Skip to main content

Advertisement

Log in

Enhancing Oocyte Quality in Aging Mice: Insights from Mesenchymal Stem Cell Therapy and FOXO3a Signaling Pathway Activation

  • Regenerative Medicine: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Ovarian aging reduced the quality of oocytes, resulting in age-related female infertility. It is reported that mesenchymal stem cells (MSCs) therapy can improve age-related ovarian function decline and the success rate of in vitro maturation (IVM) in assisted reproductive therapy. In order to investigate the effectiveness and mechanisms of MSCs to enhance oocyte quality of cumulus oocyte complexes (COCs) in advanced age, this study focus on the respective functional improvement of oocytes and granulosa cells (GCs) from aging mice and further to explore and verify the possible mechanisms. Here, we studied a popular but significant protein of follicular development, Forkhead box O-3a (FOXO3a), which is a transcription factor that mediates a variety of cellular processes, but the functions of which in regulating oocyte quality in MSCs therapy still remain inconclusive. In this study, the RNA-seq data of metaphase II (MII) oocytes and GCs isolated from COCs confirmed that, GCs of immature follicles show the most potential to be the targeted cells of bone marrow mesenchymal stem cells (BMSCs) by FOXO3a signaling pathway. Furthermore, we demonstrated the effectiveness of BMSCs co-culture with aging COCs to enhance oocyte quality and found its mechanism to function via ameliorating the biological function of GCs by alleviating FOXO3a levels. These results provide significant fundamental research on MSCs therapy on ovarian aging, as well as offering guidance for raising the success rate of assisted reproductive technology such IVM in clinical and non-clinical settings.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data for this study are available by contacting the corresponding author upon reasonable request.

References

  1. Wu J, Liu Y, Song Y, Wang L, Ai J, Li K. Aging conundrum: A perspective for ovarian aging. Front Endocrinol (Lausanne). 2022;13: 952471. https://doi.org/10.3389/fendo.2022.952471.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bertoldo MJ, Listijono DR, Ho WJ, Riepsamen AH, Goss DM, Richani D, Jin XL, Mahbub S, Campbell JM, Habibalahi A, Loh WN, Youngson NA, Maniam J, Wong ASA, Selesniemi K, Bustamante S, Li C, Zhao Y, Marinova MB, Kim LJ, Lau L, Wu RM, Mikolaizak AS, Araki T, Le Couteur DG, Turner N, Morris MJ, Walters KA, Goldys E, O’Neill C, Gilchrist RB, Sinclair DA, Homer HA, Wu LE. NAD(+) Repletion Rescues Female Fertility during Reproductive Aging. Cell Rep. 2020;30:1670-1681.e1677. https://doi.org/10.1016/j.celrep.2020.01.058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gong Y, Zhang K, Xiong D, Wei J, Tan H, Qin S. Growth hormone alleviates oxidative stress and improves the IVF outcomes of poor ovarian responders: a randomized controlled trial. Reprod Biol Endocrinol. 2020;18:91. https://doi.org/10.1186/s12958-020-00648-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Navot D, Bergh PA, Williams MA, Garrisi GJ, Guzman I, Sandler B, Grunfeld L. Poor oocyte quality rather than implantation failure as a cause of age-related decline in female fertility. Lancet (London, England). 1991;337:1375–7. https://doi.org/10.1016/0140-6736(91)93060-m.

    Article  CAS  PubMed  Google Scholar 

  5. Edwards RG. Maturation in vitro of human ovarian oöcytes. Lancet (London, England). 1965;2:926–9. https://doi.org/10.1016/s0140-6736(65)92903-x.

    Article  CAS  PubMed  Google Scholar 

  6. Strowitzki T, Bruckner T, Roesner S. Maternal and neonatal outcome and children’s development after medically assisted reproduction with in-vitro matured oocytes-a systematic review and meta-analysis. Hum Reprod Update. 2021;27:460–73. https://doi.org/10.1093/humupd/dmaa056.

