Skip to main content
Log in

Identifying Immune Cell Infiltration and Hub Genes Related to M2 Macrophages in Endometriosis by Bioinformatics Analysis

  • Gynecologic Oncology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Endometriosis (EM) is a chronic, estrogen-dependent inflammatory disease. Presently, the pathophysiology of EM is still unclear, and numerous studies have established that the immune system plays a major role in the pathophysiology of EM. Six microarray datasets were downloaded from the GEO public database. A total of 151 endometrial samples (72 ectopic endometria and 79 controls) were included in this study. CIBERSORT and ssGSEA were applied to calculate the immune infiltration of EM and control samples. Moreover, we validated four different correlation analyses to explore immune microenvironment of EM and finally identified M2 macrophage-related hub genes and further conducted the specific immunologic signaling pathway analysis by GSEA. The logistic regression model was investigated by ROC and further validated by two external datasets. From the results of the two immune infiltration assays, we concluded that M2 macrophages, regulatory T cells (Tregs), M1 macrophages, activated B cells, T follicular helper cells, activated dendritic cells, and resting NK cells have a significant difference between control and EM tissues. Through multidimensional correlation analysis, we found that macrophages play an important central role in cell-to-cell interactions, especially M2 macrophages. Four immune-related hub genes, namely FN1, CCL2, ESR1, and OCLN, are closely related to M2 macrophages and play a crucial role in the occurrence and immune microenvironment of endometriosis. The combined AUC of ROC prediction model in test and validation sets were 0.9815 and 0.8206, respectively. We conclude that M2 macrophages play a central role in the immune-infiltrating microenvironment of EM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

This study’s six GEO datasets (GSE7305, GSE23339, GSE11691, GSE25628, GSE37837, and GSE120103 datasets) were obtained from the GEO database (https://www.ncbi.nlm.nih.gov/geo/). Immune-related genes (IRGs) were obtained from the Immunology Database and Analysis Portal (ImmPort) (https://immport.org).

Code Availability

All code used during the study are available from the corresponding author by request.

References

  1. Zannoni L, Forno SD, Paradisi R, Seracchioli R. Endometriosis in adolescence: practical rules for an earlier diagnosis. Pediatr Ann. 2016;45:e332–5.

    Article  PubMed  Google Scholar 

  2. Rolla E. Endometriosis: advances and controversies in classification, pathogenesis, diagnosis, and treatment. F1000Res. 2019;8

  3. Wu B, Yang Z, Tobe RG, Wang Y. Medical therapy for preventing recurrent endometriosis after conservative surgery: a cost-effectiveness analysis. BJOG. 2018;125:469–77.

    Article  CAS  PubMed  Google Scholar 

  4. Bakhtiarizadeh MR, Hosseinpour B, Shahhoseini M, Korte A, Gifani P. Weighted gene co-expression network analysis of endometriosis and identification of functional modules associated with its main hallmarks. Front Genet. 2018;9:453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zondervan KT, Becker CM, Koga K, Missmer SA, Taylor RN, Vigano P. Endometriosis. Nat Rev Dis Primers. 2018;4:9.

    Article  PubMed  Google Scholar 

  6. Vallve-Juanico J, Houshdaran S, Giudice LC. The endometrial immune environment of women with endometriosis. Hum Reprod Update. 2019;25:564–91.

    Article  PubMed  Google Scholar 

  7. Hogg C, Horne AW, Greaves E. Endometriosis-associated macrophages: origin, phenotype, and function. Front Endocrinol (Lausanne). 2020;11:7.

    Article  PubMed  Google Scholar 

  8. Laskin DL, Sunil VR, Gardner CR, Laskin JD. Macrophages and tissue injury: agents of defense or destruction? Annu Rev Pharmacol Toxicol. 2011;51:267–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen P, Bonaldo P. Role of macrophage polarization in tumor angiogenesis and vessel normalization: implications for new anticancer therapies. Int Rev Cell Mol Biol. 2013;301:1–35.

    Article  CAS  PubMed  Google Scholar 

  10. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol Biol. 2018;1711:243–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ye L, Zhang T, Kang Z, Guo G, Sun Y, Lin K, Huang Q, Shi X, Ni Z, Ding N, Zhao KN, Chang W, Wang J, Lin F, Xue X. Tumor-infiltrating immune cells act as a marker for prognosis in colorectal cancer. Front Immunol. 2019;10:2368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Davis S, Meltzer PS. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics. 2007;23:1846–7.

