Skip to main content

Advertisement

Log in

Why Is It So Difficult To Have Competent Oocytes from In vitro Cultured Preantral Follicles?

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The developmental competence of oocytes is acquired gradually during follicular development, mainly through oocyte accumulation of RNA molecules and proteins that will be used during fertilization and early embryonic development. Several attempts to develop in vitro culture systems to support preantral follicle development up to maturation are reported in the literature, but oocyte competence has not yet been achieved in human and domestic animals. The difficulties to have fertilizable oocytes are related to thousands of mRNAs and proteins that need to be synthesized, long-term duration of follicular development, size of preovulatory follicles, composition of in vitro culture medium, and the need of multi-step culture systems. The development of a culture system that maintains bidirectional communication between the oocyte and granulosa cells and that meets the metabolic demands of each stage of follicle growth is the key to sustain an extended culture period. This review discusses the physiological and molecular mechanisms that determine acquisition of oocyte competence in vitro, like oocyte transcriptional activity, follicle and oocyte sizes, and length and regulation of follicular development in murine, human, and domestic animal species. The state of art of in vitro follicular development and the challenges to have complete follicular development in vitro are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hsueh AJ, Kawamura K, Cheng Y, Fauser BC. Intraovarian control of early folliculogenesis. Nat Rev Endocrinol. 2015;36:1–24. https://doi.org/10.1210/er.2014-1020.

    Article  CAS  Google Scholar 

  2. Shah JS, Sabouni R, Cayton Vaught KC, Owen CM, Albertini DF, et al. Biomechanics and mechanical signaling in the ovary: a systematic review. J Assist Reprod Genet. 2015;35:1135–48. https://doi.org/10.1007/s10815-018-1180-y.

    Article  Google Scholar 

  3. Qin H, Qu P, Hu H, Cao W, Liu H, Zhang Y, et al. Sperm-borne small RNAs improve the developmental competence of pre-implantation cloned embryos in rabbit. Zygote. 2021;29:331–6. https://doi.org/10.1017/S0967199420000805.

    Article  CAS  Google Scholar 

  4. Mengden LV, Klamt F, Smitz J. Redox biology of woman cumulus cells: basic concepts, impact on oocyte quality, and potential clinical use. Antioxid Redox Signal. 2020;32:522–35. https://doi.org/10.1089/ars.2019.7984.

    Article  CAS  Google Scholar 

  5. Telfer EE. In vitro models for oocyte development. Theriogenology. 1998;49(2):451–60. https://doi.org/10.1016/S0093-691X(97)00417-2.

    Article  CAS  Google Scholar 

  6. Telfer EE. In vitro growth (IVG) of woman ovarian follicles. Acta Obstet Gynecol Scand. 2019;98:653–8. https://doi.org/10.1111/aogs.13592.

    Article  Google Scholar 

  7. Sun J, Li X. Growth and antrum formation of cow primary follicles in long term culture in vitro. Reprod Biol. 2013;13:221–8. https://doi.org/10.1016/j.repbio.2013.06.003.

    Article  Google Scholar 

  8. Faustino LR, Lima IMT, Carvalho AA, Silva CMG, Castro SV, Lobo CH, et al. Interaction between keratinocyte growth factor-1 and kit ligand on the goat preantral follicles cultured in vitro. Small Rumin Res. 2013;114:112–9. https://doi.org/10.1016/j.smallrumres.2013.05.002.

    Article  Google Scholar 

  9. Bertoldo MJ, Duffard N, Bernard J, Frapsauce C, Calais L, Rico C, et al. Effects of bone morphogenetic protein 4 (BMP4) supplementation during culture of the sheep ovarian cortex. Anim Reprod Sci. 2014;149:124–34. https://doi.org/10.1016/j.anireprosci.2014.07.010.

    Article  CAS  Google Scholar 

  10. Silva AWB, Ribeiro RP, Menezes VG, Barberino RS, Passos JRS, Dau AMP, et al. Expression of TNF-α system members in cow ovarian follicles and the effects of TNF-α or dexamethasone on preantral follicle survival, development and ultrastructure in vitro. Anim Reprod Sci. 2017;182:56–68. https://doi.org/10.1016/j.anireprosci.2017.04.010.

    Article  CAS  Google Scholar 

  11. Silva JRV, Brasil AF, Santos RR, Costa SHF, Rodrigues APR, Ferreira MAL, Machado VP, Figueiredo JR. Degeneration rate of goat primordial follicles maintained in TCM 199 or PBS at different temperatures and incubation times. Anim Reprod. 2003;33:913–9. https://doi.org/10.1590/S0103-84782003000500019.

    Article  Google Scholar 

  12. O’Brien MJ, Pendola JK, Eppig JJ. A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their developmental competence. Biol Reprod. 2003;68:1682–6. https://doi.org/10.1095/biolreprod.102.013029.

    Article  CAS  Google Scholar 

  13. McLaughlin M, Albertini DF, Wallace WHB, Anderson RA, Telfer EE. Metaphase II oocytes from woman unilaminar follicles grown in a multi-step culture system. Mol Hum Reprod. 2018;24:135–42. https://doi.org/10.1093/molehr/gay002.

    Article  CAS  Google Scholar 

  14. Sá NAR, Ferreira ACA, Sousa FGC, Duarte ABG, Paes VM, Cadenas J, et al. First pregnancy after in vitro culture of early antral follicles in goats: positive effects of anethole on follicle development and steroidogenesis. Mol Reprod Dev. 2020;87:966–77. https://doi.org/10.1002/mrd.23410.

    Article  CAS  Google Scholar 

  15. Sadeghnia S, Akhondi MM, Hossein G, Mobini S, Hosseini L, Naderi MM. Development of sheep primordial follicles encapsulated in alginate or in ovarian tissue in fresh and vitrified samples. Cryobiology. 2016;72:100–5. https://doi.org/10.1016/j.cryobiol.2016.03.001.

    Article  CAS  Google Scholar 

  16. Wu J, Tian Q. Role of follicle stimulating hormone and epidermal growth factor in the development of porcine preantral follicle in vitro. Zygote. 2007;15:233. https://doi.org/10.1017/S0967199407004194.

    Article  CAS  Google Scholar 

  17. Sirard MA. Folliculogenesis and acquisition of oocyte competence in cows. Anim Reprod. 2019;16:449–54. https://doi.org/10.21451/1984-3143-AR2019-0038.

    Article  Google Scholar 

  18. Chian RC, Uzelac PS, Nargund G. In vitro maturation of woman immature oocytes for fertility preservation. Fertil Steril. 2013;99(11):73–81. https://doi.org/10.1016/j.fertnstert.2013.01.141.

    Article  CAS  Google Scholar 

  19. Bezerra FTG, Dau AMP, Van den Hurk R, Silva JRV. Molecular characteristics of oocytes and somatic cells of follicles at different sizes that influence in vitro oocyte maturation and embryo production. Domest Anim Endoc. 2021;74(10):64–85. https://doi.org/10.1016/j.domaniend.2020.106485.

    Article  CAS  Google Scholar 

  20. Zhao ZH, Meng TG, Li A, Schatten H, Wang ZB, Sun QY. RNA-Seq transcriptome reveals different molecular responses during woman and mouse oocyte maturation and fertilization. BMC Genomics. 2020;21:475. https://doi.org/10.1186/s12864-020-06885-4.