    Article  PubMed  Google Scholar 

  7. Li J, Chen J, Sun T, Zhang S, Jiao T, Chian RC, Li Y, Xu Y. Chromosome aneuploidy analysis in embryos derived from in vivo and in vitro matured human oocytes. J Transl Med. 2021;19:416. https://doi.org/10.1186/s12967-021-03080-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gudimchuk NB, McIntosh JR. Regulation of microtubule dynamics, mechanics and function through the growing tip. Nat Rev Mol Cell Biol. 2021;22:777–95. https://doi.org/10.1038/s41580-021-00399-x.

    Article  CAS  PubMed  Google Scholar 

  9. van der Reest J, Nardini Cecchino G, Haigis MC, Kordowitzki P. Mitochondria: Their relevance during oocyte ageing. Ageing Res Rev. 2021;70:101378. https://doi.org/10.1016/j.arr.2021.101378.

    Article  CAS  PubMed  Google Scholar 

  10. Chiang JL, Shukla P, Pagidas K, Ahmed NS, Karri S, Gunn DD, Hurd WW, Singh KK. Mitochondria in Ovarian Aging and Reproductive Longevity. Ageing Res Rev. 2020;63: 101168. https://doi.org/10.1016/j.arr.2020.101168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. May-Panloup P, Boucret L, Chao de la Barca JM, Desquiret-Dumas V, Ferré-L’Hotellier V, Morinière C, Descamps P, Procaccio V, Reynier P. Ovarian ageing: the role of mitochondria in oocytes and follicles. Hum Reprod Update. 2016;22:725–43. https://doi.org/10.1093/humupd/dmw028.

    Article  CAS  PubMed  Google Scholar 

  12. Llonch S, Barragán M, Nieto P, Mallol A, Elosua-Bayes M, Lorden P, Ruiz S, Zambelli F, Heyn H, Vassena R, Payer B. Single human oocyte transcriptome analysis reveals distinct maturation stage-dependent pathways impacted by age. Aging Cell. 2021;20: e13360. https://doi.org/10.1111/acel.13360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hu W, Zeng H, Shi Y, Zhou C, Huang J, Jia L, Xu S, Feng X, Zeng Y, Xiong T, Huang W, Sun P, Chang Y, Li T, Fang C, Wu K, Cai L, Ni W, Li Y, Yang Z, Zhang QC, Chian R, Chen Z, Liang X, Kee K. Single-cell transcriptome and translatome dual-omics reveals potential mechanisms of human oocyte maturation. Nat Commun. 2022;13:5114. https://doi.org/10.1038/s41467-022-32791-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Reyes JM, Silva E, Chitwood JL, Schoolcraft WB, Krisher RL, Ross PJ. Differing molecular response of young and advanced maternal age human oocytes to IVM. Hum Reprod. 2017;32:2199–208. https://doi.org/10.1093/humrep/dex284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang Y, Yan Z, Qin Q, Nisenblat V, Chang HM, Yu Y, Wang T, Lu C, Yang M, Yang S, Yao Y, Zhu X, Xia X, Dang Y, Ren Y, Yuan P, Li R, Liu P, Guo H, Han J, He H, Zhang K, Wang Y, Wu Y, Li M, Qiao J, Yan J, Yan L. Transcriptome Landscape of Human Folliculogenesis Reveals Oocyte and Granulosa Cell Interactions. Mol Cell. 2018;72:1021-1034.e1024. https://doi.org/10.1016/j.molcel.2018.10.029.

    Article  CAS  PubMed  Google Scholar 

  16. Wang G, Zhang M, Zhang Y, Xie Y, Zou J, Zhong J, Zheng Z, Zhou X, Zheng Y, Chen B, Liu C. NAT10-mediated mRNA N4-acetylcytidine modification promotes bladder cancer progression. Clin Transl Med. 2022;12: e738. https://doi.org/10.1002/ctm2.738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Richani D, Dunning KR, Thompson JG, Gilchrist RB. Metabolic co-dependence of the oocyte and cumulus cells: essential role in determining oocyte developmental competence. Hum Reprod Update. 2021;27:27–47. https://doi.org/10.1093/humupd/dmaa043.

    Article  CAS  PubMed  Google Scholar 

  18. Liu Y, Wang L, Ai J, Li K. Mitochondria in Mesenchymal Stem Cells: Key to Fate Determination and Therapeutic Potential. Stem Cell Rev Rep. 2024. https://doi.org/10.1007/s12015-024-10681-y.

