Skip to main content

Advertisement

Log in

Identification of Key Genes and Signaling Pathways Associated with the Progression of Gastric Cancer

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

Genomic features have been gradually regarded as part of the fundamentals to the clinical diagnosis and treatment for gastric cancer. However, the molecular alterations taking place during the progression of gastric cancer remain unclear. Therefore, identification of potential key genes and pathways in the gastric cancer progression is crucial to clinical practices. The gene expression profile, GSE103236, was retrieved for the identification of the differentially expressed genes (DEGs), followed by gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichments, gene set enrichment analysis (GSEA) and the protein-protein interaction (PPI) networks. Multiple bioinformatics platforms were employed for expression and prognostic analysis. Fresh frozen gastric cancer tissues were used for external validation. A total of 161 DEGs were identified from GSE103236. The PPI network-derived hub genes included collagen type I alpha 1 chain (COL1A1), tissue inhibitor of the metalloproteinases (TIMP1), Secreted Phosphoprotein 1 (SPP1), somatostatin (SST), neuropeptide Y (NPY), biglycan (BGN), matrix metallopeptidase 3 (MMP3), apolipoprotein E (APOE), ATPase H+/K+ transporting alpha subunit (ATP4A), lysyl oxidase (LOX). SPP1 (log rank p = 0.0048, HR = 1.39 [1.1–1.75]) and MMP3 (log rank p < 0.0001, HR = 1.77 [1.44–2.19]) were significantly associated with poor overall survival. Stage-specifically, both COL1A1 and BGN were correlated with significant in stage III and IV gastric cancer cases. LOX showed significant correlation with prognosis in stage I and stage II gastric cancer cases. Furthermore, cg00583003 of SPP1 and cg16466334 of MMP3 exhibited highly methylation level and significant prognostic values (SPP1: HR = 1.625, p = 0.013; MMP3: HR = 0.647, p = 0.011). Hub genes signature displayed a favorable prognostic value (p value = 5.227e-05). APOE demonstrated the highest correlation with CD8+ T cells, neutrophils, and dendritic cells whereas BGN had the highest correlation with macrophages. This study systematically explored the key genes and pathways involved in PGC and AGC, providing insights into therapeutic individualized management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets supporting the conclusion of this article were included within the article.

Abbreviations

GC:

Gastric cancer

DEGs:

Differentially expressed genes

PGC:

Primary gastric cancer

AJCC:

American Joint Committee on Cancer

AGC:

Advanced gastric cancer

GEO:

Gene Expression Omnibus

TCGA:

The Cancer Genome Atlas

GSEA:

Gene set enrichment analysis

PPI:

Protein-protein interaction

FC:

Fold changes

GO:

Gene ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

DAVID:

Database for Annotation, Visualization and Integrated Discovery

FDR:

False discovery rate

STRING:

Search Tool for the Retrieval of Interacting Genes

MCODE:

Molecular Complex Detection

GEPIA:

Gene Expression Profiling Interactive Analysis

GTEx:

Genotype-tissue expression

STAD:

Stomach adenocarcinoma

HPA:

Human protein atlas

qRT-PCR:

Quantitative real-time PCR

KM:

Kaplan-Meier

OS:

Overall survival

HR:

Hazard ratio

95% CI:

95% confidence intervals

TIMER:

Tumor IMmune Estimation Resource

BP:

Biological process

CC:

Cellular component

MF:

Molecular function

COL1A1:

Collagen type I alpha 1 chain

TIMP1:

Tissue inhibitor of the metalloproteinases

SPP1:

Secreted Phosphoprotein 1

SST:

Somatostatin

NPY:

Neuropeptide Y

BGN:

Biglycan

MMP3:

Matrix metallopeptidase 3

APOE:

Apolipoprotein E

ATP4A:

ATPase H+/K+ transporting alpha subunit

LOX:

Lysyl oxidase

References

  1. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016[J]. CA Cancer J Clin 66(1):7–30