    Article  CAS  Google Scholar 

  21. Sherman RM, Salzberg SL. Pan-genomics in the woman genome era. Nat Rev Microbiol. 2020;21:243–54. https://doi.org/10.1038/s41576-020-0210-7.

    Article  CAS  Google Scholar 

  22. Fair T, Hulshof SC, Hyttel P, Greve T, Boland M. Nucleus ultrastructure and transcriptional activity of bovine oocytes in preantral and early antral follicles. Mol Reprod Dev. 1997;46(2):208–15.

    Article  CAS  Google Scholar 

  23. Martins JPS, Liu X, Oke A, Arora R, Franciosi F, Viville S, et al. DAZL and CPEB1 regulate mRNA translation synergistically during oocyte maturation. J Cell Sci. 2016;129:1271–82. https://doi.org/10.1242/jcs.179218.

    Article  CAS  Google Scholar 

  24. Macaulay A, Scantland S, Robert C. RNA Processing during early embryogenesis: managing storage, utilisation and destruction. In: RNA Processing. 2011. p. 307–557. https://doi.org/10.5772/20375.

    Chapter  Google Scholar 

  25. Fan X, Zhang X, Wu X, Guo H, Hu Y, Tang F, Huang Y. Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biol. 2015;16:148. https://doi.org/10.1186/s13059-015-0706-1.

    Article  CAS  Google Scholar 

  26. Marinov GK, Williams BA, Mc Cue K, Schroth GP, Gertz J, Myers RM, Wold BJ. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 2014;24:496–510. https://doi.org/10.1101/gr.161034.113.

    Article  CAS  Google Scholar 

  27. Fushii M, Yamada R, Miyano T. In vitro growth of cow oocytes in oocyte-cumulus cell complexes and the effect of follicle stimulating hormone on the growth of oocytes. J Reprod Develop. 2021;67:5–13. https://doi.org/10.1262/jrd.2020-102.

    Article  CAS  Google Scholar 

  28. Li J, Lu M, Zhang P, Hou E, Li T, Liu X, et al. Aberrant spliceosome expression and altered alternative splicing events correlate with maturation deficiency in woman oocytes. Cell Cycle. 2020;19:2182–94. https://doi.org/10.1080/15384101.2020.1799295.

    Article  CAS  Google Scholar 

  29. Nilsen TW, Graveley BR. Expansion of the eukaryotic proteome by alternative splicing. Nature. 2010;463:457–63. https://doi.org/10.1038/nature08909.

    Article  CAS  Google Scholar 

  30. Reyes JM, Chitwood JL, Ross PJ. RNA-Seq profiling of single cow oocyte transcript abundance and its modulation by cytoplasmic polyadenylation. Mol Reprod Develop. 2016;82:103–14. https://doi.org/10.1002/mrd.22445.

    Article  CAS  Google Scholar 

  31. Chowdhury MMR, Park J, Afrin F, Ko YG, Kim CL, Lee SS, Kim SW. Transcriptome profiling of in vitro-matured oocytes from a korean native cow (hanwoo) after cysteamine supplementation. Anim Biotechnol. 2020;3:1–12. https://doi.org/10.1080/10495398.2019.1706545.

    Article  CAS  Google Scholar 

  32. Song H, Wang L, Chen D, Li F. The function of pre-mRNA alternative splicing in mammal spermatogenesis. J Biol Sci. 2020;16:38–48. https://doi.org/10.7150/ijbs.34422.

    Article  CAS  Google Scholar 

  33. Pan Q, Bakowski MA, Morris Q, Zhang W, Frey BJ, Hughes TR, et al. Alternative splicing of conserved exons is frequently species-specific in woman and mouse. Trends Genet. 2005;21:73–7. https://doi.org/10.1016/j.tig.2004.12.004.

    Article  CAS  Google Scholar 

  34. Sha QQ, Yu JL, Guo JX, Dai XX, Jiang JC, Zhang YL, et al. CNOT6L couples the selective degradation of maternal transcripts to meiotic cell cycle progression in mouse oocyte. EMBO J. 2018;37:99333. https://doi.org/10.15252/embj.201899333.

    Article  CAS  Google Scholar 

  35. Susor A, Kubelka M. Translational regulation in the mammalian oocyte. Results Probl Cell Differ. 2017;63:257–95. https://doi.org/10.1007/978-3-319-60855-6_12.

    Article  CAS  Google Scholar 

  36. Xie F, Timme KR, Wood JR. Using single molecule mRNA fluorescent in situ hybridization (RNA-FISH) to quantify mRNAs in individual mice oocytes and embryos. Sci Rep. 2018;8:7930. https://doi.org/10.1038/s41598-018-26345-0.

    Article  CAS  Google Scholar 

  37. Tadros W, Lipshitz HD. The maternal-to-zygotic transition: a play in two acts. Development. 2009;136:3033–42. https://doi.org/10.1242/dev.033183.

    Article  CAS  Google Scholar 

  38. Liu C, Ma Y, Shang Y, Huo R, Li W. Post-translational regulation of the maternal-to-zygotic transition. Cell Mol Life Sci. 2018;75:1707–22. https://doi.org/10.1007/s00018-018-2750-y.

    Article  CAS  Google Scholar 

  39. Woo I, Christenson LK, Gunewardena S, Ingles SA, Thomas S, Ahmady A, et al. Micro-RNAs involved in cellular proliferation have altered expression profiles in granulosa of young women with diminished ovarian reserve. J Assist Reprod Genet. 2018;35:1777–86. https://doi.org/10.1007/s10815-018-1239-9.

    Article  Google Scholar 

  40. Zhou R, Miao Y, Li Y, Li X, Xi J, Zhang Z. MicroRNA-150 promote apoptosis of ovine ovarian granulosa cells by targeting STAR gene. Theriogenology. 2019;127:66–71. https://doi.org/10.1016/j.theriogenology.2019.01.003.

    Article  CAS  Google Scholar 

  41. Wondim SD, Gebremedhn S, Hoelker M, Tholen E, Hailay T, Tesfaye D. The role of microRNAs in mammalian fertility: from gametogenesis to embryo implantation. J Mol Sci. 2020;21:585. https://doi.org/10.3390/ijms21020585.

    Article  CAS  Google Scholar 

  42. Kahraman S, Cetinkaya CP, Cetinkaya M, Tufekçi MA, Ekmekçi CG, Montag M. There is a correlation between follicle size and gene expression in cumulus cells and gene expression is an indicator of embryonic development? Reprod Biol Endocrinol. 2018;16:69. https://doi.org/10.1186/s12958-018-0388-0.

    Article  CAS  Google Scholar 

  43. Griffin J, Emery BR, Huang I, Peterson CM, Carrell DT. Comparative analysis of follicle morphology and oocyte diameter in four species of mammals (mouse, hamster, pig and woman). J Exp Clinical Assist Reprod. 2006;3:2. https://doi.org/10.1186/1743-1050-3-2.

