Skip to main content

Control of Mammalian Oocyte Development by Interactions with the Maternal Follicular Environment

  • Chapter
  • First Online:
Oocytes

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 63))

Abstract

Development of animal germ cells depends critically on continuous contact and communication with the somatic compartment of the gonad. In females, each oocyte is enclosed within a follicle, whose somatic cells supply nutrients that sustain basal metabolic activity of the oocyte and send signals that regulate its differentiation. This maternal microenvironment thus plays an indispensable role in ensuring the production of fully differentiated oocytes that can give rise to healthy embryos. The granulosa cells send signals, likely membrane-associated Kit ligand, which trigger oocytes within resting-stage primordial follicles to initiate growth. During growth, the granulosa cells feed amino acids, nucleotides, and glycolytic substrates to the oocyte. These factors are necessary for the oocyte to complete its growth and are delivered via gap junctions that couple the granulosa cells to the oocyte. In a complementary manner, growing oocytes also release growth factors, notably growth-differentiation factor 9 and bone morphogenetic protein 15, which are necessary for proper differentiation of the granulosa cells and for these cells to support oocyte growth. During the late stages of oocyte growth, cyclic GMP that is synthesized by the granulosa cells and diffuses into the oocyte is required to prevent its precocious entry into meiotic maturation. Finally, at the early stages of maturation, granulosa cell signals promote the synthesis of a subset of proteins within the oocyte that enhance their ability to develop as embryos. Thus, the maternal legacy of the follicular microenvironment is witnessed by the fertilization of the ovulated oocyte and subsequent birth of healthy offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackert CL, Gittens JE, O’Brien MJ, Eppig JJ, Kidder GM (2001) Intercellular communication via connexin43 gap junctions is required for ovarian folliculogenesis in the mouse. Dev Biol 233:258–270

    Article  CAS  PubMed  Google Scholar 

  • Adhikari D, Liu K (2014) The regulation of maturation promoting factor during prophase I arrest and meiotic entry in mammalian oocytes. Mol Cell Endocrinol 382:480–487

    Article  CAS  PubMed  Google Scholar 

  • Adhikari D, Flohr G, Gorre N, Shen Y, Yang H, Lundin E, Lan Z, Gambello MJ, Liu K (2009) Disruption of Tsc2 in oocytes leads to overactivation of the entire pool of primordial follicles. Mol Hum Reprod 15:765–770

    Article  CAS  PubMed  Google Scholar 

  • Adhikari D, Zheng W, Shen Y, Gorre N, Hamalainen T, Cooney AJ, Huhtaniemi I, Lan Z-J, Liu K (2010) Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles. Hum Mol Genet 19:397–410

    Article  CAS  PubMed  Google Scholar 

  • Albertini DF, Rider V (1994) Patterns of intercellular connectivity in the mammalian cumulus-oocyte complex. Microsc Res Tech 27:125–133

    Article  CAS  PubMed  Google Scholar 

  • Anderson E, Albertini DF (1976) Gap junctions between the oocyte and companion follicle cells in the mammalian ovary. J Cell Biol 71:680–686

    Article  CAS  PubMed  Google Scholar 

  • Ben-Meir A, Burstein E, Borrego-Alvarez A, Chong J, Wong E, Yavorska T, Naranian T, Chi M, Wang Y, Bentov Y, Alexis J, Meriano J, Sung HK, Gasser DL, Moley KH, Hekimi S, Casper RF, Jurisicova A (2015) Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell 14:887–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennabi I, Terret ME, Verlhac MH (2016) Meiotic spindle assembly and chromosome segregation in oocytes. J Cell Biol 215:611–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bornslaeger EA, Schultz RM (1985) Adenylate cyclase activity in zona-free mouse oocytes. Exp Cell Res 156:277–281

    Article  CAS  PubMed  Google Scholar 

  • Brower PT, Schultz RM (1982) Intercellular communication between granulosa cells and mouse oocytes: existence and possible nutritional role during oocyte growth. Dev Biol 90:144–153

    Article  CAS  PubMed  Google Scholar 

  • Buccione R, Vanderhyden BC, Caron PJ, Eppig JJ (1990) FSH-induced expansion of the mouse cumulus oophorus in vitro is dependent upon a specific factor(s) secreted by the oocyte. Dev Biol 138:16–25