    Article  PubMed  Google Scholar 

  14. Hever A, Roth RB, Hevezi P, Marin ME, Acosta JA, Acosta H, Rojas J, Herrera R, Grigoriadis D, White E, Conlon PJ, Maki RA, Zlotnik A. Human endometriosis is associated with plasma cells and overexpression of B lymphocyte stimulator. Proc Natl Acad Sci U S A. 2007;104:12451–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hull ML, Escareno CR, Godsland JM, Doig JR, Johnson CM, Phillips SC, Smith SK, Tavare S, Print CG, Charnock-Jones DS. Endometrial-peritoneal interactions during endometriotic lesion establishment. Am J Pathol. 2008;173:700–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hawkins SM, Creighton CJ, Han DY, Zariff A, Anderson ML, Gunaratne PH, Matzuk MM. Functional microRNA involved in endometriosis. Mol Endocrinol. 2011;25:821–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Khan MA, Sengupta J, Mittal S, Ghosh D. Genome-wide expressions in autologous eutopic and ectopic endometrium of fertile women with endometriosis. Reprod Biol Endocrinol. 2012;10:84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Crispi S, Piccolo MT, D'Avino A, Donizetti A, Viceconte R, Spyrou M, Calogero RA, Baldi A, Signorile PG. Transcriptional profiling of endometriosis tissues identifies genes related to organogenesis defects. J Cell Physiol. 2013;228:1927–34.

    Article  CAS  PubMed  Google Scholar 

  19. Bhat MA, Sharma JB, Roy KK, Sengupta J, Ghosh D. Genomic evidence of Y chromosome microchimerism in the endometrium during endometriosis and in cases of infertility. Reprod Biol Endocrinol. 2019;17:22.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bhattacharya S, Dunn P, Thomas CG, Smith B, Schaefer H, Chen J, Hu Z, Zalocusky KA, Shankar RD, Shen-Orr SS, Thomson E, Wiser J, Butte AJ. ImmPort, toward repurposing of open access immunological assay data for translational and clinical research. Sci Data. 2018;5:180015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang J, Vasaikar S, Shi Z, Greer M, Zhang B. WebGestalt 2017: A more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit, Nucleic Acids Res. 2017;45:W130-W137.

  23. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, Alizadeh AA. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ru B, Wong CN, Tong Y, Zhong JY, Zhong SSW, Wu WC, Chu KC, Wong CY, Lau CY, Chen I, Chan NW, Zhang J. TISIDB: an integrated repository portal for tumor-immune system interactions. Bioinformatics. 2019;35:4200–2.

    Article  CAS  PubMed  Google Scholar 

  26. Hudson QJ, Ashjaei K, Perricos A, Kuessel L, Husslein H, Wenzl R, Yotova I. Endometriosis patients show an increased M2 response in the peritoneal CD14(+low)/CD68(+low) macrophage subpopulation coupled with an increase in the T-helper 2 and T-regulatory cells. Reprod Sci. 2020;27:1920–31.

    Article  CAS  PubMed  Google Scholar 

  27. Vallve-Juanico J, Santamaria X, Vo KC, Houshdaran S, Giudice LC. Macrophages display proinflammatory phenotypes in the eutopic endometrium of women with endometriosis with relevance to an infectious etiology of the disease. Fertil Steril. 2019;112:1118–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang Y, Li Q, Hu R, Li R, Yang Y. Five immune-related genes as diagnostic markers for endometriosis and their correlation with immune infiltration. Front Endocrinol (Lausanne). 2022;13:1011742.

    Article  PubMed  Google Scholar 

  29. Zhong Q, Yang F, Chen X, Li J, Zhong C, Chen S. Patterns of immune infiltration in endometriosis and their relationship to r-AFS stages. Front Genet. 2021;12:631715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Akoum A, Kong J, Metz C, Beaumont MC. Spontaneous and stimulated secretion of monocyte chemotactic protein-1 and macrophage migration inhibitory factor by peritoneal macrophages in women with and without endometriosis. Fertil Steril. 2002;77:989–94.

    Article  PubMed  Google Scholar 

  31. Ono Y, Yoshino O, Hiraoka T, Akiyama I, Sato E, Ito M, Kobayashi M, Nakashima A, Wada S, Onda T, Unno N, Osuga Y. IL-33 exacerbates endometriotic lesions via polarizing peritoneal macrophages to M2 subtype. Reprod Sci. 2020;27:869–76.