    Article  PubMed  Google Scholar 

  2. Chen W, Zheng R, Baade P D, et al. (2015) Cancer statistics in China[J]

  3. Ajani JA, Bentrem DJ, Besh S, D'Amico TA, Das P, Denlinger C, Fakih MG, Fuchs CS, Gerdes H, Glasgow RE, Hayman JA, Hofstetter WL, Ilson DH, Keswani RN, Kleinberg LR, Korn WM, Lockhart AC, Meredith K, Mulcahy MF, Orringer MB, Posey JA, Sasson AR, Scott WJ, Strong VE, Varghese TK Jr, Warren G, Washington MK, Willett C, Wright CD, McMillian N, Sundar H, National Comprehensive Cancer Network (2013) Gastric cancer, version 2.2013[J]. J Natl Compr Cancer Netw 11(5):531–546

    Article  CAS  Google Scholar 

  4. Edge SB, Compton CC (2010) The American joint committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM[J]. Ann Surg Oncol 17(6):1471–1474

    Article  PubMed  Google Scholar 

  5. Cristescu R, Lee J, Nebozhyn M, Kim KM, Ting JC, Wong SS, Liu J, Yue YG, Wang J, Yu K, Ye XS, Do IG, Liu S, Gong L, Fu J, Jin JG, Choi MG, Sohn TS, Lee JH, Bae JM, Kim ST, Park SH, Sohn I, Jung SH, Tan P, Chen R, Hardwick J, Kang WK, Ayers M, Hongyue D, Reinhard C, Loboda A, Kim S, Aggarwal A (2015) Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes[J]. Nat Med 21(5):449–456

    Article  CAS  PubMed  Google Scholar 

  6. Cancer Genome Atlas Research Network (2014) Comprehensive molecular characterization of gastric adenocarcinoma[J]. Nature 513(7517):202–209

    Article  CAS  Google Scholar 

  7. Chivu EM, Necula LG, Dragu D et al (2010) Identification of potential biomarkers for early and advanced gastric adenocarcinoma detection[J]. Hepato-Gastroenterol 57(104):1453

    Google Scholar 

  8. Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository[J]. Nucleic Acids Res 30(1):207–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A (2013) NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res 41(Database issue):D991-5

  10. Davis S, Meltzer PS (2007) GEOquery: a bridge between the gene expression omnibus (GEO) and BioConductor[J]. Bioinformatics 23(14):1846–1847

    Article  PubMed  CAS  Google Scholar 

  11. Pathan M, Keerthikumar S, Ang CS, Gangoda L, Quek CY, Williamson NA, Mouradov D, Sieber OM, Simpson RJ, Salim A, Bacic A (2015) FunRich: an open access standalone functional enrichment and interaction network analysis tool. Proteomics 15(15):2597–2601

    Article  CAS  PubMed  Google Scholar 

  12. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology[J]. Nat Genet 25(1):25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Res 28(1):27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nat Protoc 4(1):44–57

    Article  CAS  Google Scholar 

  15. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles[J]. Proc Natl Acad Sci 102(43):15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Szklarczyk D, Franceschini A, Wyder S et al (2014) STRING v10: protein–protein interaction networks, integrated over the tree of life[J]. Nucleic Acids Res 43(D1):D447–D452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Tang Z, Li C, Kang B, et al. (2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses[J]. Nucleic Acids Res

  18. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N (2012) The cBio Cancer genomics portal: an open platform for exploring multidimensional Cancer genomics data. Cancer Discov 2(5):401–404

    Article  PubMed  Google Scholar 

  19. Gao J et al (2013) Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Sci Signal 6(269):pl1–pl1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Cho JY, Lim JY, Cheong JH, Park YY, Yoon SL, Kim SM, Kim SB, Kim H, Hong SW, Park YN, Noh SH, Park ES, Chu IS, Hong WK, Ajani JA, Lee JS (2011) Gene expression signature-based prognostic risk score in gastric cancer. Clin Cancer Res 17(7):1850–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cui J, Chen Y, Chou WC, Sun L, Chen L, Suo J, Ni Z, Zhang M, Kong X, Hoffman LL, Kang J, Su Y, Olman V, Johnson D, Tench DW, Amster IJ, Orlando R, Puett D, Li F, Xu Y (2011) An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer. Nucleic Acids Res 39(4):1197–1207