    Article  Google Scholar 

  44. Bachler M, Menshykau D, De Geyter C, Iber D. Species-specific differences in follicular antral sizes result from limitations based on diffusion in the granulosa cell layer thickness. Reprod Sci. 2013;20:208–21. https://doi.org/10.1093/molehr/gat078.

    Article  CAS  Google Scholar 

  45. Feng Y, Tamadon A, Hsue AJW. Imaging the ovary. Reproduc Biomed. Online. 2018;36:584–93. https://doi.org/10.1016/j.rbmo.2018.02.006.

    Article  Google Scholar 

  46. Sánchez F, Smitz J. Molecular control of oogenesis. Biochim Biophys Acta Gen. 2012;1822:1896–912. https://doi.org/10.1016/j.bbadis.2012.05.013.

    Article  CAS  Google Scholar 

  47. Clarke H. Control of mammalian oocyte development by interactions with the maternal follicular environment. Results Probl Cell Differ. 2017;63:17–41. https://doi.org/10.1007/978-3-319-60855-6_2.

    Article  CAS  Google Scholar 

  48. Paramio MT, Izquierdo D. Recent advances in in vitro embryo production in small ruminants. Theriogenology. 2016;86:152–9. https://doi.org/10.1016/j.theriogenology.2016.04.027.

    Article  Google Scholar 

  49. Ganji R, Nabiuni M, Faraji R. Development of mouse preantral follicle after in vitro culture in a medium containing melatonin. Cell Journal. 2015;16:546–553. https://doi.org/10.22074/cellj.2015.499.

  50. Gougeon A. Dynamics of follicular growth in the woman: a model from preliminary results. Hum Reprod. 1986;1:81–7. https://doi.org/10.1093/oxfordjournals.humrep.a136365.

    Article  CAS  Google Scholar 

  51. Gougeon A. Woman ovarian follicular development: from activation of resting follicles to preovulatory maturation. Ann Endocrinol. 2010;71:132–43. https://doi.org/10.1016/j.ando.2010.02.021.

    Article  CAS  Google Scholar 

  52. Langbeen A, Jorssen E, Fransen E, Rodriguez A, García M, Leroy J, Bols P. Characterization of freshly retrieved preantral follicles using a low-invasive, mechanical isolation method extended to different ruminant species. Zygote. 2015;23(5):683–94. https://doi.org/10.1017/S0967199414000331.

    Article  CAS  Google Scholar 

  53. Lopes EPF, Rodrigues GQ, de Brito DCC, Rocha RMP, Ferreira ACA, de Sá NAR, et al. Vitrification of caprine secondary and early antral follicles as a perspective to preserve fertility function. Reprod Biol. 2020;20:371–8. https://doi.org/10.1016/j.repbio.2020.05.001.

    Article  Google Scholar 

  54. Bartlewski PM, Tanya EB, Jennifer LG. Reproductive cycles in sheep. Anim Reprod Sci. 2011;124:259–68. https://doi.org/10.1016/j.anireprosci.2011.02.024.

    Article  CAS  Google Scholar 

  55. Barros VRP, Monte APO, Santos JMS, Lins TLBG, Cavalcante AYP, Gouveia BB, et al. Effects of melatonin on the in vitro growth of early antral follicles and maturation of ovine oocytes. Domest Anim Endocrinol. 2020;71:1–8. https://doi.org/10.1016/j.domaniend.2019.106386.

    Article  CAS  Google Scholar 

  56. Matsuno Y, Maruyama N, Fujii W, Naito K, Sugiura K. Effects of oocyte-derived paracrine factors on release of extracellular vesicles by mice mural granulosa cells in vitro. J Anim Sci. 2020;91:242–65. https://doi.org/10.1111/asj.13385.

    Article  CAS  Google Scholar 

  57. Candelaria J, Denicol A. Characterization of isolated bovine preantral follicles based on morphology, diameter and cell number. Zygote. 2020;28(2):154–9. https://doi.org/10.1017/S0967199419000832.

    Article  CAS  Google Scholar 

  58. Aerts JMJ, Bols PEJ. Ovarian follicular dynamics. A review with emphasis on the bovine species. Part II: Antral development, exogenous influence and future prospects. Reprod Domest Anim. 2010;45(1):180–187. https://doi.org/10.1111/j.1439-0531.2008.01298.x.

  59. Chelenga M, Sakaguchi K, Abdel-Ghani MA, Yanagawa Y, Katagiri S, Nagano M. Effect of increased oxygen availability and astaxanthin supplementation on the growth, maturation and developmental competence of bovine oocytes derived from early antral follicles. Theriogenology. 2020;157:341–9. https://doi.org/10.1016/j.theriogenology.2020.07.023.

    Article  CAS  Google Scholar 

  60. Morbeck DE, Esbenshade KL, Flowers WL, Britt JH. Kinetics of follicle growth in the prepubertal gilt. Biol Reprod. 1992;47(3):485–91. https://doi.org/10.1095/biolreprod4.

    Article  CAS  Google Scholar 

  61. Silva RC, Báo SN, Jivago JL, Lucci CM. Ultrastructural characterization of porcine oocytes and adjacent follicular cells during follicle development: lipid component evolution. Theriogenology. 2011;76(9):1647–57. https://doi.org/10.1016/j.theriogenology.2011.06.029.

    Article  CAS  Google Scholar 

  62. Faddy M, Gosden R, Edwards R. Ovarian follicle dynamics in mice: a comparative study of three inbred strains and an F1 hybrid. J Endocrinol. 1983;96(1):23–33. https://doi.org/10.1677/joe.0.0960023.

    Article  CAS  Google Scholar 

  63. Eppig JJ, O’Brien MT. Comparison of preimplantation developmental competence after mouse oocyte growth and development in vitro and in vivo. Theriogenology. 1998;49(2):415–22. https://doi.org/10.1016/S0093-691X(97)00413-5.

    Article  CAS  Google Scholar 

  64. Erickson G. Follicle growth and development. Glob Libr Wom Med. 2008. https://doi.org/10.3843/GLOWM.10289.

    Article  Google Scholar 

  65. Fabbri R, Pasquinelli G, Montanaro L, Mozzanega B, Magnani V, Tamburini F, et al. Healthy early preantral follicle can be obtained in a culture of frozen–thawed woman ovarian tissue of 32 weeks. Ultrastruct Pathol. 2007;31(4):257–62. https://doi.org/10.1080/01913120701515496.

    Article  Google Scholar 

  66. D’Angelo DV, Whitehead N, Helms K, Barfield W, Ahluwalia IB. Birth outcomes of intended pregnancies among women who used assisted reproductive technology, ovulation stimulation, or no treatment. Fertil Steril. 2011;96:314–20. https://doi.org/10.1016/j.fertnstert.2011.05.073.

    Article  Google Scholar 

  67. Shih W, Rushford DD, Bourne H, Garrett C, McBain JC, Healy DL, et al. Factors affecting low birth weight after assisted reproduction technology: difference between transfer of fresh and cryopreserved embryos suggests an adverse effect of oocyte collection. Hum Reprod. 2008;23:1644–53. https://doi.org/10.1093/humrep/den1506.