    Article  CAS  PubMed  Google Scholar 

  32. Bacci M, Capobianco A, Monno A, Cottone L, Di Puppo F, Camisa B, Mariani M, Brignole C, Ponzoni M, Ferrari S, Panina-Bordignon P, Manfredi AA, Rovere-Querini P. Macrophages are alternatively activated in patients with endometriosis and required for growth and vascularization of lesions in a mouse model of disease. Am J Pathol. 2009;175:547–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Capobianco A, Rovere-Querini P. Endometriosis, a disease of the macrophage. Front Immunol. 2013;4

  34. Lagana AS, Salmeri FM, Ban Frangez H, Ghezzi F, Vrtacnik-Bokal E, Granese R. Evaluation of M1 and M2 macrophages in ovarian endometriomas from women affected by endometriosis at different stages of the disease. Gynecol Endocrinol. 2020;36:441–4.

    Article  CAS  PubMed  Google Scholar 

  35. Jensen AL, Collins J, Shipman EP, Wira CR, Guyre PM, Pioli PA. A subset of human uterine endometrial macrophages is alternatively activated. Am J Reprod Immunol. 2012;68:374–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ramírez-Pavez TN, Martínez-Esparza M, Ruiz-Alcaraz AJ, Marín-Sánchez P, Machado-Linde F, García-Peñarrubia P. The role of peritoneal macrophages in endometriosis. Int J Mol Sci. 2021;22

  37. Rostagno A, Williams MJ, Baron M, Campbell ID, Gold LI. Further characterization of the NH2-terminal fibrin-binding site on fibronectin. J Biol Chem. 1994;269:31938–45.

    Article  CAS  PubMed  Google Scholar 

  38. Matalliotaki C, Matalliotakis M, Rahmioglu N, Mavromatidis G, Matalliotakis I, Koumantakis G, Zondervan K, Spandidos DA, Goulielmos GN, Zervou MI. Role of FN1 and GREB1 gene polymorphisms in endometriosis. Mol Med Rep. 2019;20:111–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yoshimura T. The chemokine MCP-1 (CCL2) in the host interaction with cancer: a foe or ally? Cell Mol Immunol. 2018;15:335–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gou Y, Li X, Li P, Zhang H, Xu T, Wang H, Wang B, Ma X, Jiang X, Zhang Z. Estrogen receptor beta upregulates CCL2 via NF-kappaB signaling in endometriotic stromal cells and recruits macrophages to promote the pathogenesis of endometriosis. Hum Reprod. 2019;34:646–58.

    Article  CAS  PubMed  Google Scholar 

  41. Fini ME, Jeong S, Wilson MR. Therapeutic potential of the molecular chaperone and matrix metalloproteinase inhibitor clusterin for dry eye. Int J Mol Sci. 2020;22

Download references

Acknowledgements

We appreciate the unrestricted use of the GEO databases.

Funding

This work was supported by the National Key Research and Development Program of Ningbo (grant number 202003N4289) and Medical Health Science and Technology Project of Zhejiang Provincial Health Commission (grant number 2021440659). This work was supported by the Science and Technology Programs of Ningbo (grant no. 202003N4289) and the Medical and Health Science and Technology Program of Zhejiang Province, China (grant no. 2021440659).

Author information

Authors and Affiliations

Authors

Contributions

Tianhong Zhu, Yongming Du, and Yutao Guan contributed to conception and design. Tianhong Zhu and Bohong Jin carried out the analysis. Tianhong Zhu and Yutao Guan wrote the paper. Tianhong Zhu and Fubin Zhang collected and processed the data. Yutao Guan reviewed and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yutao Guan.

Ethics declarations

Ethics Approval

This study is conducted based on the GEO database and is not involved in animal or human experiments. The patients involved in the database have obtained ethical approval. Users can download relevant data for free for research and publish relevant articles. Our study is based on open source data, so there are no ethical issues in this study.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1:

Supplementary Table 1 Validating the expression of 10 hub genes with GSE120103.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, T., Du, Y., Jin, B. et al. Identifying Immune Cell Infiltration and Hub Genes Related to M2 Macrophages in Endometriosis by Bioinformatics Analysis. Reprod. Sci. 30, 3388–3399 (2023). https://doi.org/10.1007/s43032-023-01227-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01227-7

Keywords

Navigation