    Article  CAS  PubMed  Google Scholar 

  • Carabatsos MJ, Elvin J, Matzuk MM, Albertini DF (1998) Characterization of oocyte and follicle development in growth differentiation factor-9-deficient mice. Dev Biol 204:373–384

    Article  CAS  PubMed  Google Scholar 

  • Carabatsos MJ, Sellitto C, Goodenough DA, Albertini DF (2000) Oocyte-granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Dev Biol 226:167–179

    Article  CAS  PubMed  Google Scholar 

  • Castrillon DH, Miao L, Kollipara R, Horner JW, DePinho RA (2003) Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science 301:215–218

    Article  CAS  PubMed  Google Scholar 

  • Cheeseman LP, Boulanger J, Bond LM, Schuh M (2016) Two pathways regulate cortical granule translocation to prevent polyspermy in mouse oocytes. Nat Commun 7:13726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Torcia S, Xie F, Lin CJ, Cakmak H, Franciosi F, Horner K, Onodera C, Song JS, Cedars MI, Ramalho-Santos M, Conti M (2013) Somatic cells regulate maternal mRNA translation and developmental competence of mouse oocytes. Nat Cell Biol 15:1415–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiquoine AD (1960) The development of the zona pellucida of the mammalian ovum. Am J Anat 106:149–169

    Article  CAS  PubMed  Google Scholar 

  • Choi Y, Yuan D, Rajkovic A (2008) Germ cell-specific transcriptional regulator sohlh2 is essential for early mouse folliculogenesis and oocyte-specific gene expression. Biol Reprod 79:1176–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conti M, Hsieh M, Musa Zamah A, Oh JS (2012) Novel signaling mechanisms in the ovary during oocyte maturation and ovulation. Mol Cell Endocrinol 356:65–73

    Article  CAS  PubMed  Google Scholar 

  • Coticchio G, Dal Canto M, Mignini Renzini M, Guglielmo MC, Brambillasca F, Turchi D, Novara PV, Fadini R (2015) Oocyte maturation: gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization. Hum Reprod Update 21:427–454

    Article  PubMed  Google Scholar 

  • Da Silva-Buttkus P, Jayasooriya GS, Mora JM, Mobberley M, Ryder TA, Baithun M, Stark J, Franks S, Hardy K (2008) Effect of cell shape and packing density on granulosa cell proliferation and formation of multiple layers during early follicle development in the ovary. J Cell Sci 121:3890–3900

    Article  PubMed  CAS  Google Scholar 

  • da Silveira JC, Veeramachaneni DN, Winger QA, Carnevale EM, Bouma GJ (2012) Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle. Biol Reprod 86:71

    Article  PubMed  CAS  Google Scholar 

  • Diaz FJ, Wigglesworth K, Eppig JJ (2007) Oocytes determine cumulus cell lineage in mouse ovarian follicles. J Cell Sci 120:1330–1340

    Article  CAS  PubMed  Google Scholar 

  • Dong J, Albertini DF, Nishimori K, Kumar RM, Lu N, Matzuk M (1996) Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383:531–535

    Article  CAS  PubMed  Google Scholar 

  • Dragovic RA, Ritter LJ, Schulz SJ, Amato F, Thompson JG, Armstrong DT, Gilchrist RB (2007) Oocyte-secreted factor activation of SMAD 2/3 signaling enables initiation of mouse cumulus cell expansion. Biol Reprod 76:848–857

    Article  CAS  PubMed  Google Scholar 

  • Ducibella T, Duffy P, Buetow J (1994) Quantification and localization of cortical granules during oogenesis in the mouse. Biol Reprod 50:467–473

    Article  CAS  PubMed  Google Scholar 

  • Egbert JR, Shuhaibar LC, Edmund AB, Van Helden DA, Robinson JW, Uliasz TF, Baena V, Geertsi A, Wunder F, Potter LR, Jaffe LA (2014) Dephosphorylation and inactivation of NPR2 guanylyl cyclase in granulosa cells contributes to the LH-induced decrease in cGMP that causes resumption of meiosis in rat oocytes. Development 141:3594–3604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • el-Fouly MA, Cook B, Nekola M, Nalbandov AV (1970) Role of the ovum in follicular luteinization. Endocrinology 87:286–293