    Article  CAS  Google Scholar 

  68. Kalra SK. Adverse perinatal outcome and in vitro fertilization singleton pregnancies: what lies beneath? Further evidence to support an underlying role of the modifiable hormonal milieu in in vitro fertilization stimulation. Fertil Steril. 2012;97:1295–6. https://doi.org/10.1016/j.fertnstert.2012.03.047.

    Article  Google Scholar 

  69. Russe I. Oogenesis in cattle and sheep. Bibl Anat. 1983;24:77–92.

    CAS  Google Scholar 

  70. Lussier JG, Matton P, Dufour JJ. Growth rates of follicles in the ovary of the cow. J Reprod Fertil. 1987;81(2):301–7. https://doi.org/10.1530/jrf.0.0810301.

    Article  CAS  Google Scholar 

  71. Webb R, Campbell BK. Development of the dominant follicle: mechanisms of selection and maintenance of oocyte quality. Soc Reprod Fertil Suppl. 2007;64:141–63. https://doi.org/10.5661/rdr-vi-141.

    Article  CAS  Google Scholar 

  72. Britt JH. Impacts of early postpartum metabolism on follicular development and fertility. Bov Pract Proc. 1991;24:39–43. https://doi.org/10.21423/aabppro19916706.

    Article  Google Scholar 

  73. Fortune JE, Rivera GM, Evans AC, Turzillo AM. Differentiation of dominant versus subordinate follicles in cattle. Biol Reprod. 2001;65(3):648–54. https://doi.org/10.1095/biolreprod65.3.648.

    Article  CAS  Google Scholar 

  74. Menezo YJ, Hérubel F. Mouse and cow models for woman IVF. Reprod Biomed Online. 2002;4:170–5. https://doi.org/10.1016/s1472-6483(10)61936-0.

    Article  CAS  Google Scholar 

  75. Cahill LP, Mauleon P. Influences of season, cycle and breed on follicular growth rates in sheep. Reproduction. 1980;58(2):321–8. https://doi.org/10.1530/jrf.0.0580321.

    Article  CAS  Google Scholar 

  76. Santos RR, Knijn HM, Vos PL, Oei CH, Van Loon T, Colenbrander B, et al. Complete follicular development and recovery of ovarian function of frozen-thawed, autotransplanted goat ovarian cortex. Fertil Steril. 2009;91(4):1455–8. https://doi.org/10.1016/j.fertnstert.2008.07.018.

    Article  Google Scholar 

  77. Hansen PJ, Siqueira LB. Postnatal consequences of assisted reproductive technologies in cattle. Proceedings of the 31st Annual Meeting of the Brazilian Embryo Technology Society (SBTE); Cabo de Santo Agostinho, PE, Brazil, August 17th to 19th, 2017.

  78. Picton HM, Harris SE, Muruvi W, Chambers EL. The in vitro growth and maturation of follicles. Reproduction. 2008;136:703–15. https://doi.org/10.1530/rep-08-0290.

    Article  CAS  Google Scholar 

  79. Kono T, Obata Y, Yoshimzu T, Nakahara T, Carroll J. Epigenetic modifications during oocyte growth correlates with extended parthenogenetic development in the mouse. Nat genet. 1996;13(1):91–4. https://doi.org/10.1038/ng0596-91.

    Article  CAS  Google Scholar 

  80. Kageyama SI, Liu H, Kaneko N, Ooga M, Nagata M, Aoki F. Alterations in epigenetic modifications during oocyte growth in mice. Reproduction. 2007;133(1):85–94. https://doi.org/10.1530/REP-06-0025.

    Article  CAS  Google Scholar 

  81. Zuccala E. Making marks in oocyte development. Nat Rev Genet. 2016;17(2):68–9. https://doi.org/10.1038/nrg.2015.22.

    Article  CAS  Google Scholar 

  82. Sá NAR, Araújo VR, Correia HHV, Ferreira ACA, Guerreiro DD, Sampaio AM, et al. Anethole improves the in vitro development of isolated goat secondary follicles. Theriogenology. 2017;89:226–34. https://doi.org/10.1016/j.theriogenology.2015.12.014.

    Article  CAS  Google Scholar 

  83. Del Collado M, Da Silveira JC, Oliveira MLF, Alves BMSM, Simas RC, Godoy AT, et al. In vitro maturation impacts cumulus-oocyte complex metabolism and stress in cattle. Reproduction. 2017;154(6):881–93. https://doi.org/10.1530/REP-17-0134.

    Article  CAS  Google Scholar 

  84. Rizzo A, Roscino MT, Binetti F, Sciorsci R. Roles of reactive oxygen species in female reproduction. Reprod Domest Anim. 2012;47(2):344–52. https://doi.org/10.1111/j.1439-0531.2011.01891.x.

    Article  CAS  Google Scholar 

  85. Soto-Heras S, Paramio MT. Impact of oxidative stress on oocyte competence for in vitro embryo production programs. Res Vet Sci. 2020;132:342–50. https://doi.org/10.1016/j.rvsc.2020.07.013.

    Article  Google Scholar 

  86. Gershon E, Dekel N. Newly identified regulators of ovarian folliculogenesis and ovulation. Int J Mol Sci. 2020;21(12):45–65. https://doi.org/10.3390/ijms21124565.

    Article  CAS  Google Scholar 

  87. Wang S, Kou Z, Jing Z, Zhang Y, Guo X, Dong M, et al. Proteome of mouse oocytes at different developmental stages. Proc Natl Acad Sci USA. 2010;107(41):17639–44. https://doi.org/10.1073/pnas.1013185107.

    Article  Google Scholar 

  88. Pfeiffer MJP, Marcin S, Yogesh P, Sebastian TB, Nicole B, Nicola C, et al. Proteomic analysis of mouse oocytes reveals 28 candidate factors of the “reprogrammome.” J Prot Res. 2011;10(5):2140–53. https://doi.org/10.1021/pr100706k.

    Article  CAS  Google Scholar 

  89. Virant-Klun I, Leicht S, Hughes C, Krijgsveld J. Identification of maturation-specific proteins by single-cell proteomics of woman oocytes. Mol Cell Proteom. 2016;15(8):2616–27. https://doi.org/10.1074/mcp.M115.056887.

    Article  CAS  Google Scholar 

  90. Memili E, Peddinti D, Shack LA, Nanduri B, McCarthy F, Sagirkaya H, et al. Cow germinal vesicle oocyte and cumulus cell proteomics. Reproduction. 2007;133(6):1107–20. https://doi.org/10.1530/rep-06-0149.

    Article  CAS  Google Scholar 

  91. Walter J, Monthoux C, Fortes C, Grossmann JB, Roschitzki T, Meili B, et al. The cow cumulus proteome is influenced by maturation condition and maturational competence of the oocyte. Sci Reprod. 2020;10(1):1–15. https://doi.org/10.1038/s41598-020-66822-z.

    Article  CAS  Google Scholar 

  92. Fu Huang FQY, Wang Z, Chen F, Huang D, Lu Y, Liang ZM. Proteome profile and quantitative proteomic analysis of bufalo (Bubalusbubalis) follicular fluid during follicle development. Int J Mol Sci. 2016;17(5):618. https://doi.org/10.3390/ijms17050618.