    Article  CAS  PubMed  Google Scholar 

  22. Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, Zwahlen M, Kampf C, Wester K, Hober S, Wernerus H, Björling L, Ponten F (2010) Towards a knowledge-based human protein atlas. Nat Biotechnol 28(12):1248–1250

    Article  CAS  PubMed  Google Scholar 

  23. Spandidos A, Wang X, Wang H, Seed B (2010) PrimerBank: a resource of human and mouse PCR primer pairs for gene expression detection and quantification. Nucleic Acids Res 38:D792–D799

    Article  CAS  PubMed  Google Scholar 

  24. Lanczky A, Nagy A, Bottai G, Munkacsy G, Paladini L, Szabo A, Santarpia L, Gyorffy B (2016) miRpower: a web-tool to validate survival-associated miRNAs utilizing expression data from 2,178 breast cancer patients. Breast Cancer Res Treat 160(3):439–446

    Article  CAS  PubMed  Google Scholar 

  25. Modhukur V, Iljasenko T, Metsalu T, Lokk K, Laisk-Podar T, Vilo J (2018 Mar) MethSurv: a web tool to perform multivariable survival analysis using DNA methylation data. Epigenomics. 10(3):277–288

    Article  CAS  PubMed  Google Scholar 

  26. Aguirre-Gamboa R, Gomez-Rueda H, Martínez-Ledesma E, Martínez-Torteya A, Chacolla-Huaringa R, Rodriguez-Barrientos A, Tamez-Pena JG, Trevino V (2013) SurvExpress: an online biomarker validation tool and database for cancer gene expression data using survival analysis. PLoS One 8(9):e74250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, Li B, Liu XS (2017 Nov 1) TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res 77(21):e108–e110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hwang SH, Park DJ, Jee YS, Kim MC, Kim HH, Lee HJ, Yang HK, Lee KU (2009) Actual 3-year survival after laparoscopy-assisted gastrectomy for gastric cancer[J]. Arch Surg 144(6):559–564

    Article  PubMed  Google Scholar 

  29. Hu Y, Ying M, Huang C, Wei H, Jiang Z, Peng X, Hu J, du X, Wang B, Lin F, Xu J, Dong G, Mou T, Li G, Chinese Laparoscopic Gastrointestinal Surgery Study (CLASS) Group (2014) Oncologic outcomes of laparoscopy-assisted gastrectomy for advanced gastric cancer: a large-scale multicenter retrospective cohort study from China[J]. Surg Endosc 28(7):2048–2056

    Article  PubMed  Google Scholar 

  30. Rugge M, Fassan M, Graham D Y (2015) Epidemiology of gastric cancer[M]//gastric Cancer. Springer International Publishing, 23–34

  31. Strong VE, Song KY, Park CH, Jacks LM, Gonen M, Shah M, Coit DG, Brennan MF (2010) Comparison of gastric cancer survival following R0 resection in the United States and Korea using an internationally validated nomogram[J]. Ann Surg 251(4):640–646

    Article  PubMed  Google Scholar 

  32. Coussens LM, Werb Z (2002) Inflammation and cancer[J]. Nature 420(6917):860–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liaw L, Birk DE, Ballas CB, Whitsitt JS, Davidson JM, Hogan BL (1998) Altered wound healing in mice lacking a functional osteopontin gene (spp1)[J]. J Clin Investig 101(7):1468–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid[J]. Nat Rev Mol Cell Biol 4(5):397–407

    Article  CAS  PubMed  Google Scholar 

  35. Junnila S, Kokkola A, Mizuguchi T, Hirata K, Karjalainen-Lindsberg ML, Puolakkainen P, Monni O (2010) Gene expression analysis identifies over-expression of CXCL1, SPARC, SPP1, and SULF1 in gastric cancer[J]. Genes Chromosom Cancer 49(1):28–39

    Article  CAS  PubMed  Google Scholar 

  36. Zhuo C, Li X, Zhuang H, Tian S, Cui H, Jiang R, Liu C, Tao R, Lin X (2016) Elevated THBS2, COL1A2, and SPP1 expression levels as predictors of gastric Cancer prognosis[J]. Cell Physiol Biochem 40(6):1316–1324