    Article  CAS  PubMed  Google Scholar 

  • Emori C, Wigglesworth K, Fujii W, Naito K, Eppig JJ, Sugiura K (2013) Cooperative effects of 17beta-estradiol and oocyte-derived paracrine factors on the transcriptome of mouse cumulus cells. Endocrinology 154:4859–4872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eppig JJ (1979) A comparison between oocyte growth in coculture with granulosa cells and oocytes with granulosa cell-oocyte junctional contact maintained in vitro. J Exp Zool 209:345–353

    Article  CAS  PubMed  Google Scholar 

  • Eppig JJ (1991) Intercommunication between mammalian oocytes and companion somatic cells. Bioessays 13:569–574

    Article  CAS  PubMed  Google Scholar 

  • Eppig JJ, Wigglesworth K, Hirao Y (2000) Metaphase I arrest and spontaneous parthenogenetic activation of strain LTXBO oocytes: chimeric reaggregated ovaries establish primary lesion in oocytes. Dev Biol 224:60–68

    Article  CAS  PubMed  Google Scholar 

  • Eppig JJ, Pendola FL, Wigglesworth K, Pendola JK (2005) Mouse oocytes regulate metabolic cooperativity between granulosa cells and oocytes: amino acid transport. Biol Reprod 73:351–357

    Article  CAS  PubMed  Google Scholar 

  • Evans WH (2015) Cell communication across gap junctions: a historical perspective and current developments. Biochem Soc Trans 43:450–459

    Article  CAS  PubMed  Google Scholar 

  • Flemr M, Ma J, Schultz RM, Svoboda P (2010) P-body loss is concomitant with formation of a messenger RNA storage domain in mouse oocytes. Biol Reprod 82:1008–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilchrist RB, Ritter LJ, Myllymaa S, Kaivo-Oja N, Dragovic RA, Hickey TE, Ritvos O, Mottershead DG (2006) Molecular basis of oocyte-paracrine signalling that promotes granulosa cell proliferation. J Cell Sci 119:3811–3821

    Article  CAS  PubMed  Google Scholar 

  • Gilchrist RB, Lane M, Thompson JG (2008) Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update 14:159–177

    Article  CAS  PubMed  Google Scholar 

  • Gittens JE, Kidder GM (2005) Differential contributions of connexin37 and connexin43 to oogenesis revealed in chimeric reaggregated mouse ovaries. J Cell Sci 118:5071–5078

    Article  CAS  PubMed  Google Scholar 

  • Grive KJ, Freiman RN (2015) The developmental origins of the mammalian ovarian reserve. Development 142:2554–2563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunesdogan U, Surani MA (2016) Developmental competence for primordial germ cell fate. Curr Top Dev Biol 117:471–496

    Article  PubMed  Google Scholar 

  • Guo J, Shi L, Gong X, Jiang M, Yin Y, Zhang X, Yin H, Li H, Emori C, Sugiura K, Eppig JJ, Su YQ (2016) Oocyte-dependent activation of MTOR in cumulus cells controls the development and survival of cumulus-oocyte complexes. J Cell Sci 129:3091–3103

    CAS  PubMed  Google Scholar 

  • Hadek R (1965) The structure of the mammalian egg. Int Rev Cytol 18:29–71

    Article  CAS  PubMed  Google Scholar 

  • Haverfield J, Nakagawa S, Love D, Tsichlaki E, Nomikos M, Lai FA, Swann K, FitzHarris G (2016) Ca(2+) dynamics in oocytes from naturally-aged mice. Sci Rep 6:19357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi K, Ogushi S, Kurimoto K, Shimamoto S, Ohta H, Saitou M (2012) Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 338:971–975

    Article  CAS  PubMed  Google Scholar 

  • Hirshfield AN (1991) Development of follicles in the mammalian ovary. Int Rev Cytol 124:43–101

    Article  CAS  PubMed  Google Scholar 

  • Holt JE, Lane SI, Jones KT (2013) The control of meiotic maturation in mammalian oocytes. Curr Top Dev Biol 102:207–226

    Article  CAS  PubMed  Google Scholar 

  • Hummitzsch K, Anderson RA, Wilhelm D, Wu J, Telfer EE, Russell DL, Robertson SA, Rodgers RJ (2015) Stem cells, progenitor cells, and lineage decisions in the ovary. Endocr Rev 36:65–91