    Article  CAS  Google Scholar 

  93. Paula AJ, Lobo M, Monteiro-Moreira A, Moreira R, Melo C, Souza-Fabjan J, et al. Proteomic analysis of follicular fluid from tropically-adapted goats. Anim Reprod Sci. 2018;188:35–44. https://doi.org/10.1016/j.anireprosci.2017.11.005.

    Article  CAS  Google Scholar 

  94. Paes VM, Figueiredo JR, Ryan PL, Willard ST, Feugang JM. Comparative analysis of porcine follicular fluid proteomes of small and large ovarian follicles. Biology. 2020;9(5):1–15. https://doi.org/10.3390/biology905010.

    Article  Google Scholar 

  95. Laronda MM, Duncan FE, Hornick JE, Xu M, Pahnke JE, Whelan KA, et al. Alginate encapsulation supports the growth and differentiation of woman primordial follicles within ovarian cortical tissue. J Assist Reprod Genet. 2014;31(8):1013–28. https://doi.org/10.1007/s10815-014-0252-x.

    Article  Google Scholar 

  96. Cadenas J, Leiva-Revilla J, Vieira LA, Apolloni LB, Aguiar FLN, Alves BG, et al. Goat ovarian follicle requirements differ between preantral and early antral stages after IVC in medium supplemented with GH and VEGF alone or in combination. Theriogenology. 2017;87:323–32. https://doi.org/10.1016/j.theriogenology.2016.09.008.

    Article  CAS  Google Scholar 

  97. Ferreira ACA, Cadenas J, Sá NAR, Correia HHV, Guerreiro DD, Figueiredo JR. In vitro culture of isolated preantral and antral follicles of goats using woman recombinant FSH: concentration-dependent and stage-specific effect. Anim Reprod Sci. 2018;196:120–9. https://doi.org/10.1016/j.anireprosci.2018.07.004.

    Article  CAS  Google Scholar 

  98. Saraiva MVA, Rossetto R, Brito IR, Celestino JJH, Silva CMG, Faustino LR, et al. Dynamic medium produces goat embryo from preantral follicles grown in vitro. Reprod Sci. 2010;17(12):1135–43. https://doi.org/10.1177/1933719110379269.

    Article  CAS  Google Scholar 

  99. Magalhães DM, Duarte ABG, Araújo VR, Brito IR, Soares TG, Lima IMT, et al. In vitro production of a goat embryo from a preantral follicle cultured in media supplemented with growth hormone. Theriogenology. 2011;75(1):182–8. https://doi.org/10.1016/j.theriogenology.2010.08.004.

    Article  CAS  Google Scholar 

  100. Silva GM, Rossetto R, Chaves RN, Duarte ABG, Araújo VR, Feltrin C, et al. In vitro development of secondary follicles from pre-pubertal and adult goats cultured in two-dimensional or three-dimensional systems. Zygote. 2015;23(4):475–84. https://doi.org/10.1017/s0967199414000070.

    Article  CAS  Google Scholar 

  101. Yang MY, Fortune JE. Testosterone stimulates the primary to secondary follicle transition in cow follicles in vitro. Biol Reprod. 2006;75(6):924–32. https://doi.org/10.1038/s41598-018-26345-0.

    Article  CAS  Google Scholar 

  102. Yang MY, Fortune JE. Vascular endothelial growth factor stimulates the primary to secondary follicle transition in cow follicles in vitro. Mol Reprod Dev. 2007;74(9):1095–104. https://doi.org/10.1002/mrd.20633.

    Article  CAS  Google Scholar 

  103. Tang K, Yang WC, Li X, Wu CJ, Sang L, Yang LG. GDF-9 and bFGF enhance the effect of FSH on the survival, activation, and growth of cattle primordial follicles. Anim Reprod Sci. 2012;131(3–4):129–34. https://doi.org/10.1016/j.anireprosci.2012.03.009.

    Article  CAS  Google Scholar 

  104. Cavalcante BN, Matos-Brito BG, Paulino LRFM, Silva BR, Aguiar AWM, Maia de Almeida EF, et al. Effects of melatonin on morphology and development of primordial follicles during in vitro culture of cow ovarian tissue. Reprod Domest Anim. 2019;54(12):1567–73. https://doi.org/10.1111/rda.13565.

    Article  CAS  Google Scholar 

  105. Mclaughlin M, Telfer EE. Oocyte development in cow primordial follicles is promoted by activin and FSH within a two-step serum-free culture system. Reproduction. 2010;139(6):971–8. https://doi.org/10.1530/rep-10-0025.

    Article  CAS  Google Scholar 

  106. Da Cunha EV, Melo LRF, Sousa GB, Araújo VR, Vasconcelos GL, Silva AWB, et al. Effect of bone morphogenetic proteins 2 and 4 on survival and development of cow secondary follicles cultured in vitro. Theriogenology. 2018;110:44–51. https://doi.org/10.1016/j.theriogenology.2017.12.032.

    Article  CAS  Google Scholar 

  107. Paulino LRFM, Cunha EV, Silva AWB, Souza GB, Lopes EPF, Donato MM, et al. Effects of tumour necrosis factor-alpha and interleukin-1 beta on in vitro development of cow secondary follicles. Reprod Domest Anim. 2018;53(4):997–1005. https://doi.org/10.1111/rda.13199.

    Article  CAS  Google Scholar 

  108. Paulino LRFM, Barroso PAA, Silva AWB, Souza ALP, Bezerra FTG, Silva BR, et al. Effects of epidermal growth factor and progesterone on development, ultrastructure and gene expression of cow secondary follicles cultured in vitro. Theriogenology. 2019;142:284–90. https://doi.org/10.1016/j.theriogenology.2019.10.031.

    Article  CAS  Google Scholar 

  109. Vasconcelos EM, Costa FC, Azevedo AVN, Barroso PAA, de Assis EIT, Paulino LRFM, et al. Eugenol influences the expression of messenger RNAs for superoxide dismutase and glutathione peroxidase 1 in cow secondary follicles cultured in vitro. Zygote. 2021;18:1–6. https://doi.org/10.1017/S0967199420000908.

    Article  CAS  Google Scholar 

  110. Wu JW, Emery BR, Carrell DT. In vitro growth, maturation, fertilization, and embryonic development of oocytes from porcine preantral follicles. Biol Reprod. 2001;64(1):375–81. https://doi.org/10.1095/biolreprod64.1.375.

    Article  CAS  Google Scholar 

  111. Nagamatsu G, Shimamoto S, Hamazaki N, Nishimura Y, Hayashi K. Mechanical stress accompanied with nuclear rotation is involved in the dormant state of mouse oocytes. Sci Adv. 2019;5(6):9960. https://doi.org/10.1126/sciadv.aav9960.

    Article  CAS  Google Scholar 

  112. Shah JS, Sabouni R, Vaught KC, Owen CM, Albertini DF, Segars JH. Biomechanics and mechanical signaling in the ovary: a systematic review. J Assis Reprod genet. 2018;35(7):1135–48. https://doi.org/10.1007/s10815-018-1180-y.

    Article  Google Scholar 

  113. Woodruff TK, Shea LD. The role of the extracellular matrix in ovarian follicle development. Reprod Sci. 2007;14(8):6–10. https://doi.org/10.1177/1933719107309818.

