k+2 k+2
1
I
2.-47C, .
< L inf « w
A (i.pP) 1
Pk
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D=

9

<

7 1
Pr [ Pk 1 ¥ Xk+1 P
—n —n
X / /u’ /vl P ! 7P (1)dr /fpv
a t a k+2
1
2.47C VY
47 q
< —r,[?)\”) / fpv ,
A
k2

where the last inequality holds since

S|

1
2 P 1 1
Pk r P [ Pk L

inf o /w / /ur /vl_p/ vl_[’/(t)dt
(0} -o7) 1

pk a 13 a

6
7

< W(¢) forallt € Ej ;. Raising to p, we have that

P Xk+1 P _p k+1
27 .47 CY, 27 .4v ¢/,
w = 7q fr = fro
=5 A
A n
E1 k+2 k+2

Now, summing up in k,

b
p . % 4 p. g P
/ L2, /f/’u _2r-4vcl,
o X A
a

Uk Ek 1

The estimation of ka Ep, W is the same as the one in Theorem 1, because the relation-
ship between r and p is not taken into account. Therefore, the proof is complete.

4 Proofs of Theorems 3 and 4

Working as in ([7], proof of Theorem 3), we have that (1.8) is equivalent to the two
weighted weak-type bilinear inequalities

t

ﬂ(x)/f(t) /g dr < C1f oo 1€l o @.1)

a q,00;w
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and

X t
ﬂ(X)/g(t) /f dr = Clfliprvi gl pa.vs- (4.2)

q,00;w

Inequality (4.1) is equivalent to

X
pe [0 = Clil, g (43)
@ q,00;

w

-p
where 7% (x) = vy (x) ( [ L) " and the constant C does not depend on g.
1 a ”gupz,vz

Since g < pp and B is a monotone function, by Theorem C inequality (4.3) holds
if and only if there exists C > 0 such that

IWellr 00w < C 4.4)
1 _1_ 1
for all g, where M= and
Cc ﬁ .
We(x) =sup | ( inf B(y)) /w ”X(a,x)(ijf)iﬁ”pﬁ
c>x YE(x,c)
X

_ 1
= o1 (X) || X (a2 (TF) 71 Il -
Then (4.4) can be written as

t

_L
a1(x) | X@n@® v, ") [ g < Cligl p.va- (4.5)

a ’
Pillry,o0;w

Therefore, inequality (4.1) holds if and only if inequality (4.5) holds. Since py > rq,
by Theorems 1 and 2, (4.5) holds if and only ®; € L"°°(w) in the case p» < p} and
@y, Wy € L (w) in the case p] < ps.

In the same way, we see that (4.2) holds if and only if &, € L"°°(w) in the case
p2 < pj and @3, Wy € L"*°(w) in the case p| < p>.
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