    Article  CAS  PubMed  Google Scholar 

  • Hung WT, Hong X, Christenson LK, McGinnis LK (2015) Extracellular vesicles from bovine follicular fluid support cumulus expansion. Biol Reprod 93:117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hutt KJ, McLaughlin EA, Holland MK (2006) Kit ligand and c-Kit have diverse roles during mammalian oogenesis and folliculogenesis. Mol Hum Reprod 12:61–69

    Article  CAS  PubMed  Google Scholar 

  • Jaffe LA, Egbert JR (2016) Regulation of mammalian oocyte meiosis by intercellular communication within the ovarian follicle. Annu Rev Physiol. doi:10.1146/annurev-physiol-022516-034102

  • John GB, Gallardo TD, Shirley LJ, Castrillon DH (2008) Foxo3 is a PI3K-dependent molecular switch controlling the initiation of oocyte growth. Dev Biol 321:197–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorgensen JS (2013) Defining the neighborhoods that escort the oocyte through its early life events and into a functional follicle. Mol Reprod Dev 80:960–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joyce IM, Pendola FL, Wigglesworth K, Eppig JJ (1999) Oocyte regulation of kit ligand expression in mouse ovarian follicles. Dev Biol 214:342–353

    Article  CAS  PubMed  Google Scholar 

  • Joyce IM, Clark AT, Pendola FL, Eppig JJ (2000) Comparison of recombinant growth differentiation factor-9 and oocyte regulation of KIT ligand messenger ribonucleic acid expression in mouse ovarian follicles. Biol Reprod 63:1669–1675

    Article  CAS  PubMed  Google Scholar 

  • Kang MK, Han SJ (2011) Post-transcriptional and post-translational regulation during mouse oocyte maturation. BMB Rep 44:147–157

    Article  CAS  PubMed  Google Scholar 

  • Kidder GM, Vanderhyden BC (2010) Bidirectional communication between oocytes and follicle cells: ensuring oocyte developmental competence. Can J Physiol Pharmacol 88:399–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim B, Zhang X, Kan R, Cohen R, Mukai C, Travis AJ, Coonrod SA (2014) The role of MATER in endoplasmic reticulum distribution and calcium homeostasis in mouse oocytes. Dev Biol 386:331–339

    Article  CAS  PubMed  Google Scholar 

  • Koval M, Molina SA, Burt JM (2014) Mix and match: investigating heteromeric and heterotypic gap junction channels in model systems and native tissues. FEBS Lett 588:1193–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lechowska A, Bilinski S, Choi Y, Shin Y, Kloc M, Rajkovic A (2011) Premature ovarian failure in nobox-deficient mice is caused by defects in somatic cell invasion and germ cell cyst breakdown. J Assist Reprod Genet 28:583–589

    Article  PubMed  PubMed Central  Google Scholar 

  • Lei L, Spradling AC (2013) Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles. Proc Natl Acad Sci USA 110:8585–8590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Albertini DF (2013) The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte. Nat Rev Mol Cell Biol 14:141–152

    Article  CAS  PubMed  Google Scholar 

  • Li L, Baibakov B, Dean J (2008) A subcortical maternal complex essential for preimplantation mouse embryogenesis. Dev Cell 15:416–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Tripurani SK, James R, Pangas SA (2011) Minimal fertility defects in mice deficient in oocyte-expressed Smad4. Biol Reprod 86:1–6

    CAS  Google Scholar 

  • Litscher ES, Wassarman PM (2014) Evolution, structure, and synthesis of vertebrate egg-coat proteins. Trends Dev Biol 8:65–76

    PubMed  PubMed Central  Google Scholar 

  • Liu C, Peng J, Matzuk MM, Yao HH (2015) Lineage specification of ovarian theca cells requires multicellular interactions via oocyte and granulosa cells. Nat Commun 6:6934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucifero D, Mann MR, Bartolomei MS, Trasler JM (2004) Gene-specific timing and epigenetic memory in oocyte imprinting. Hum Mol Genet 13:839–849