    Article  Google Scholar 

  114. Hayashi K, Ogushi S, Kurimoto K, Shimamoto S, Ohta H, Saitou M. Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science. 2012;338(6109):971–5. https://doi.org/10.1126/science.1226889.

    Article  CAS  Google Scholar 

  115. Rivera RM. Consequences of assisted reproductive techniques on the embryonic epigenome in cattle. Reprod Fertil Dev. 2019;32(2):65–81. https://doi.org/10.1071/RD19276.

    Article  CAS  Google Scholar 

  116. Anckaert E, De Rycke M, Smitz J. Culture of oocytes and risk of imprinting defects 2013. Hum Reprod Update. 2013;19(1):52–66. https://doi.org/10.1093/humupd/dms042.

    Article  CAS  Google Scholar 

  117. Saenz-de-Juano MD, Ivanova E, Romero S, Lolicato F, Sánchez F, Van Ranst H, et al. DNA methylation and mRNA expression of imprinted genes in blastocysts derived from an improved in vitro maturation method for oocytes from small antral follicles in polycystic ovary syndrome patients. Hum Reprod. 2019;34(9):1640–9. https://doi.org/10.1093/humrep/dez121.

    Article  CAS  Google Scholar 

  118. Canovas S, Ross PJ, Kelsey G, Coy P. DNA methylation in embryo development: epigenetic impact of ART (assisted reproductive technologies). BioEssays. 2017;39(11):1–11. https://doi.org/10.1002/bies.201700106.

    Article  CAS  Google Scholar 

  119. Cortessis VK, Azadian M, Buxbaum J, Sanogo F, Song AY, Sriprasert I, et al. Comprehensive meta-analysis reveals association between multiple imprinting disorders and conception by assisted reproductive technology. J Assist Reprod Genet. 2018;35(6):943–52. https://doi.org/10.1007/s10815-018-1173-x.

    Article  Google Scholar 

  120. Zhu L, Marjani SL, Jiang Z. The epigenetics of gametes and early embryos and potential long-range consequences in livestock species - filling in the picture with epigenomic analyses. Front Genet. 2021;12:223. https://doi.org/10.3389/fgene.2021.557934.

    Article  CAS  Google Scholar 

  121. Sutcliffe AG, Peters CJ, Bowdin S, Temple K, Reardon W, Wilson L, et al. Assisted reproductive therapies and imprinting disorders–a preliminary British survey. Hum Reprod. 2006;21(4):1009–11. https://doi.org/10.1093/humrep/dei405.

    Article  CAS  Google Scholar 

  122. Fernandez-Gonzalez R, Ramirez MA, Pericuesta E, Calle A, Gutierrez-Adan A. Histone modifications at the blastocyst Axin1(Fu) locus mark the heritability of in vitro culture-induced epigenetic alterations in mice. Biol Reprod. 2010;83(5):720–7. https://doi.org/10.1095/biolreprod.110.084715.

    Article  CAS  Google Scholar 

  123. Scherrer U, Rimoldi SF, Sartori C, Messerli FH, Rexhaj E. Fetal programming and epigenetic mechanisms in arterial hypertension. Curr Opin Cardiol. 2015;30(4):393–7. https://doi.org/10.1097/HCO.0000000000000192.

    Article  Google Scholar 

  124. Hansen PJ, Siqueira LGB. Postnatal consequences of assisted reproductive technologies in cattle. Anim Reprod. 2018;14(3):490–6. https://doi.org/10.21451/1984-3143-AR991.

    Article  Google Scholar 

  125. Alshaikh AB, Padma AM, Dehlin M, Akouri R, Song MJ, Brännström M, Hellström M. Decellularization and recellularization of the ovary for bioengineering applications; studies in the mouse. Reprod Biol Endocrinol. 2020;18(1):1–10. https://doi.org/10.1186/s12958-020-00630-y.

    Article  CAS  Google Scholar 

  126. Chiti MC, Dolmans MM, Mortiaux L, Zhuge F, Ouni E, Shahri P, Van Ruymbeke E, Champagne SD, Donnez J, Amorim CA. A novel fibrin-based artificial ovary prototype resembling human ovarian tissue in terms of architecture and rigidity. J Assist Reprod Genet. 2018;35(1):41–8. https://doi.org/10.1007/s10815-017-1091-3.

    Article  Google Scholar 

  127. Rios PD, Kniazeva E, Lee HC, Xiao S, Oakes RS, Saito E, Shea LD. Retrievable hydrogels for ovarian follicle transplantation and oocyte collection. Biotechnol Bioeng. 2018;15(8):2075–86. https://doi.org/10.1002/bit.26721.

    Article  CAS  Google Scholar 

  128. Kinnear HM, Tomaszewski CE, Chang FL, Moravek MB, Xu M, Padmanabhan V, Shikanov A. The ovarian stroma as a new frontier. Reproduction. 2020;160(3):25–39. https://doi.org/10.1530/REP-19-0501.

    Article  Google Scholar 

  129. Hassanpour A, Talaei-Khozani T, Kargar-Abarghouei E, Razban V, Vojdani Z. Decellularized human ovarian scaffold based on a sodium lauryl ester sulfate (SLES)-treated protocol, as a natural three-dimensional scaffold for construction of bioengineered ovaries. Stem Cell Res Ther. 2018;9(1):1–13. https://doi.org/10.1186/s13287-018-0971-5.

    Article  CAS  Google Scholar 

  130. Campo H, López-Martínez S, Cervelló I. Decellularization methods of ovary in tissue engineering. In Decellularization Methods of Tissue and Whole Organ in Tissue Engineering. Adv Exp Med Biol. 2021;1345:129–39. https://doi.org/10.1007/978-3-030-82735-9_11.

    Article  Google Scholar 

  131. Hellstrom M, Bandstein S, Brannstrom M. Uterine tissue engineering and the future of uterus transplantation. Ann Biomed Eng. 2017;45(7):1718–30. https://doi.org/10.1007/s10439-016-1776-2.

    Article  Google Scholar 

  132. Muncie JM, Weaver VM. The physical and biochemical properties of the extracellular matrix regulate cell fate. Curr Top Dev Biol. 2018;130:1–37. https://doi.org/10.1016/bs.ctdb.2018.02.002.

    Article  CAS  Google Scholar 

  133. Di Pietro C. Exosome-mediated communication in the ovarian follicle. J Assis Reprod Genet. 2016;33(3):303–11. https://doi.org/10.1007/s10815-016-0657-9.

    Article  Google Scholar 

  134. Bidarimath M, Lingegowda H, Miller JE, Koti M, Tayade C. Insights Into Extracellular vesicle/exosome and miRNA mediated bi-directional communication during porcine pregnancy. Front Vet Sci. 2021;8:318. https://doi.org/10.3389/fvets.2021.654064.

    Article  Google Scholar 

  135. Zhang S, Huang B, Su P, Chang Q, Li P, Song A, Tan J. Concentrated exosomes from menstrual blood-derived stromal cells improves ovarian activity in a rat model of premature ovarian insufficiency. Stem Cell Res Ther. 2021;12(1):1–16. https://doi.org/10.1186/s13287-021-02255-3.