    Article  PubMed  Google Scholar 

  19. Alberico HC, Woods DC. Role of Granulosa Cells in the Aging Ovarian Landscape: A Focus on Mitochondrial and Metabolic Function. Front Physiol. 2021;12: 800739. https://doi.org/10.3389/fphys.2021.800739.

    Article  PubMed  Google Scholar 

  20. Zhang D, Zhang X, Zeng M, Yuan J, Liu M, Yin Y, Wu X, Keefe DL, Liu L. Increased DNA damage and repair deficiency in granulosa cells are associated with ovarian aging in rhesus monkey. J Assist Reprod Genet. 2015;32:1069–78. https://doi.org/10.1007/s10815-015-0483-5.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fragouli E, Lalioti MD, Wells D. The transcriptome of follicular cells: biological insights and clinical implications for the treatment of infertility. Hum Reprod Update. 2014;20:1–11. https://doi.org/10.1093/humupd/dmt044.

    Article  CAS  PubMed  Google Scholar 

  22. Jiang ZX, Wang YN, Li ZY, Dai ZH, He Y, Chu K, Gu JY, Ji YX, Sun NX, Yang F, Li W. The m6A mRNA demethylase FTO in granulosa cells retards FOS-dependent ovarian aging. Cell Death Dis. 2021;12:744. https://doi.org/10.1038/s41419-021-04016-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Piras AR, Ariu F, Maltana A, Leoni GG, Martino NA, Mastrorocco A, Dell’Aquila ME, Bogliolo L. Protective effect of resveratrol against cadmium-induced toxicity on ovine oocyte in vitro maturation and fertilization. J Anim Sci Biotechnol. 2022;13:83. https://doi.org/10.1186/s40104-022-00731-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma L, Cai L, Hu M, Wang J, Xie J, Xing Y, Shen J, Cui Y, Liu XJ, Liu J. Coenzyme Q10 supplementation of human oocyte in vitro maturation reduces postmeiotic aneuploidies. Fertil Steril. 2020;114:331–7. https://doi.org/10.1016/j.fertnstert.2020.04.002.

    Article  CAS  PubMed  Google Scholar 

  25. Wang L, Mei Q, Xie Q, Li H, Su P, Zhang L, Li K, Ma D, Chen G, Li J, Xiang W. A comparative study of Mesenchymal Stem Cells transplantation approach to antagonize age-associated ovarian hypofunction with consideration of safety and efficiency. J Adv Res. 2022;38:245–59. https://doi.org/10.1016/j.jare.2021.09.001.

    Article  CAS  PubMed  Google Scholar 

  26. Yan L, Wu Y, Li L, Wu J, Zhao F, Gao Z, Liu W, Li T, Fan Y, Hao J, Liu J, Wang H. Clinical analysis of human umbilical cord mesenchymal stem cell allotransplantation in patients with premature ovarian insufficiency. Cell Prolif. 2020;53: e12938. https://doi.org/10.1111/cpr.12938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zafardoust S, Kazemnejad S, Darzi M, Fathi-Kazerooni M, Rastegari H, Mohammadzadeh A. Improvement of Pregnancy Rate and Live Birth Rate in Poor Ovarian Responders by Intraovarian Administration of Autologous Menstrual Blood Derived- Mesenchymal Stromal Cells: Phase I/II Clinical Trial. Stem Cell Rev Rep. 2020;16:755–63. https://doi.org/10.1007/s12015-020-09969-6.

    Article  CAS  PubMed  Google Scholar 

  28. Maldonado M, Huang T, Chen J, Zhong Y. Differentiation Potential of Human Wharton’s Jelly-Derived Mesenchymal Stem Cells and Paracrine Signaling Interaction Contribute to Improve the In Vitro Maturation of Mouse Cumulus Oocyte Complexes. Stem Cells Int. 2018;2018:7609284. https://doi.org/10.1155/2018/7609284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nejabati HR, Nikzad S, Roshangar L. Therapeutic Potential of Mesenchymal Stem Cells in PCOS. Curr Stem Cell Res Ther. 2024;19:134–44. https://doi.org/10.2174/1574888x18666230517123256.