    Article  CAS  PubMed  Google Scholar 

  • Macaulay AD, Gilbert I, Caballero J, Barreto R, Fournier E, Tossou P, Sirard MA, Clarke HJ, Khandjian EW, Richard FJ, Hyttel P, Robert C (2014) The gametic synapse: RNA transfer to the bovine oocyte. Biol Reprod 91:90

    Article  PubMed  CAS  Google Scholar 

  • Macaulay AD, Gilbert I, Scantland S, Fournier E, Ashkar F, Bastien A, Saadi HA, Gagne D, Sirard MA, Khandjian EW, Richard FJ, Hyttel P, Robert C (2016) Cumulus cell transcripts transit to the bovine oocyte in preparation for maturation. Biol Reprod 94:16

    PubMed  Google Scholar 

  • Machtinger R, Laurent LC, Baccarelli AA (2016) Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum Reprod Update 22:182–193

    PubMed  Google Scholar 

  • Makabe S, Naguro T, Stallone T (2006) Oocyte-follicle cell interactions during ovarian follicle development, as seen by high resolution scanning and transmission electron microscopy in humans. Microsc Res Tech 69:436–449

    Article  PubMed  Google Scholar 

  • Manova K, Nocka K, Besmer P, Bachvarova R (1990) Gonadal expression of c-kit encoded at the W locus of the mouse. Development 110:1057–1069

    CAS  PubMed  Google Scholar 

  • McGinnis LK, Kinsey WH (2015) Role of focal adhesion kinase in oocyte-follicle communication. Mol Reprod Dev 82:90–102

    Article  CAS  PubMed  Google Scholar 

  • Mehlmann LM, Saeki Y, Tanaka S, Brennan TJ, Evsikov AV, Pendola FL, Knowles BB, Eppig JJ, Jaffe LA (2004) The Gs-linked receptor GPR3 maintains meiotic arrest in mammalian oocytes. Science 306:1947–1950

    Article  CAS  PubMed  Google Scholar 

  • Meldrum DR, Casper RF, Diez-Juan A, Simon C, Domar AD, Frydman R (2016) Aging and the environment affect gamete and embryo potential: can we intervene? Fertil Steril 105:548–559

    Article  PubMed  Google Scholar 

  • Mitchell PA, Burghardt RC (1986) The ontogeny of nexuses (gap junctions) in the ovary of the fetal mouse. Anat Rec 214:283–288

    Article  CAS  PubMed  Google Scholar 

  • Mora JM, Fenwick MA, Castle L, Baithun M, Ryder TA, Mobberley M, Carzaniga R, Franks S, Hardy K (2012) Characterization and significance of adhesion and junction-related proteins in mouse ovarian follicles. Biol Reprod 86:153

    Article  PubMed  CAS  Google Scholar 

  • Mork L, Maatouk DM, McMahon JA, Guo JJ, Zhang P, McMahon AP, Capel B (2012) Temporal differences in granulosa cell specification in the ovary reflect distinct follicle fates in mice. Biol Reprod 86:37

    Article  PubMed  CAS  Google Scholar 

  • Motta P, Makabe S, Naguro T, Correr S (1994) Oocyte follicle cells association during development of human ovarian follicle. A study by high resolution scanning and transmission electron microscopy. Arch Histol Cytol 57:369–394

    Article  CAS  PubMed  Google Scholar 

  • Mottershead DG, Sugimura S, Al-Musawi SL, Li JJ, Richani D, White MA, Martin GA, Trotta AP, Ritter LJ, Shi J, Mueller TD, Harrison CA, Gilchrist RB (2015) Cumulin, an oocyte-secreted heterodimer of the transforming growth factor-beta family, is a potent activator of granulosa cells and improves oocyte quality. J Biol Chem 290:24007–24020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navakanitworakul R, Hung WT, Gunewardena S, Davis JS, Chotigeat W, Christenson LK (2016) Characterization and small RNA content of extracellular vesicles in follicular fluid of developing bovine antral follicles. Sci Rep 6:25486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson SM, Telfer EE, Anderson RA (2013) The ageing ovary and uterus: new biological insights. Hum Reprod Update 19:67–83