    Article  CAS  PubMed  Google Scholar 

  37. Sternlicht MD, Lochter A, Sympson CJ, Huey B, Rougier JP, Gray JW, Pinkel D, Bissell MJ, Werb Z (1999) The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis[J]. Cell 98(2):137–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kubota E, Imamura H, Kubota T et al (1997) Interleukin 1β and stromelysin (MMP3) activity of synovial fluid as possible markers of osteoarthritis in the temporomandibular joint[J]. J Oral Maxillofac Surg 55(1):20–27

    Article  CAS  PubMed  Google Scholar 

  39. Stamenkovic I (2003) Extracellular matrix remodelling: the role of matrix metalloproteinases[J]. J Pathol 200(4):448–464

    Article  CAS  PubMed  Google Scholar 

  40. Yeh YC, Sheu BS, Cheng HC, Wang YL, Yang HB, Wu JJ (2010) Elevated serum matrix metalloproteinase-3 and-7 in H. pylori-related gastric cancer can be biomarkers correlating with a poor survival[J]. Dig Dis Sci 55(6):1649–1657

    Article  CAS  PubMed  Google Scholar 

  41. Xu J, Yao Y, Ren S et al (2016) Matrix metalloproteinase expression and molecular interaction network analysis in gastric cancer[J]. Oncol Lett 12(4):2403–2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fernandez-Capetillo O, Chen HT, Celeste A, Ward I, Romanienko PJ, Morales JC, Naka K, Xia Z, Camerini-Otero RD, Motoyama N, Carpenter PB, Bonner WM, Chen J, Nussenzweig A (2002) DNA damage-induced G2–M checkpoint activation by histone H2AX and 53BP1[J]. Nat Cell Biol 4(12):993–997

    Article  CAS  PubMed  Google Scholar 

  43. Sun C, Yuan Q, Wu D et al (2017) Identification of core genes and outcome in gastric cancer using bioinformatics analysis[J]. Oncotarget 8(41):70271

    Article  PubMed  PubMed Central  Google Scholar 

  44. Guo L, Song C, Wang P, Dai L, Zhang J, Wang K (2015) A systems biology approach to detect key pathways and interaction networks in gastric cancer on the basis of microarray analysis[J]. Mol Med Rep 12(5):7139–7145

    Article  CAS  PubMed  Google Scholar 

  45. Rong L, Huang W, Tian S, Chi X, Zhao P, Liu F (2018) COL1A2 is a novel biomarker to improve clinical prediction in human gastric Cancer: integrating bioinformatics and meta-analysis[J]. Pathol Oncol Res 24(1):129–134

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Meng-Kai Ge (Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine) for experimental assistance. We would like to thank the academic supports from the biobank of Shanghai Minimally Invasive Surgery Center at Ruijin Hospital. We would like to thank Jiexuan Wang (Ruijin Hospital, Shanghai Jiao Tong University School of Medicine) for his contribution in samples preparation.

Funding

The study is financially supported by National Natural Science Foundation of China (NSFC) (81402423, 81572818, 81871984), Shanghai Municipal Commission of Health and Family Planning (2017YQ062), as well as Shanghai Science and Technology Committee (18695841400).

Author information

Authors and Affiliations

Authors

Contributions

CY, JC and JM carried out experiments and data analysis;

CY, JS, JC, LZ, and MZ drafted the manuscript;

CY, JS, LZ, and MZ participated in study design and data collection;

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chaoran Yu.

Ethics declarations

Conflict of Interest

All authors declare no conflict of interest in this study.

Ethics Approval and Consent to Participate

All the subjects have given their written informed consent. The study protocol has been approved by the research institute’s committee on human research. No animal experiment is applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Chaoran Yu, Jie Chen and Junjun Ma contributed as co-first authors.

Minhua Zheng and Jing Sun are listed as corresponding authors (equally contributed).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Chen, J., Ma, J. et al. Identification of Key Genes and Signaling Pathways Associated with the Progression of Gastric Cancer. Pathol. Oncol. Res. 26, 1903–1919 (2020). https://doi.org/10.1007/s12253-019-00781-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-019-00781-3

Keywords

Navigation