    Article  CAS  PubMed  Google Scholar 

  30. Lange-Consiglio A, Lazzari B, Pizzi F, Idda A, Cremonesi F, Capra E. Amniotic microvesicles impact hatching and pregnancy percentages of in vitro bovine embryos and blastocyst microRNA expression versus in vivo controls. Sci Rep. 2020;10:501. https://doi.org/10.1038/s41598-019-57060-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hu J, Liu T, Fu F, Cui Z, Lai Q, Zhang Y, Yu B, Liu F, Kou J, Li F. Omentin1 ameliorates myocardial ischemia-induced heart failure via SIRT3/FOXO3a-dependent mitochondrial dynamical homeostasis and mitophagy. J Transl Med. 2022;20:447. https://doi.org/10.1186/s12967-022-03642-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Qin X, Dang W, Yang X, Wang K, Kebreab E, Lyu L. Neddylation inactivation affects cell cycle and apoptosis in sheep follicular granulosa cells. J Cell Physiol. 2022;237:3278–91. https://doi.org/10.1002/jcp.30777.

    Article  CAS  PubMed  Google Scholar 

  33. Liu H, Jiang C, La B, Cao M, Ning S, Zhou J, Yan Z, Li C, Cui Y, Ma X, Wang M, Chen L, Yu Y, Chen F, Zhang Y, Wu H, Liu J, Qin L. Human amnion-derived mesenchymal stem cells improved the reproductive function of age-related diminished ovarian reserve in mice through Ampk/FoxO3a signaling pathway. Stem Cell Res Ther. 2021;12:317. https://doi.org/10.1186/s13287-021-02382-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rosario R, Stewart HL, Spears N, Telfer EE, Anderson RA. Anti-Mullerian hormone attenuates both cyclophosphamide-induced damage and PI3K signalling activation, while rapamycin attenuates only PI3K signalling activation, in human ovarian cortex in vitro. Hum Reprod. 2024;39:382–92. https://doi.org/10.1093/humrep/dead255.

    Article  PubMed  Google Scholar 

  35. Zhai J, Zhang J, Zhang L, Liu X, Deng W, Wang H, Zhang Z, Liu W, Chen B, Wu C, Long H, Xu B, Ying X, Zou H, He J, Li P, Hu T, Xiang W, Li J. Autotransplantation of the ovarian cortex after in-vitro activation for infertility treatment: a shortened procedure. Hum Reprod. 2021;36:2134–47. https://doi.org/10.1093/humrep/deab143.

    Article  CAS  PubMed  Google Scholar 

  36. Castrillon DH, Miao L, Kollipara R, Horner JW, DePinho RA. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science. 2003;301:215–8. https://doi.org/10.1126/science.1086336.

    Article  CAS  PubMed  Google Scholar 

  37. Lv Y, Cao RC, Liu HB, Su XW, Lu G, Ma JL, Chan WY. Single-oocyte gene expression suggests that curcumin can protect the ovarian reserve by regulating the PTEN-AKT-FOXO3a pathway. Int J Mol Sci. 2021;22:6570. https://doi.org/10.3390/ijms22126570.

  38. Mei NH, Guo SM, Zhou Q, Zhang YR, Liu XZ, Yin Y, He X, Yang J, Yin TL, Zhou LQ. H3K4 Methylation Promotes Expression of Mitochondrial Dynamics Regulators to Ensure Oocyte Quality in Mice. Adv Sci (Weinh). 2023;10: e2204794. https://doi.org/10.1002/advs.202204794.