    Article  CAS  PubMed  Google Scholar 

  • Norris RP, Ratzan WJ, Freudzon M, Mehlmann LM, Krall J, Movsesian MA, Wang H, Ke H, Nikolaev VO, Jaffe LA (2009) Cyclic GMP from the surrounding somatic cells regulates cyclic AMP and meiosis in the mouse oocyte. Development 136:1869–1878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Packer AI, Hsu YC, Besmer P, Bachvarova RF (1994) The ligand of the c-kit receptor promotes oocyte growth. Dev Biol 161:194–205

    Article  PubMed  Google Scholar 

  • Pangas SA, Choi Y, Ballow DJ, Zhao Y, Westphal H, Matzuk MM, Rajkovic A (2006) Oogenesis requires germ cell-specific transcriptional regulators Sohlh1 and Lhx8. Proc Natl Acad Sci USA 103:8090–8095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng J, Li Q, Wigglesworth K, Rangarajan A, Kattamuri C, Peterson RT, Eppig JJ, Thompson TB, Matzuk MM (2013) Growth differentiation factor 9:bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions. Proc Natl Acad Sci USA 110:E776–E785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pepling ME (2012) Follicular assembly: mechanisms of action. Reproduction 143:139–149

    Article  CAS  PubMed  Google Scholar 

  • Pepling ME, Spradling AC (2001) Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles. Dev Biol 234:339–351

    Article  CAS  PubMed  Google Scholar 

  • Rajkovic A, Pangas SA, Ballow D, Suzumori N, Matzuk MM (2004) NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science 305:1157–1159

    Article  CAS  PubMed  Google Scholar 

  • Reddy P, Liu L, Adhikari D, Jagarlamudi K, Rajareddy S, Shen Y, Du C, Tang W, Hamalainen T, Peng SL, Lan Z-J, Cooney AJ, Huhtaniemi I, Liu K (2008) Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science 319:611–613

    Article  CAS  PubMed  Google Scholar 

  • Reddy P, Adhikari D, Zheng W, Liang S, Hamalainen T, Tohonen V, Ogawa W, Noda T, Volarevic S, Huhtaniemi I, Liu K (2009) PDK1 signaling in oocytes controls reproductive aging and lifespan by manipulating the survival of primordial follicles. Hum Mol Genet 18:2813–2824

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Suzuki H, Jagarlamudi K, Golnoski K, McGuire M, Lopes R, Pachnis V, Rajkovic A (2015) Lhx8 regulates primordial follicle activation and postnatal folliculogenesis. BMC Biol 13:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richard S, Baltz JM (2014) Prophase I arrest of mouse oocytes mediated by natriuretic peptide precursor C requires GJA1 (connexin-43) and GJA4 (connexin-37) gap junctions in the antral follicle and cumulus-oocyte complex. Biol Reprod 90:137

    Article  PubMed  CAS  Google Scholar 

  • Russell DL, Salustri A (2006) Extracellular matrix of the cumulus-oocyte complex. Semin Reprod Med 24:217–227

    Article  CAS  PubMed  Google Scholar 

  • Saatcioglu HD, Cuevas I, Castrillon DH (2016) Control of oocyte reawakening by Kit. PLoS Genet 12:e1006215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sánchez F, Smitz J (2012) Molecular control of oogenesis. Biochim Biophys Acta 1822:1896–1912

    Article  PubMed  CAS  Google Scholar 

  • Santonocito M, Vento M, Guglielmino MR, Battaglia R, Wahlgren J, Ragusa M, Barbagallo D, Borzi P, Rizzari S, Maugeri M, Scollo P, Tatone C, Valadi H, Purrello M, Di Pietro C (2014) Molecular characterization of exosomes and their microRNA cargo in human follicular fluid: bioinformatic analysis reveals that exosomal microRNAs control pathways involved in follicular maturation. Fertil Steril 102:1751–1761. (e1751)

    Article  CAS  PubMed  Google Scholar 

  • Sela-Abramovich S, Edry I, Galiani D, Nevo N, Dekel N (2006) Disruption of gap junctional communication within the ovarian follicle induces oocyte maturation. Endocrinology 147:2280–2286