    Article  CAS  Google Scholar 

  136. Bult CJ, Blake JA, Smith CL, Kadin JA, Richardson JE. Mouse genome database (MGD). Nucleic Acids Res. 2019;47:801–6. https://doi.org/10.1093/nar/gky1056.

    Article  CAS  Google Scholar 

  137. Sternlicht AL, Schultz RM. Biochemical studies of mammalian oogenesis: kinetics of accumulation of total and poly (A)-containing RNA during growth of the mouse oocyte. J Exp Zoo. 1981;215:191–200. https://doi.org/10.1002/jez.1402150209.

    Article  CAS  Google Scholar 

  138. Sun XF, Li YP, Pan B, Wang YF, Li J, Shen W. Molecular regulation of miR-378 on the development of mouse follicle and the maturation of oocyte in vivo. Cell Cycle. 2018;17:2230–42. https://doi.org/10.1080/15384101.2018.1520557.

    Article  CAS  Google Scholar 

  139. Li Z, Li W. miR-383 inhibits proliferation of granulosa cells by down-regulation of cell cycle-related proteins in mice. Xi Bao Yu Fenzi MianYi Xue Za Zhi. 2019;35:518–25.

    Google Scholar 

  140. Yao G, Yin M, Lian J, Tian H, Liu L, Li X, Sun F. MicroRNA-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4. Mol Endocrinol. 2010;24(3):540–51. https://doi.org/10.1210/me.2009-0432.

    Article  CAS  Google Scholar 

  141. Sumitomo J, Emori C, Matsuno Y, Ueno M, Kawasaki K, Endo TA, Shiroguchi K, Fujii W, Naito K, Sugiura K. Mouse oocytes suppress miR-322–5p expression in ovarian granulosa cells. J Reprod Dev. 2016;62(4):393–9. https://doi.org/10.1262/jrd.2015-161.

    Article  CAS  Google Scholar 

  142. Sartine LO, Saramagoll-Sezimaria FP. A recount of woman genes ups the number to at least 46,831. Sci News. 2018;194:165–82. https://doi.org/10.1186/s12915-018-0564-x.

    Article  CAS  Google Scholar 

  143. Kocabas AM, Crosby J, Ross PJ, Otu HH, Beyhan Z, Can H, Tam WL, Rosa GJM, Halgren RG, Lim B. The transcriptome of human oocytes. Proc Natl Acad Sci. 2006;103:14027. https://doi.org/10.1073/pnas.0603227103.

    Article  CAS  Google Scholar 

  144. Yao L, Li M, Hu J, Wang W, Gao M. MiRNA-335-5p negatively regulates granulosa cell proliferation via SGK3 in PCOS. Reproduction. 2018;156:439–49. https://doi.org/10.1530/REP-18-0229.

    Article  CAS  Google Scholar 

  145. Geng Y, Sui C, Xun Y, Lai Q, Jin L. MiRNA-99a can regulate proliferation and apoptosis of human granulosa cells via targeting IGF-1R in polycystic ovary syndrome. J Assist Reprod Genet. 2019;36:211–21. https://doi.org/10.1007/s10815-018-1335-x.

    Article  Google Scholar 

  146. Zhang L, Zhang X, Zhang X, Lu Y, Li L, Cui S. MiRNA-143 mediates the proliferative signaling pathway of FSH and regulates estradiol production. J Endocrinol. 2017;234:1–14. https://doi.org/10.1530/JOE-16-0488.

    Article  CAS  Google Scholar 

  147. Sirotkin AV, Kisova G, Brenaut P, Ovcharenko D, Grossmann R, Mlyncek M. Involvement of microRNA Mir15a in control of human ovarian granulosa cell proliferation, apoptosis, steroidogenesis, and response to FSH. Microrna. 2014;3:29–36. https://doi.org/10.2174/2211536603666140227232824.

    Article  CAS  Google Scholar 

  148. Caponnetto A, Battaglia R, Ragusa M, Barbagallo D, Lunelio F, Borzì P, Scollo P, Purrello M, Vento ME, Di Pietro C. Molecular profiling of follicular fluid microRNAs in young women affected by Hodgkin lymphoma. Reproduc BioMed Online. 2021;43:1472–6483. https://doi.org/10.1016/j.rbmo.2021.08.007.

    Article  CAS  Google Scholar 

  149. Bartolucci AF, Uliasz T, Peluso JJ. MicroRNA-21 as a regulator of human cumulus cell viability and its potential influence on the developmental potential of the oocyte. Biol Reprod. 2020;103(1):94–103. https://doi.org/10.1093/biolre/ioaa058.

    Article  Google Scholar 

  150. Dong Y, Xie M, Jiang Y, Xiao N, Du X, Zhang W, et al. Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nat Biotechnol. 2013;31:135–41. https://doi.org/10.1038/nbt.2478.

    Article  CAS  Google Scholar 

  151. An X, Ma H, Liu Y, Li F, Song Y, Li G, Bai Y, Cao B. Effects of miR-101-3p on goat granulosa cells in vitro and ovarian development in vivo via STC1. J Anim Sci Biotechnol. 2020;11:102. https://doi.org/10.1186/s40104-020-00506-6.

    Article  CAS  Google Scholar 

  152. Liu Y, Zhou Z, He X, Tao L, Jiang Y, Lan R, Hong Q, Chu M. Integrated analyses of miRNA-mRNA expression profiles of ovaries reveal the crucial interaction networks that regulate the prolificacy of goats in the follicular phase. BMC Genomics. 2021;22(1):812. https://doi.org/10.1186/s12864-021-08156-2.

    Article  CAS  Google Scholar 

  153. An X, Song Y, Hou J, Zhang Y, Chen K, Ma H, Zhao X, Li G, Gao K, Wang S, Cao B, Bai Y. Chi-miR-4110 promotes granulosa cell apoptosis by targeting Sma- and Mad-related protein 2 (Smad2) in the caprine ovary. PLoS ONE. 2017;12(7):0181162. https://doi.org/10.1371/journal.pone.0181162.

    Article  CAS  Google Scholar 

  154. Peng JY, An XP, Fang F, Gao KX, Xin HY, Han P, Bao LJ, Ma HD, Cao BY. MicroRNA-10b suppresses goat granulosa cell proliferation by targeting brain-derived neurotropic factor. Domest Anim Endocrinol. 2016;54:60–7. https://doi.org/10.1016/j.domaniend.

    Article  CAS  Google Scholar 

  155. Zou X, Lu T, Zhao Z, Liu G, Lian Z, Guo Y, Sun B, Liu D, Li Y. Comprehensive analysis of mRNAs and miRNAs in the ovarian follicles of uniparous and multiple goats at estrus phase. BMC Genomics. 2020;21(1):267. https://doi.org/10.1186/s12864-020-6671-4.

    Article  CAS  Google Scholar 

  156. Harris X, Qin Y, Han Q, Meng TP, Smith MP, Heaton BP, et al. Rambouillet sheep transcriptome annotation resources 37th. Anim Genet. 2019;44:543–72. https://doi.org/10.1016/j.bbagrm.2012.12.011.

    Article  CAS  Google Scholar 

  157. Olszańska B, Borgul A. Maternal RNA content in oocytes of several mammalian and avian species. J Exp Zoo. 1993;265:317–20. https://doi.org/10.1002/jez.1402650313.