    Article  CAS  PubMed  Google Scholar 

  39. Jiang X, Cheng Y, Zhu Y, Xu C, Li Q, Xing X, Li W, Zou J, Meng L, Azhar M, Cao Y, Tong X, Qin W, Zhu X, Bao J. Maternal NAT10 orchestrates oocyte meiotic cell-cycle progression and maturation in mice. Nat Commun. 2023;14:3729. https://doi.org/10.1038/s41467-023-39256-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang T, Xi Q, Wang D, Li J, Wang M, Li D, Zhu L, Jin L. Mitochondrial dysfunction and endoplasmic reticulum stress involved in oocyte aging: an analysis using single-cell RNA-sequencing of mouse oocytes. J Ovarian Res. 2019;12:53. https://doi.org/10.1186/s13048-019-0529-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao S, Heng N, Wang H, Wang H, Zhang H, Gong J, Hu Z, Zhu H. Mitofusins: from mitochondria to fertility. Cell Mol Life Sci. 2022;79:370. https://doi.org/10.1007/s00018-022-04386-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cacciottola L, Vitale F, Donnez J, Dolmans MM. Use of mesenchymal stem cells to enhance or restore fertility potential: a systematic review of available experimental strategies. Hum Reprod Open. 2023;2023:hoad040. https://doi.org/10.1093/hropen/hoad040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wen T, Wang H, Li Y, Lin Y, Zhao S, Liu J, Chen B. Bone mesenchymal stem cell-derived extracellular vesicles promote the repair of intervertebral disc degeneration by transferring microRNA-199a. Cell Cycle. 2021;20:256–70. https://doi.org/10.1080/15384101.2020.1863682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yu G, Sun W, Wang W, Le C, Liang D, Shuai L. Overexpression of microRNA-202–3p in bone marrow mesenchymal stem cells improves cerebral ischemia-reperfusion injury by promoting angiogenesis and inhibiting inflammation. Aging (Albany NY). 2021;13:11877–88. https://doi.org/10.18632/aging.202889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang M, Liu D, Li S, Chang L, Zhang Y, Liu R, Sun F, Duan W, Du W, Wu Y, Zhao T, Xu C, Lu Y. Bone marrow mesenchymal stem cell transplantation retards the natural senescence of rat hearts. Stem Cells Transl Med. 2015;4:494–502. https://doi.org/10.5966/sctm.2014-0206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu C, Chen J, Ma J, Zang L, Dong F, Sun J, Zheng M. Identification of Key Genes and Signaling Pathways Associated with the Progression of Gastric Cancer. Pathol Oncol Res. 2020;26:1903–19. https://doi.org/10.1007/s12253-019-00781-3.

    Article  CAS  PubMed  Google Scholar 

  47. Santo EE, Stroeken P, Sluis PV, Koster J, Versteeg R, Westerhout EM. FOXO3a is a major target of inactivation by PI3K/AKT signaling in aggressive neuroblastoma. Cancer Res. 2013;73:2189–98. https://doi.org/10.1158/0008-5472.Can-12-3767.

    Article  CAS  PubMed  Google Scholar 

  48. Tesarik J, Mendoza-Tesarik R. Mitochondria in human fertility and infertility. Int J Mol Sci. 2023;24:8950. https://doi.org/10.3390/ijms24108950.

Download references

Acknowledgements

We thanks to all authors for their contribution to this experiment. We would also thank Genergy Biotechnology Co., Ltd. (Shanghai, China) for RNA high-throughput sequencing and bioinformatic analysis, as well as SANGON BIOTECH for designing and synthesis of various primers (shanghai, China) and RiboBio Co., Ltd. (Guangzhou, China) for the silencing sequence design and synthesis of target gene.

Funding

This work has been supported by the National Key Research and Development Program of China (2017YFC1002002) and the National Natural Science Foundation of China (82101700).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Ling Zhang, Wenpei Xiang.

Formal analysis: Lingjuan Wang, Yang Liu.

Methodology: Qiaojuan Mei, Hongbei Mou, Jiachen Wu, Xinyu Tang.

Project administration: Houxiu Xiao, Xiaotao Han, Liqun Lv, Huaibiao Li.

Resources: Jihui Ai, Kezhen Li.

Writing – original draft: Yinhua Song.

Writing – review & editing: Lingjuan Wang, Wenpei Xiang.

Corresponding authors

Correspondence to Ling Zhang or Wenpei Xiang.

Ethics declarations

Ethics Approval

The application of specific pathogen-free grade C57BL/6 mice was approved by the Animal Ethics Committee of Huazhong University of Science and Technology and all experiments were carried out in accordance with relevant guidelines and regulations.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Liu, Y., Song, Y. et al. Enhancing Oocyte Quality in Aging Mice: Insights from Mesenchymal Stem Cell Therapy and FOXO3a Signaling Pathway Activation. Reprod. Sci. (2024). https://doi.org/10.1007/s43032-024-01509-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43032-024-01509-8

Keywords

Navigation