    Article  CAS  PubMed  Google Scholar 

  • Shuhaibar LC, Egbert JR, Norris RP, Lampe PD, Nikolaev VO, Thunemann M, Wen L, Feil R, Jaffe LA (2015) Intercellular signaling via cyclic GMP diffusion through gap junctions restarts meiosis in mouse ovarian follicles. Proc Natl Acad Sci USA 112:5527–5532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shuhaibar LC, Egbert JR, Edmund AB, Uliasz TF, Dickey DM, Yee SP, Potter LR, Jaffe LA (2016) Dephosphorylation of juxtamembrane serines and threonines of the NPR2 guanylyl cyclase is required for rapid resumption of oocyte meiosis in response to luteinizing hormone. Dev Biol 409:194–201

    Article  CAS  PubMed  Google Scholar 

  • Simon A, Goodenough D, Li E, Paul D (1997) Female infertility in mice lacking connexin 37. Nature 385:525–529

    Article  CAS  PubMed  Google Scholar 

  • Smallwood SA, Tomizawa S, Krueger F, Ruf N, Carli N, Segonds-Pichon A, Sato S, Hata K, Andrews SR, Kelsey G (2011) Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet 43:811–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohel MM, Hoelker M, Noferesti SS, Salilew-Wondim D, Tholen E, Looft C, Rings F, Uddin MJ, Spencer TE, Schellander K, Tesfaye D (2013) Exosomal and non-exosomal transport of extra-cellular microRNAs in follicular fluid: implications for bovine oocyte developmental competence. PLoS One 8:e78505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soyal SM, Amleh A, Dean J (2000) FIG alpha, a germ cell-specific transcription factor required for ovarian follicle formation. Development 127:4645–4654

    CAS  PubMed  Google Scholar 

  • Stewart KR, Veselovska L, Kim J, Huang J, Saadeh H, S-i T, Smallwood SA, Chen T, Kelsey G (2015) Dynamic changes in histone modifications precede de novo DNA methylation in oocytes. Genes Dev 29:2449–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su Y-Q, Wu X, O’Brien MJ, Pendola FL, Denegre JN, Matzuk MM, Eppig JJ (2004) Synergistic roles of BMP15 and GDF9 in the development and function of the oocyte-cumulus cell complex in mice: genetic evidence for an oocyte-granulosa cell regulatory loop. Dev Biol 276:64–73

    Article  CAS  PubMed  Google Scholar 

  • Su Y-Q, Sugiura K, Wigglesworth K, O’Brien MJ, Affourtit JP, Pangas SA, Matzuk MM, Eppig JJ (2008) Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development 135:111–121

    Article  CAS  PubMed  Google Scholar 

  • Su YQ, Sugiura K, Eppig JJ (2009) Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism. Semin Reprod Med 27:32–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiura K, Su Y-Q, Diaz FJ, Pangas SA, Sharma S, Wigglesworth K, O’Brien MJ, Matzuk MM, Shimasaki S, Eppig JJ (2007) Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development 134:2593–2603

    Article  CAS  PubMed  Google Scholar 

  • Susor A, Jansova D, Cerna R, Danylevska A, Anger M, Toralova T, Malik R, Supolikova J, Cook MS, Oh JS, Kubelka M (2015) Temporal and spatial regulation of translation in the mammalian oocyte via the mTOR-eIF4F pathway. Nat Commun 6:6078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas F, Vanderhyden B (2006) Oocyte-granulosa cell interactions during mouse follicular development: regulation of Kit ligand expression and its role in oocyte growth. Reprod Biol Endocrinol 4:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomas FH, Ismail RS, Jiang J-Y, Vanderhyden BC (2008) Kit ligand 2 promotes murine oocyte growth in vitro. Biol Reprod 78:167–175

    Article  CAS  PubMed  Google Scholar 

  • Titus S, Li F, Stobezki R, Akula K, Unsal E, Jeong K, Dickler M, Robson M, Moy F, Goswami S, Oktay K (2013) Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci Transl Med 5:172ra121

    Article  CAS  Google Scholar 

  • Tomizawa S, Nowacka-Woszuk J, Kelsey G (2012) DNA methylation establishment during oocyte growth: mechanisms and significance. Int J Dev Biol 56:867–875

    Article  CAS  PubMed  Google Scholar 

  • Van Blerkom J (2010) Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion 11:797–813

    Article  PubMed  CAS  Google Scholar 

  • Vanderhyden B, Caron P, Buccione R, Eppig J (1990) Developmental pattern of the secretion of cumulus expansion-enabling factor by mouse oocytes and the role of oocytes in promoting granulosa cell differentiation. Dev Biol 140:307–317