    Article  Google Scholar 

  158. Zhang X, Dong C, Yang J, Li Y, Feng J, Wang B, Zhang J, Guo X. The roles of the miRNAome and transcriptome in the ovine ovary reveal poor efficiency in juvenile superovulation. Animals (Basel). 2021;11(1):239. https://doi.org/10.3390/ani11010239.

    Article  CAS  Google Scholar 

  159. Di R, He J, Song S, et al. Characterization and comparative profiling of ovarian microRNAs during ovine anestrus and the breeding season. BMC Genomics. 2014;15:899. https://doi.org/10.1186/1471-2164-15-899.

    Article  Google Scholar 

  160. Jiang Z, Sun J, Dong H, Luo O, Zheng X, Obergfell C, et al. Transcriptional profiles of in vivo preimplantation development in cattle. BMC Genomics. 2014;15:756. https://doi.org/10.1186/1471-2164-15-756.

    Article  CAS  Google Scholar 

  161. Bilodeau-Goeseels S, Schultz GA. Changes in ribosomal ribonucleic acid content within in vitro-produced bovine embryos. Biol Reprod. 1997;56:1323. https://doi.org/10.1095/biolreprod56.5.1323.

    Article  CAS  Google Scholar 

  162. Gilchrist RB, Luciano AM, Richani D, Zeng HT, Wang X, De Vos M, et al. Oocyte maturation and quality: role of cyclic nucleotides. Reproduction. 2016;152:143–57. https://doi.org/10.1530/REP-15-0606.

    Article  CAS  Google Scholar 

  163. Kataruka S, Modrak M, Kinterova V, Malik R, Zeitler DM, Horvat F, et al. MicroRNA dilution during oocyte growth disables the microRNA pathway in mammalian oocytes. Nucleic Acids Res. 2020;48:8050–62. https://doi.org/10.1093/nar/gkaa543.

    Article  CAS  Google Scholar 

  164. Zhang J, Guan Y, Shen C, Zhang L, Wang X. MicroRNA-375 regulates oocyte in vitro maturation by targeting ADAMTS1 and PGR in bovine cumulus cells. Biomed Pharmacother. 2019;118:109–350. https://doi.org/10.1016/j.biopha.2019.109350.

    Article  CAS  Google Scholar 

  165. Gebremedhn S, Salilew-Wondim D, Hoelker M, Rings F, Neuhoff C, Tholen E, Schellander K, Tesfaye D. MicroRNA-183-96-182 Cluster regulates bovine granulosa cell proliferation and cell cycle transition by coordinately targeting FOXO1. Biol Reprod. 2016;94(6):127. https://doi.org/10.1095/biolreprod.115.137539.

    Article  CAS  Google Scholar 

  166. Sinha PB, Tesfaye D, Rings F, Hossien M, Hoelker M, Held E, Neuhoff C, Tholen E, Schellander K, Salilew-Wondim D. MicroRNA-130b is involved in bovine granulosa and cumulus cells function, oocyte maturation and blastocyst formation. J Ovarian Res. 2017;10:37. https://doi.org/10.1186/s13048-017-0336-1.

    Article  CAS  Google Scholar 

  167. Andreas E, Hoelker M, Neuhoff C, Tholen E, Schellander K, Tesfaye D, Salilew-Wondim D. MicroRNA 17–92 cluster regulates proliferation and differentiation of bovine granulosa cells by targeting PTEN and BMPR2 genes. Cell Tissue Res. 2016;366:219–30. https://doi.org/10.1007/s00441-016-2425-7.

    Article  CAS  Google Scholar 

  168. Pande HO, Tesfaye D, Hoelker M, Gebremedhn S, Held E, Neuhoff C, Tholen E, Schellander K, Wondim DS. MicroRNA-424/503 cluster members regulate bovine granulosa cell proliferation and cell cycle progression by targeting SMAD7 gene through activin signalling pathway. J Ovarian Res. 2018;11:34. https://doi.org/10.1186/s13048-018-0410-3.

    Article  CAS  Google Scholar 

  169. Warr A, Affara N, Aken B, Beiki H, Bickhart DM, Billis K, et al. An improved pig reference genome sequence to enable pig genetics and genomics research. Gigascience. 2020;9:51–70. https://doi.org/10.1093/gigascience/giaa051.

    Article  CAS  Google Scholar 

  170. Budna J, Bryja A, Celichowski P, Kahan R, Kranc W, Ciesiółka S, et al. Genes of cellular components of morphogenesis in porcine oocytes before and after IVM. Reproduction. 2017;154:535–45. https://doi.org/10.1530/REP-17-0367.

    Article  CAS  Google Scholar 

  171. Li X, Wang H, Sheng Y, Wang Z. MicroRNA-224 delays oocyte maturation through targeting Ptx3 in cumulus cells. Mech Dev. 2017;143:20–5. https://doi.org/10.1016/j.mod.2016.12.004.

    Article  CAS  Google Scholar 

  172. Inoue Y, Munakata Y, Shinozawa A, Kawahara-Miki R, Shirasuna K, Iwata H. Prediction of major microRNAs in follicular fluid regulating porcine oocyte development. J Assist Reprod Genet. 2020;10:2569–79. https://doi.org/10.1007/s10815-020-01909-0.

    Article  Google Scholar 

  173. Pan B, Toms D, Shen W, Li J. MicroRNA-378 regulates oocyte maturation via the suppression of aromatase in porcine cumulus cells. Am J Physiol Endocrinol Metab. 2015;308:525–34. https://doi.org/10.1152/ajpendo.00480.2014.

    Article  CAS  Google Scholar 

  174. Pan B, Toms D, Li J. MicroRNA-574 suppresses oocyte maturation via targeting hyaluronan synthase 2 in porcine cumulus cells. Am J Physiol Cell Physiol. 2018;314:268–77. https://doi.org/10.1152/ajpcell.00065.2017.

    Article  CAS  Google Scholar 

  175. Yuan X, Deng X, Zhou X, Zhang A, Xing Y, Zhang Z, Zhang H, Li J. MiR-126-3p promotes the cell proliferation and inhibits the cell apoptosis by targeting TSC1 in the porcine granulosa cells. In Vitro Cell Dev Biol Anim. 2018;54:715–24. https://doi.org/10.1007/s11626-018-0292-0.

    Article  CAS  Google Scholar 

  176. Hu J, Dong J, Zeng Z. Uso de miRNAs exossômicos extraídos do fluido folicular de suíno para investigar seu papel no desenvolvimento do oócito. BMC Vet Res. 2020;16:485. https://doi.org/10.1186/s12917-020-02711-x.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for scholarships. J.R.V. Silva is a researcher of Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (Grant number 308737/2018-0).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to write the manuscript and to prepare illustrations. J.R.V. Silva critically revised the manuscript.

Corresponding author

Correspondence to José R. V. Silva.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paulino, L., de Assis, E., Azevedo, V. et al. Why Is It So Difficult To Have Competent Oocytes from In vitro Cultured Preantral Follicles?. Reprod. Sci. 29, 3321–3334 (2022). https://doi.org/10.1007/s43032-021-00840-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00840-8

Keywords

Navigation