    Article  CAS  PubMed  Google Scholar 

  • Veitch GI, Gittens JE, Shao Q, Laird DW, Kidder GM (2004) Selective assembly of connexin37 into heterocellular gap junctions at the oocyte/granulosa cell interface. J Cell Sci 117:2699–2707

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Kong N, Li N, Hao X, Wei K, Xiang X, Xia G, Zhang M (2013) Epidermal growth factor receptor signaling-dependent calcium elevation in cumulus cells is required for NPR2 inhibition and meiotic resumption in mouse oocytes. Endocrinology 154:3401–3409

    Article  CAS  PubMed  Google Scholar 

  • Wassarman PM, Litscher ES (2012) Influence of the zona pellucida of the mouse egg on folliculogenesis and fertility. Int J Dev Biol 56:833–839

    Article  CAS  PubMed  Google Scholar 

  • Wassarman PM, Litscher ES (2013) Biogenesis of the mouse egg’s extracellular coat, the zona pellucida. Curr Top Dev Biol 102:243–266

    Article  CAS  PubMed  Google Scholar 

  • Wigglesworth K, Lee KB, Emori C, Sugiura K, Eppig JJ (2015) Transcriptomic diversification of developing cumulus and mural granulosa cells in mouse ovarian follicles. Biol Reprod 92:23

    Article  PubMed  Google Scholar 

  • Winterhager E, Kidder GM (2015) Gap junction connexins in female reproductive organs: implications for women’s reproductive health. Hum Reprod Update 21:340–352

    Article  PubMed  Google Scholar 

  • Wu X, Chen L, Brown CA, Yan C, Matzuk MM (2004) Interrelationship of growth differentiation factor 9 and inhibin in early folliculogenesis and ovarian tumorigenesis in mice. Mol Endocrinol 18:1509–1519

    Article  CAS  PubMed  Google Scholar 

  • Yurttas P, Vitale AM, Fitzhenry RJ, Cohen-Gould L, Wu W, Gossen JA, Coonrod SA (2008) Role for PADI6 and the cytoplasmic lattices in ribosomal storage in oocytes and translational control in the early mouse embryo. Development 135:2627–2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamboni L, Upadhyay S (1983) Germ cell differentiation in mouse adrenal glands. J Exp Zool 228:173–193

    Article  CAS  PubMed  Google Scholar 

  • Zarate-Garcia L, Lane SI, Merriman JA, Jones KT (2016) FACS-sorted putative oogonial stem cells from the ovary are neither DDX4-positive nor germ cells. Sci Rep 6:27991

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Su YQ, Sugiura K, Xia G, Eppig JJ (2010) Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science 330:366–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Zheng W, Shen Y, Adhikari D, Ueno H, Liu K (2012) Experimental evidence showing that no mitotically active female germline progenitors exist in postnatal mouse ovaries. Proc Natl Acad Sci USA 109:12580–12585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Risal S, Gorre N, Busayavalasa K, Li X, Shen Y, Bosbach B, Brännström M, Liu K (2014) Somatic cells initiate primordial follicle activation and govern the development of dormant oocytes in mice. Curr Biol 24:2501–2508

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Panula S, Petropoulos S, Edsgard D, Busayavalasa K, Liu L, Li X, Risal S, Shen Y, Shao J, Liu M, Li S, Zhang D, Zhang X, Gerner RR, Sheikhi M, Damdimopoulou P, Sandberg R, Douagi I, Gustafsson JA, Liu L, Lanner F, Hovatta O, Liu K (2015) Adult human and mouse ovaries lack DDX4-expressing functional oogonial stem cells. Nat Med 21:1116–1118

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in my laboratory is supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health (R21HD086407), Canadian Institutes of Health Research, the Natural Sciences and Engineering Research Council of Canada, and the Research Institute of the McGill University Health Centre. Research reported in this publication is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh Clarke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Clarke, H. (2017). Control of Mammalian Oocyte Development by Interactions with the Maternal Follicular Environment. In: Kloc, M. (eds) Oocytes. Results and Problems in Cell Differentiation, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-319-60855-6_2

Download citation

Publish with us

Policies and ethics